Guide to Calculating Greenhouse Gas Inventory

Total Page:16

File Type:pdf, Size:1020Kb

Guide to Calculating Greenhouse Gas Inventory WHAT’S YOUR CARBON FOOTPRINT? DRAFT “What’s your company’s carbon footprint?” asks Joel Makower, founder of GreenBiz.com. “It’s a hot question these days – one being asked increasingly of companies by customers, investors, activists, regulators and others. Okay, it may not be exactly that question, but it’s probably in some form like, ’What’s your company doing to reduce climate impacts?’” “Whatever the question, providing an answer will require understanding what, exactly, your company does to contribute greenhouse gases into the atmosphere, how much from each business sector and location, and what options you have for mitigation.”1 And while you focus on your emissions, others may be more interested in your emissions relative to your entire supply chain. AMI member companies often work with literally thousands of suppliers, partners and service providers throughout the US and the world to create and provide their products and services. They rely on these relationships to do everything from procuring energy and packaging materials to delivering case-ready meats. Until recently, these companies measured the efficiency of their global supply chain – in three ways – cost, service, quality. But as public and retailer concerns grow about greenhouse gases, supply-chain carbon emissions is entering the calculus. Companies are increasingly measuring their carbon footprints (75% of surveyed companies), according to the September 2006 Carbon Disclosure Project (CDP)2 report by Innovest Strategic Value Advisors.3 Protocols issued by carbon registries help organizations analyze their footprints. And while the scope of these protocols varies, they generally suggest estimating only direct emissions and emissions from purchased energy, with less focus on supply chain emissions, according to a recent study by scientists as Carnegie Mellon University. 4 According to the authors, direct emissions from an industry are, on average, only 14% of the supply chain carbon emissions, and those direct emissions plus energy inputs total, on average, only 26% of the total supply chain emissions. 1 Makower, J. August 15, 2006. Foot the Bill: Getting a Toehold on Your Company’s Climate Footprint. Grist Environmental News and Commentary. 2 www.cdproject.net/ 3 www.innovestgroup.com/ 4 Matthews HS, Hendrickson CT, Weber CL. 2008. The Importance of Carbon Footprint Estimation Boundaries. Environ. Sci. Technol. 42 (16): 839-5842. Calculating your company’s carbon footprint is far from simple, Joel Makower5 explains. “To begin with, there are the sheer number and range of business activities, facilities, operations, transportation, travel, and purchases of everything from raw materials to office supplies. Beyond that are complex questions of where to draw the boundaries.” Should you account for the greenhouse- gas emissions related to extracting nutrients for fertilizers or for harvesting, drying or milling feed, or transportation of animals to your processing facilities – or are they your suppliers’ responsibility? Makower adds, “when your employees travel by air, are you or the airlines responsible for counting GHG-related impacts?” He’s quick to point out that there are downstream considerations too. Who should account for the climate impacts of supermarkets’ operations and refrigeration of your meat products or consumer disposal of your products’ packaging? So as you collect all of this information, how do you ensure that it is collected consistently so it can be aggregated for different units, product lines, and geographic units? Direct and Indirect Emissions: Because energy use is directly related to GHG emissions, by tracking energy use across different units, product lines and geographic units you can calculate emissions. Direct emissions are those are produced by a source you control, such as boilers or vehicles, and can be stationary (boilers, generators), mobile (vehicles) or fugitive (refrigerant leaks, wastewater treatment). Indirect emissions are those that result from a company activity, but are produced by a source external to the company. Data on indirect emissions (amount of energy used, the utility supplying it, and their generation mix and emissions from that generation) is available from utility bills, the utility companies, and possibly EPA. Data on direct emissions is more difficult to assemble. Mobile source information includes the number and types of vehicles (all fuel operated vehicles – forklifts, cards, trucks, plane), where vehicles are registered, fuel consumption for each vehicle, fuel type of each vehicle, miles traveled or hours of operation by each vehicle, and model year of each vehicle. You can get these data from your company fleet management systems, fuel/mileage/hour logs, or surveys of employees. Stationary source information includes the type of fuel consumed by each boiler or other source, how much fuel is consumed, and any special circumstances for Combined Heat & Power or CoGen systems. You can get these data from your natural gas bills, fuel bills for generators and other stationary equipment, propane invoices, etc. Fugitive source emissions estimates are derived from data collected on type and quantity of air conditioning equipment, type and quantity of refrigeration equipment, total refrigerant charge for each, annual actual or calculated leak rates, types of refrigerants, quantity of refrigerants purchased and used in those systems. You can get these data from refrigeration services logs & invoices, purchased refrigerant invoices, and surveys of employees. 5 Makower, J, ibid. Calculation Boundaries: Many companies limit the GHG emissions calculations to their own facilities, equipment and vehicles, and exclude emissions from suppliers, leased equipment, indirect sources, pre-opening plant construction unless by their own personnel, employee commuting to and from work, and other sources. While there are many suggestions for how to do this6,7 , for the present it’s up to each company to make its own boundary choices. For example: o Organizational boundaries determine which part of your organization to include in the emissions inventory. If you have foreign subsidiaries, joint ventures, or leased property (trucks and other vehicles, warehouses, or manufacturing equipment), you will want to make a decision about whether to include these emissions in your calculations. o Operational boundaries determine the limits of the activities that your company counts towards its emissions. For example, will your company count the emissions from transportation of product to supermarkets or other retailers, emissions from employee business travel on commercial airlines, emissions from consultants working on a company project, or emissions from landfill or rendering of animal byproducts? o Supply chain boundaries will determine the limits you place on your calculation of GHG emissions generated in the production and delivery of feed grain, raising and delivery of animals to your packing facility, or emissions generated as a result of customers’ use of your products or disposal of your product containers. CO2 Equivalents: While CO2 is the most common greenhouse gas, it is not the most powerful. Several other gases, including methane and nitrous oxide, have the ability to absorb heat in the atmosphere. Methane is a common byproduct of animal processing and meat production. A pound of methane emissions is equivalent to 21 pounds of CO2, and a pound of nitrous oxide is equivalent to 310 pounds of CO2, so GHG emissions involving methane, nitrous oxide, or other GHG is generally reported in terms of “CO2 equivalents,” determined by multiplying the amount of emissions of a particular gas by its GHG potential.8 6 A good primer on setting boundaries in GHG emissions calculations is available from the Carbon Disclosure Project at: http://www.eco- info.org/IMG/ACV/Carbon_Disclosure_Project/cdp/GHG_Emissions_Calculations_72 3.pdf 7 Verisae. 2008. Measuring Your Carbon Footprint. How, Boundaries, Best Practices & Guidelines. http://www.fmi.org/docs/sustainability/carbon_footprint_verisae.pdf 8 http://www.eia.doe.gov/bookshelf/brochures/greenhouse/Chapter1.htm Available Tools for GHG Emissions Calculations: Recognizing how difficult and time consuming GHG emissions calculations can be, fortunately, there are programs and organizations available that many companies are using to measure and track GHG emissions. Two excellent examples are: 1. The Greenhouse Gas Protocol (GHG Protocol) is referenced as the most widely used international accounting tool for government and business leaders to understand, quantify, and manage greenhouse gas emissions.9 The GHG Protocol is a partnership between the World Resources Institute and the World Business Council for Sustainable Development. According to WRI, the GHG Protocol provides the accounting framework for nearly every GHG standard and program in the world - from the International Standards Organization to The Climate Registry - as well as hundreds of GHG inventories prepared by individual companies. The GHG Protocol also offers developing countries an internationally accepted management tool to help their businesses to compete in the global marketplace and their governments to make informed decisions about managing GHG emissions. According to WRI, this standard is written primarily from the perspective of a business developing a GHG inventory. However, it applies equally to other types of organizations with operations that give rise to GHG emissions. It should not be used to quantify the reductions
Recommended publications
  • Greenhouse Gas Inventory a Community-Wide and Municipal Operations Greenhouse Gas Inventory for 2015
    Greenhouse Gas Inventory A community-wide and municipal operations greenhouse gas inventory for 2015 City of Lancaster Department of Public Works – Douglas Smith October 2017 Acknowledgement Thank you to all of the City Staff who helped compile data for both the greenhouse gas inventories included herein, including Charlotte Katzenmoyer (City Director of Public Works), Donna Jessup (City operations), Dave Schaffhauser (City Facilities Manager), Bryan Harner (City Wastewater), John Holden (City Water), Tim Erb (City Fire), and Maria Luciano (City Operations). Thank you to the Stormwater Bureau’s 2016-2017 F&M intern, JT Paganelli, who completed the vehicle emissions inventory, and the 2017 F&M intern, Grant Salley, for assisting with editing and research. Thank you to Barbara Baker from the Lancaster County Solid Waste Management Authority for providing data on solid waste. Additional thanks to customer service representatives at PPL and UGI, Scott Koch and Lori Pepper, respectively, for assisting with data. Recognition also goes to Warwick Township and Tony Robalik AICP who conducted the first municipal carbon audit in Lancaster County, which provided a model and helpful background information for this document. 2 Contents INTRODUCTION .........................................................................................................................................................5 1.1 Global Context .............................................................................................................................................................
    [Show full text]
  • Greenhouse Gas Emissions Inventory 2004-2005 Update
    University of New Hampshire University of New Hampshire Scholars' Repository The Sustainability Institute Research Institutes, Centers and Programs 2006 Greenhouse Gas Emissions Inventory 2004-2005 Update UNH Sustainability Institute Follow this and additional works at: https://scholars.unh.edu/sustainability Recommended Citation UNH Sustainability Institute, "Greenhouse Gas Emissions Inventory 2004-2005 Update" (2006). The Sustainability Institute. 61. https://scholars.unh.edu/sustainability/61 This Report is brought to you for free and open access by the Research Institutes, Centers and Programs at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in The Sustainability Institute by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. Produced through the collaborative efforts of the UNH Office of Sustainability, the UNH Climate Education Initiative, and Clean Air - Cool Planet, this 2004 - 2005 update to UNH’s 1990 - 2003 Greenhouse Gas Emissions Inventory serves as a tool for measuring the University’s impact on regional and global climate change. The 2004-2005 Greenhouse Gas Emissions 2 004-2005 UPDATE Inventory Update summarizes UNH’s greenhouse gas emissions from all major sources, including the production of energy, transportation, and agriculture, among others. GREENHOUSE GAS EMISSIONS INVENTORY A COLL ABORATIVE PROJECT BY: Since 1991, UNH’s greenhouse gas emissions (GHGE) have continued to increase with increases in the University’s population UNH OFFICE OF SUSTAINABILITY and improvements in infrastructure. Despite a reduction in emissions between 2003 and 2005, there has been a net increase UNH CLIMATE EDUCATION INITIATIVE of 25% in GHGE from 1990 to 2005.
    [Show full text]
  • NEW JERSEY GREENHOUSE GAS INVENTORY MID-CYCLE UPDATE REPORT February 2021
    NEW JERSEY GREENHOUSE GAS INVENTORY MID-CYCLE UPDATE REPORT February 2021 Introduction New Jersey’s Global Warming Response Act (GWRA) (P.L. 2007, c.112, as amended 2019) calls for an annual compilation of statewide greenhouse gas (GHG) emissions data. This data is used to monitor and track progress towards New Jersey’s goal of reducing GHG emissions 80% from their 2006 levels by 2050 (known as the 80x50 goal).1 Since 2008, the New Jersey Department of Environmental New Jersey’s Greenhouse Gas Protection (DEP) has released a comprehensive statewide Reporting Framework GHG inventory report approximately every two years. Following the 2019 amendments to the GWRA, the DEP is also Emissions Inventory Report committed to releasing updated data annually to help inform • Full report released every two years the state’s climate mitigation planning and implementation • Includes the latest emissions estimates and projections efforts. • Includes a detailed discussion on: The DEP will therefore continue to release a full Emissions o Statewide Greenhouse Gas trends Federal and International trends Inventory Report every other year and will also provide a o and policy “Mid-Cycle Update” during the intervening years. The o Changes in methodologies Emissions Inventory Reports2 contain detailed analysis, o Adjustment of Baselines including updated emissions calculations, review of GHG trends, adjustments to baselines (when necessary), and Mid-Cycle Update • Brief summary released between discussion of any changes in emission calculation Emissions Inventory Reports methodologies. In contrast, the Mid-Cycle Update is a brief • Includes the latest emissions summary of the latest emissions data, with concise estimates and projections complementary analysis.
    [Show full text]
  • Greenhouse Gas Mitigation Options and Costs for Agricultural Land and Animal Production Within the United States
    Greenhouse Gas Mitigation Options and Costs for Agricultural Land and Animal Production within the United States ICF International February 2013 Greenhouse Gas Mitigation Options and Costs for Agricultural Land and Animal Production within the United States Prepared by: ICF International 1725 I St NW, Suite 1000 Washington, DC 20006 For: U.S. Department of Agriculture Climate Change Program Office Washington, DC February 2013 Greenhouse Gas Mitigation Options and Costs for Agricultural Land and Animal Production within the United States Preparation of this report was done under USDA Contract No. AG-3142-P-10-0214 in support of the project: Greenhouse Gas Mitigation Options and Costs for Agricultural Land and Animal Production within the United States. This draft report was provided to USDA under contract by ICF International and is presented in the form in which it was received from the contractor. Any views presented are those of the authors and are not necessarily the views of or endorsed by USDA. For more information, contact the USDA Climate Change Program Office by email at [email protected], fax (202) 401-1176, or phone (202) 720-6699. Cover Photo Credit: (Middle Photo) California Bioenergy LLC, Dairy Biogas Project, Bakersfield, CA. How to Obtain Copies: You may electronically download this document from the U.S. Department of Agriculture’s Web site at: http://www.usda.gov/oce/climate_change/mitigation_technologies/GHGMitigationProduction_Cost.htm For Further Information Contact: Jan Lewandrowski, USDA Project Manager ([email protected])
    [Show full text]
  • Federal Greenhouse Gas Accounting and Reporting Guidance Council on Environmental Quality January 17, 2016
    Federal Greenhouse Gas Accounting and Reporting Guidance Council on Environmental Quality January 17, 2016 i Contents 1.0 Introduction ......................................................................................................................... 1 1.1. Purpose of This Guidance ............................................................................................... 2 1.2. Greenhouse Gas Accounting and Reporting Under Executive Order 13693 ................. 2 1.2.1. Carbon Dioxide Equivalent Applied to Greenhouse Gases .......................................... 3 1.2.2. Federal Reporting Requirements .................................................................................. 4 1.2.3. Distinguishing Between GHG Reporting and Reduction ............................................. 5 1.2.4. Opportunities, Limitations, and Exemptions under Executive Order 13693 ................ 5 1.2.5. Federal Greenhouse Gas Accounting and Reporting Workgroup ................................ 6 1.2.6. Electronic Greenhouse Gas Accounting and Reporting Capability (Annual Greenhouse Gas Data Report Workbook) .................................................................................................. 6 1.2.7. Relationship of the Guidance to Other Greenhouse Gas Reporting Requirements and Protocols ................................................................................................................................. 7 1.2.8. The Public Sector Greenhouse Gas Accounting and Reporting Protocol ..................... 8 2.0 Setting
    [Show full text]
  • Greenhouse Gas and Global Warming Potential Excerpt from U.S. National Emissions Inventory
    GREENHOUSE GASES AND GLOBAL WARMING POTENTIAL VALUES EXCERPT FROM THE INVENTORY OF U.S. GREENHOUSE EMISSIONS AND SINKS: 1990-2000 U.S. Greenhouse Gas Inventory Program Office of Atmospheric Programs U.S. Environmental Protection Agency April 2002 Greenhouse Gases and Global Warming Potential Values Original Reference All material taken from the Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990 - 2000, U.S. Environmental Protection Agency, Office of Atmospheric Programs, EPA 430-R-02- 003, April 2002. <www.epa.gov/globalwarming/publications/emissions> How to Obtain Copies You may electronically download this document from the U.S. EPA’s Global Warming web page on at: www.epa.gov/globalwarming/publications/emissions For Further Information Contact Mr. Michael Gillenwater, Office of Air and Radiation, Office of Atmospheric Programs, Tel: (202)564-0492, or e-mail [email protected] Acknowledgments The preparation of this document was directed by Michael Gillenwater. The staff of the Climate and Atmospheric Policy Practice at ICF Consulting, especially Marian Martin Van Pelt and Katrin Peterson deserve recognition for their expertise and efforts in supporting the preparation of this document. Excerpt from Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2000 Page 2 Greenhouse Gases and Global Warming Potential Values Introduction The Inventory of U.S. Greenhouse Gas Emissions elements of the Earth’s climate system. Natural and Sinks presents estimates by the United States processes such as solar-irradiance variations, government of U.S. anthropogenic greenhouse variations in the Earth’s orbital parameters, and gas emissions and removals for the years 1990 volcanic activity can produce variations in through 2000.
    [Show full text]
  • Greenhouse Gas Reduction Strategies in Utah: an Economic and Policy Analysis Executive Summary
    Greenhouse Gas Reduction Strategies in Utah: An Economic and Policy Analysis Prepared for: The U.S. Environmental Protection Agency Prepared by: The Utah Department of Natural Resources Office of Energy and Resource Planning Table of Contents Executive Summary .....................................................ES-1 I. Background ................................................ES-1 Table 1. Fossil Fuel GHG Emissions Baseline in Tons CO2, 1990-2010 ......ES-1 II. Major Findings ................................................ES-1 A. Baseline ................................................ES-1 Figure 1. Fossil Fuel GHG Emissions Baseline 1990-2010 ............. ES-2 B. Mitigation Strategies ............................................ES-2 Table 2. GHG Cost and Reduction - Summary by Sector ..............ES-3 Table 3. Fossil Fuel Mitigation Strategies Ranked By Feasible $/ton .....ES-3 Figure 2. Cost vs. Reduction S Feasible ............................ES-4 Figure 3. Cost vs. Reduction S Potential ...........................ES-5 C. Economic Impact ...............................................ES-6 Table 4. Estimated Average Annual Changes in Earnings and Employment ES-6 Part One: Introduction ..................................................... 1-1 I. Background ................................................. 1-1 II. Scope of Research ................................................. 1-2 III. Methodology 1-2 IV. Report Structure ................................................. 1-4 Part Two: The Greenhouse Effect and Global Initiatives
    [Show full text]
  • Greenhouse Gas Inventory Report Calendar Year 2018
    ; Fairfax County ~ PUBLIC SCHOOLS ,t R-¾iJam l.. ENGAGE • INSPIRE • Fairfax County Public Schools Greenhouse Gas Inventory Report For Calendar Year 2018 Fairfax County Public Schools Office of Facilities Management 5025 Sideburn Road Fairfax, Virginia 22032 This report was prepared by: FCPS Energy Management 1 Table of Contents 2 Background ............................................................................................................................. 2 2.1 Fairfax County Public Schools Policy 8542 on Environmental Stewardship ....... 2 2.2 What is a Greenhouse Gas Inventory? ..................................................................... 2 2.3 Greenhouse Gas Inventory Protocols ....................................................................... 3 3 FCPS Greenhouse Gas Emissions for Calendar 2018 .............................................................. 3 4 FCPS Greenhouse Gas Emissions Eleven Year Trend ............................................................. 8 5 Appendix 1 – Climate Registry.............................................................................................. 14 Figure 1: CO2 2008-2018...........................................................................................................5 Figure 2: CO2 Breakdown ........................................................................................................ 6 Figure 3: CO2 Facilities vs Transportation .......................................................................... 7 Figure 4: CO2 Direct Combustion .........................................................................................
    [Show full text]
  • The Global Warming Potential Is Inconsistent with the Physics of Climate Change and Misrepresents the Effects of Policy Interventions
    https://www.essoar.org/doi/10.1002/essoar.10504991.1 Poster SY012-0005 The Global Warming Potential is Inconsistent with the Physics of Climate Change and Misrepresents the Effects of Policy Interventions Robert L. Kleinberg Boston University Institute for Sustainable Energy https://www.essoar.org/doi/10.1002/essoar.10504991.1 METHANE AS AN ENERGY SOURCE AND A GREENHOUSE GAS SUMMARY: Methane, the primary component of natural gas, is both a useful primary source of energy and a powerful greenhouse gas. It is as important as carbon dioxide in determining whether we meet our 2050 climate goals. --------------- Natural gas (blue bars) is the most versatile source of primary energy in the US energy system, serving power, residential, commercial, and industrial sectors. https://www.essoar.org/doi/10.1002/essoar.10504991.1 Natural gas plays a unique role in energy storage. Every winter it feeds about 500 terawatt- hours of energy into power and heating systems. There is no other energy storage system that has anywhere near this capability, in overall capacity and ability to store energy for seasonal use. https://www.essoar.org/doi/10.1002/essoar.10504991.1 The primary constituent (90-95%) of pipeline grade natural gas is methane, which when emitted directly to the atmosphere is a powerful greenhouse gas. Globally, about half of methane emissions are from natural sources (green segments) and the other half are anthropogenic (other colors). https://www.essoar.org/doi/10.1002/essoar.10504991.1 Methane is 120 times more powerful as a greenhouse gas than carbon dioxide, on a per- kilogram basis.
    [Show full text]
  • City of Palm Springs Greenhouse Gas Inventory
    City of Palm Springs Greenhouse Gas Inventory City of Palm Springs October 26, 2010 340 S. Farrell Drive, Suite A210 Palm Springs, California 92262 ADMINISTRATIVE DRAFT Greenhouse Gas Inventory City of Palm Springs, California Prepared for: City of Palm Springs 3200 East Tahquitz Canyon Way Palm Springs, CA 92262 760-323-8299 Contact: Michele Catherine Mician, MS Manager, Office of Sustainability Prepared by: Michael Brandman Associates 340 S. Farrell Drive, Suite A210 Palm Springs, CA 92262 Contact: Frank Coyle, REA Author: Cori Wilson Project Number: 02270004 October 26, 2010 City of Palm Springs Greenhouse Gas Inventory Table of Contents TABLE OF CONTENTS Section 1: Executive Summary............................................................................................ 1 Section 2: Introduction.........................................................................................................3 2.1 - Purpose of the Inventory..................................................................................... 3 2.2 - About the Inventory............................................................................................. 4 2.3 - City of Palm Springs............................................................................................ 5 2.4 - Climate Change Background .............................................................................. 9 Climate Change............................................................................................... 9 Greenhouse Gases ......................................................................................
    [Show full text]
  • Greenhouse Gas Inventory
    GREENHOUSE GAS INVENTORY UNIVERSITY of NORTH CAROLINA WILMINGTON August 2014 2 LETTER FROM THE CHIEF SUSTAINABILITY OFFICER As North Carolina’s coastal university, the University of North Carolina Wilmington defines itself by a strong connection to the environment through teaching, research and community engagement. UNCW considers its surroundings more than a backdrop for the successes that characterize the university. The environment is the main stage that much be preserved in order to continue such great academics, research and service learning. UNCW defines sustainability as individual efforts made by the community to ensure that the beauty and benefits of today’s world – economically, environmentally and socially – will be available for future generations to inherit. The university is committed to maintaining fiscal responsibility and believes that its efforts in sustainability reflect that. Consequently, sustainability involved awareness and understanding of the complex interdependence between these social, economic and ecological systems. The choices we, as Seahawks, make in our daily lives affect the intricate interconnections between these systems both seen and unseen. In recent years, the need to innovate and reduce the “talon-print” of our community, region and state became apparent. The initial wave of change may have originated on a political level, but as the movement has gained momentum, the tides have changed and the obligation to sustainability has developed as an individual as well as institutional commitment. As you will see in this report, UNCW has taken great strides in areas of energy conservation, alternative transportation, recycling, as well as stewardship in natural areas. Much work remains; however, through the hard work of the Sustainability Council and collaboration with peers and partners, we will continues the process of improvement.
    [Show full text]
  • Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2017
    10. References Executive Summary BEA (2019) 2017 Comprehensive Revision of the National Income and Product Accounts: Current-dollar and "real" GDP, 1929–2017. Bureau of Economic Analysis (BEA), U.S. Department of Commerce, Washington, D.C. Available online at: <http://www.bea.gov/national/index.htm#gdp>. Duffield, J. (2006) Personal communication. Jim Duffield, Office of Energy Policy and New Uses, U.S. Department of Agriculture, and Lauren Flinn, ICF International. December 2006. EIA (2019) Electricity Generation. Monthly Energy Review, February 2019. Energy Information Administration, U.S. Department of Energy, Washington, D.C. DOE/EIA-0035(2019/02). EIA (2018) Electricity in the United States. Electricity Explained. Energy Information Administration, U.S. Department of Energy, Washington, D.C. Available online at: <https://www.eia.gov/energyexplained/index.php?page=electricity_in_the_united_states>. EIA (2017) International Energy Statistics 1980-2017. Energy Information Administration, U.S. Department of Energy. Washington, D.C. Available online at: <https://www.eia.gov/beta/international/>. EPA (2018a) Acid Rain Program Dataset 1996-2017. Office of Air and Radiation, Office of Atmospheric Programs, U.S. Environmental Protection Agency, Washington, D.C. EPA (2018b) Greenhouse Gas Reporting Program (GHGRP). 2018 Envirofacts. Subpart HH: Municipal Solid Waste Landfills and Subpart TT: Industrial Waste Landfills. Available online at: <http://www.epa.gov/enviro/facts/ghg/search.html>. EPA (2018c) “1970 - 2017 Average annual emissions, all criteria pollutants in MS Excel.” National Emissions Inventory (NEI) Air Pollutant Emissions Trends Data. Office of Air Quality Planning and Standards, March 2018. Available online at: <https://www.epa.gov/air-emissions-inventories/air-pollutant-emissions-trends-data>.
    [Show full text]