Chapter 2 Bernoulli Trials

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 2 Bernoulli Trials Chapter 2 Bernoulli Trials 2.1 The Binomial Distribution In Chapter 1 we learned about i.i.d. trials. In this chapter, we study a very important special case of these, namely Bernoulli trials (BT). If each trial yields has exactly two possible outcomes, then we have BT. B/c this is so important, I will be a bit redundant and explicitly present the assumptions of BT. The Assumptions of Bernoulli Trials. There are three: 1. Each trial results in one of two possible outcomes, denoted success (S) or failure (F ). 2. The probability of S remains constant from trial-to-trial and is denoted by p. Write q =1 p for the constant probability of F . − 3. The trials are independent. When we are doing arithmetic, it will be convenient to represent S by the number 1 and F by the number 0. One reason that BT are so important, is that if we have BT, we can calculate probabilities of a great many events. Our first tool for calculation, of course, is the multiplication rule that we learned in Chapter 1. For example, suppose that we have n = 5 BT with p = 0.70. The probability that the BT yield four successes followed by a failure is: P (SSSSF )= ppppq = (0.70)4(0.30) = 0.0720. Our next tool is extremely powerful and very useful in science. It is the binomial probability distribution. Suppose that we plan to perform/observe n BT. Let X denote the total number of successes in the n trials. The probability distribution of X is given by the following equation. n! − P (X = x)= pxqn x, for x =0, 1,...,n. (2.1) x!(n x)! − 17 To use this formula, recall that n! is read ‘n-factorial’ and is computed as follows. 1! = 1;2! = 2(1) = 2;3! = 3(2)(1)= 6, 4! = 4(3)(2)(1) = 24; and so on. By special definition, 0!=1. (Note to the extremely interested reader. If you want to see why Equation 2.1 is correct, go to the link to the Revised Student Study Guide on my webpage and read the More Mathematics sections of Chapters 2, 3 and 5.) I will do an extended example to illustrate the use of Equation 2.1. Suppose that n =5 and p =0.60. I will obtain the probability distribution for X. 5! P (X =0)= (0.60)0(0.40)5 =0.0102. 0!5! 5! P (X =1)= (0.60)1(0.40)4 =0.0768. 1!4! 5! P (X =2)= (0.60)2(0.40)3 =0.2304. 2!3! 5! P (X =3)= (0.60)3(0.40)2 =0.3456. 3!2! 5! P (X =4)= (0.60)4(0.40)1 =0.2592. 4!1! 5! P (X =5)= (0.60)5(0.40)0 =0.0778. 5!0! You should check the above computations to make sure you are comfortable using Equation 2.1. Here are some guidelines for this class. If n 8, you should be able to evaluate Equation 2.1 ‘by hand’ as I have done above for n =5. ≤ For n 9, I recommend using a statistical software package on a computer or the website I describe later.≥ For example, the probability distribution for X for n = 25 and p =0.50 is presented in Table 2.1. Equation 2.1 is called the binomial probability distribution with parameters n and p; it is denoted by Bin(n, p). With this notation, we see that my earlier ‘by hand’ effort was the Bin(5,0.60) and Table 2.1 is the Bin(25,0.50). Sadly, life is a bit more complicated than the above. In particular, a statistical software package should not be considered a panacea for the binomial. For example, if I direct my computer to calculate the Bin(n,0.50) for any n 1023 I get an error message; the computer program is smart enough to realize that it has messed≥ up and its answer is wrong; hence, it does not give me an answer. Why does this happen? Well, consider the computation of P (X = 1000) for the Bin(2000,0.50). This involves a really huge number (2000!) divided by the square of a really huge number (1000!), and them multiplied by a really really small positive number ((0.50)2000). Unless the computer programmer exhibits incredible care in writing the code, the result will be an overflow or an underflow or both. 18 Table 2.1: The Binomial Distribution for n = 25 and p =0.50. x P (X = x) P (X x) P (X x) ≤ ≥ 0 0.0000 0.0000 1.0000 1 0.0000 0.0000 1.0000 2 0.0000 0.0000 1.0000 3 0.0001 0.0001 1.0000 4 0.0004 0.0005 0.9999 5 0.0016 0.0020 0.9995 6 0.0053 0.0073 0.9980 7 0.0143 0.0216 0.9927 8 0.0322 0.0539 0.9784 9 0.0609 0.1148 0.9461 10 0.0974 0.2122 0.8852 11 0.1328 0.3450 0.7878 12 0.1550 0.5000 0.6550 13 0.1550 0.6550 0.5000 14 0.1328 0.7878 0.3450 15 0.0974 0.8852 0.2122 16 0.0609 0.9461 0.1148 17 0.0322 0.9784 0.0539 18 0.0143 0.9927 0.0216 19 0.0053 0.9980 0.0073 20 0.0016 0.9995 0.0020 21 0.0004 0.9999 0.0005 22 0.0001 1.0000 0.0001 23 0.0000 1.0000 0.0000 24 0.0000 1.0000 0.0000 25 0.0000 1.0000 0.0000 Total 1.0000 19 Figure 2.1: The Bin(100, 0.5) Distribution. 0.08 0.06 0.04 0.02 35 40 45 50 55 60 65 Figure 2.2: The Bin(100, 0.2) Distribution. 0.10 0.08 0.06 0.04 0.02 10 15 20 25 30 Figure 2.3: The Bin(25, 0.5) Distribution. 0.16 0.14 0.12 0.10 0.08 0.06 0.04 0.02 8 11 14 17 20 Figure 2.4: The Bin(50, 0.1) Distribution. 0.20 0.18 0.16 0.14 0.12 0.10 0.08 0.06 0.04 0.02 0 3 6 9 12 Before we condemn the programmer for carelessness or bemoan the limits of the human mind, note the following. We do not need to evaluate Equation 2.1 for large n’s b/c there is a very easy way to obtain a good approximation to the exact answer. Figures 2.1–2.4 probability histograms for several binomial probability distributions. Here is how they are drawn. The method I am going to give you works only if the possible values of the random variable are equally spaced on the number line. This definition can be modified for other situations, but we won’t need to do this. 1. On a horizontal number line, mark all possible values of X. For the binomial, these are 0, 1, 2,... n. 2. Determine the value of δ (Greek lower case delta) for the random variable of interest. The number δ is the distance between any two consecutive values of the random variable. For the binomial, δ =1, which makes life much simpler. 3. Above each x draw a rectangle, with its center at x, its base equal to δ and its height equal to P (X = x)/δ. Of course, in the current case, δ =1, so the height of each rectangle equals the probability of its center value. For a probability histogram (PH) the area of a rectangle equals the probability of its center value, b/c P (X = x) Area = Base Height = δ = P (X = x). × × δ A PH allows us to ‘see’ a probability distribution. For example, for our pictures we can see that the binomial is symmetric for p =0.50 and not symmetric for p =0.50. This is not an accident of 6 21 the four pictures I chose to present; indeed, the binomial is symmetric if, and only if, p =0.50. By the way, I am making the tacit assumption that 0 <p< 1; that is, that p is neither 1 nor 0. Trials for which successes are certain or impossible are not of interest to us. (The idea is that if p = 1, then P (X = n)=1 and its PH will consist of only one rectangle. Being just one rectangle, it is symmetric.) Here are some other facts about the binomial illustrated by our pictures. 1. The PH for a binomial always has exactly one peak. The peak can be one or two rectangles wide, but never wider. 2. If np is an integer, then there is a one-rectangle wide peak located above np. 3. If np is not an integer, then the peak will occur either at the integer immediately below or above np; or, in some cases, at both of these integers. 4. If you move away from the peak in either direction, the heights of the rectangles become shorter. If the peak occurs at either 0 or n this fact is true in the one direction away from the peak. It turns out to be very important to have ways to measure the center and spread of a PH. The center is measured by the center of gravity, defined as follows.
Recommended publications
  • Optional Section: Continuous Probability Distributions
    FREE136_CH06_WEB_001-009.indd Page 1 9/18/14 9:26 PM s-w-149 /207/WHF00260/9781429239769_KOKOSKA/KOKOSKA_INTRODUCTORY_STATISTICS02_SE_97814292 ... Optional Section: Continuous 6 Probability Distributions 6.5 The Normal Approximation to the Binomial Distribution The normal distribution has many applications and is used extensively in statistical infer- ence. In addition, many distributions, or populations, are approximately normal. The central limit theorem, which will be introduced in Section 7.2, provides some theoretical justification for this empirical evidence. In these cases, the normal distribution may be used to compute approximate probabilities. Recall that the binomial distribution was defined in Section 5.4. Although it seems strange, under certain circumstances, a (continuous) normal distribution can be used to approximate a (discrete) binomial distribution. For each rectangle, the width is 1 Suppose X is a binomial random variable with n 5 10 and p 5 0.5. The probability and the height is equal to the histogram for this distribution is shown in Figure 6.83. Recall that in this case, the area probability associated with a of each rectangle represents the probability associated with a specific value of the random specific value. Therefore, the area variable. For example, in Figure 6.84, the total area of the rectangular shaded regions is of each rectangle (width 3 height) P(4 # X # 7). also represents probability. p(x) p(x) 0.20 0.20 0.15 0.15 0.10 0.10 0.05 0.05 0.00 0.00 0 1 2 3 4 5 6 7 8 9 10 x 0 1 2 3 4 5 6 7 8 9 10 x Figure 6.83 Probability histogram Figure 6.84 The area of the shaded associated with a binomial random rectangles is P(4 # X # 7).
    [Show full text]
  • A Review and Comparison of Continuity Correction Rules; the Normal
    A review and comparison of continuity correction rules; the normal approximation to the binomial distribution Presenter: Yu-Ting Liao Advisor: Takeshi Emura Graduate Institute of Statistics, National Central University, Taiwan ABSTRACT: In applied statistics, the continuity correction is useful when the binomial distribution is approximated by the normal distribution. In the first part of this thesis, we review the binomial distribution and the central limit theorem. If the sample size gets larger, the binomial distribution approaches to the normal distribution. The continuity correction is an adjustment that is made to further improve the normal approximation, also known as Yates’s correction for continuity (Yates, 1934; Cox, 1970). We also introduce Feller’s correction (Feller, 1968) and Cressie’s finely tuned continuity correction (Cressie, 1978), both of which are less known for statisticians. In particular, we review the mathematical derivations of the Cressie’s correction. Finally, we report some interesting results that these less known corrections are superior to Yates’s correction in practical settings. Theory that is, Design n( X ) LetX be a random variable having a probability n d N( 0,1). We choose pairs of( n, p ) for numerical function n analyses. We follow the rule( np 15 ) or k nk SinceX1, X 2 ,,X n is a sequence of independent pX ( k ) Pr( X k ) p (1 p ) , ( np 10 and p 0.1) by Emura and Lin (2015) k and identically distribution and mgfs exist, so we to choose the value of( n, p ) . For fixed p wheren { 0,1, 2,}, ,0 p 1 and 0 k n.
    [Show full text]
  • 6.5 the Normal Approximation to the Binomial Distribution 6-1
    6.5 The Normal Approximation to the Binomial Distribution 6-1 6.5 The Normal Approximation to the Binomial Distribution Background The normal distribution has many applications and is used extensively in statistical infer- ence. In addition, many distributions, or populations, are approximately normal. The Central Limit Theorem, which is introduced in Section 7.2 , provides some theoretical justification for this empirical evidence. In these cases, the normal distribution may be used to compute approximate probabilities. Recall that the binomial distribution was defined in Section 5.4 . Although it seems strange, under certain circumstances a (continuous) normal distribution can be used to For each rectangle, the width is 1 and approximate a (discrete) binomial distribution. the height is equal to the probability Suppose X is a binomial random variable with n =10 and p = 0.5 . The probability associated with a specific value. Figure 6.70 Therefore, the area of each rectangle histogram for this distribution is shown in . In this case, the area of each rect- (width×height) also represents angle represents the probability associated with a specific value of the random variable. probability. For example, in Figure 6.71 the total area of the rectangular shaded regions is P (4 ≤≤X 7). p(x) p(x) 0.20 0.20 0.15 0.15 0.10 0.10 0.05 0.05 0.00 x 0.00 x 0 12345678910 0 12345678910 Figure 6.70 Probability histogram associated Figure 6.71 The area of the shaded rectangles is with a binomial random variable defined by PX (4≤≤7) .
    [Show full text]
  • Central Limit Theorem the Central Limit Theorem Is Used to Approximate Probabilities When Dealing with the Sum Or Average of a Large Number of Variables
    Central Limit Theorem The Central Limit Theorem is used to approximate probabilities when dealing with the sum or average of a large number of variables. We use our properties of expectation and variance to determine those parameters for our sum/average. Let S=A be the random variable representing our Sum or Average. Once we have an x − µS/A expected value, µS/A, and standard deviation, σS/A, then FS/A(x) may be approximated by Φ , σS/A where Φ represents the cumulative distribution function of a standard normal distribution (use the Z-table). 2 Suppose for a random variable Xi, the mean is µ, and variance is σ . n X • Sums: There is no shorthand notation for the sum of n random variables, Xi. i=1 • Mean of Sum: " n # X E Xi = E [X1 + ··· + Xn] = E[X1] + ··· + E[Xn] = µ + ··· + µ = nµ i=1 • Variance of Sum (Note: All Covariances are zero, since we are talking about independent RVs): n ! X 2 2 2 Var Xi = Var (X1 + ··· + Xn) = Var(X1) + ··· Var(Xn) = σ + ··· + σ = nσ i=1 p • Standard Deviation of Sum: n · σ n P Xi • Averages - Notation: X¯ = i=1 n • Mean of Average (using Mean of Sum result): n 2 P 3 Xi " n # ¯ 6 i=1 7 1 X 1 E[X] = E 6 7 = · E Xi = · nµ = µ n n n 4 5 i=1 • Variance of Average (using Variance of Sum result): n 0 P 1 Xi n ! 2 ¯ B i=1 C 1 X 1 2 σ Var X = Var B C = · Var Xi = · nσ = n n2 n2 n @ A i=1 σ • Standard Deviation of Average: p n Most places you look will discuss and give formulas for the Central Limit Theorem using sample averages.
    [Show full text]
  • Normal Distribution, Continuity Correction
    CS 237: Probability in Computing Wayne Snyder Computer Science Department Boston University Lecture 16: • Normal Distribution continued; • Standard Normal Distribution and Z-Scores; • Properties of the Normal Distribution; • The Normal Distribution as an approximation of the Binomial; • The Yates Continuity Correction for continuous approximations of discrete distributions. Normal Distribution By using parameters to fit the requirements of probability theory (e.g., that the area under the curve is 1.0), we have the formula for the Normal Distribution, which can be used to approximate the Binomial Distribution and which models a wide variety of random phenomena: where � = mean/expected value � = standard deviation �2 = variance 2 Normal Distribution Recall that the only way we can analyze probabilities in the continuous case is with the CDF: P(X < a) = F(a) P(X > a) = 1.0 – F(a) P(a < X < b) = F(b) – F(a) 3 Normal Distribution Suppose heights at BU are distributed normally with a mean of 68 inches and a standard deviation of 1.8 inches. 4 Normal Distribution How many people are of less than average height? 5 Normal Distribution How many people are less than 70 inches? 6 Normal Distribution How many people are less than 67 inches? 7 Normal Distribution How many people are between 67 and 70 inches? 8 Normal Distribution How many people are within one standard deviation of the mean height? 9 Normal Distribution 10 Standard Normal Distribution Since there are a potentially infinite number of Normal Distributions, usually we calculate using a normalized version, the Standard Normal Distribution with mean 0 and standard deviation (and variance) 1: Any random variable X which has a normal distribution N(μ,σ2) can be converted into a N(0, 1) standardized random variable X* with distribution N(0,1) by the usual form.
    [Show full text]
  • 6. Continous Distributions
    6. Continous Distributions Chris Piech and Mehran Sahami May 2017 So far, all random variables we have seen have been discrete. In all the cases we have seen in CS109 this meant that our RVs could only take on integer values. Now it’s time for continuous random variables which can take on values in the real number domain (R). Continuous random variables can be used to represent measurements with arbitrary precision (eg height, weight, time). 1 Probability Density Functions In the world of discrete random variables, the most important property of a random variable was its probability mass function (PMF) that would tell you the probability of the random variable taking on any value. When we move to the world of continuous random variables, we are going to need to rethink this basic concept. If I were to ask you, what is the probability of a child being born with weight exactly = 3:523112342234 kilos, you might recognize that question as ridiculous. No child will have precisely that weight. Real values can have infinite precision and as such it is a bit mind boggling to think about the probability that a random variable takes on a specific value. The PMF doesn’t apply. We need another idea. In the continuous world, every random variable has a Probability Density Function (PDF) which says how likely it is that a random variable takes on a particular value, relative to other values that it could take on. The PDF has the nice property that you can integrate over it to find the probability that the random variable takes on values within a range (a;b).
    [Show full text]
  • 2 X 2 Contingency Table: Fisher's Exact Test
    Basic Research For Clinicians 2 x 2 Contingency Table: Fisher’s Exact Test Padam Singh, PhD, Gurgaon, India ABSTRACT While dealing with comparison of new drug with the standard treatment one is faced with the problem of small numbers specially in phase-1 trials or pilot studies. The analysis of data in such situations requires special treatment. This paper presents the issues involved in the test of significance for the association of attributes for small samples. It is recommended to use Fisher’s Exact Test in such situations. Keywords: Attributes, Association, Chi- square test, Correction for continuity, Exact test Background (diseased persons) and controls (non–diseased), and then record the presence or absence of some exposure, In medical research, a new drug/ intervention is it would be the column margins that are fixed. However, generally compared with standard treatment and in a random sample, in which each subject sampled is outcomes assessed in terms of cured or not cured, and cross–classified by two attributes none of the margins occurrence and non-occurrence of side effects etc. These would be fixed. variables are generally dichotomous i.e. Involves only two possible values. The data is generally displayed in A research question of interest is whether the attributes a 2 x 2 contingency table that shows the frequencies in the contingency table are associated or independent of of occurrence of all combinations of the levels of two each other. The null hypothesis would be that there is no dichotomous variables. In a sample of size n, a schematic association or there is no difference in proportions.
    [Show full text]
  • Chapter 11 Bernoulli Trials
    Chapter 11 Bernoulli Trials 11.1 The Binomial Distribution In the previous chapter, we learned about i.i.d. trials. Recall that there are three ways we can have i.i.d. trials: 1. Our units are trials and we have decided to assume that they are i.i.d. 2. We have a finite population and we will select our sample of its members at random with replacement—the dumb form of random sampling. The result is that we have i.i.d. random variables which means the same thing as having i.i.d. trials. 3. We have a finite population and we have selected our sample of its members at random without replacement—the smart form of random sampling. If n/N—the ratio of sample size to population size—is 0.05 or smaller, then we get a good approximation if we treat our random variables as i.i.d. In this chapter, we study a very important special case of i.i.d. trials, called Bernoulli trials. If each trial has exactly two possible outcomes, then we have Bernoulli trials. For convenient reference, I will now explicitly state the assumptions of Bernoulli trials. Definition 11.1 (The assumptions of Bernoulli trials.) If we have a collection of trials that sat- isfy the three conditions below, then we say that we have Bernoulli trials. 1. Each trial results in one of two possible outcomes, denoted success (S) or failure (F ). 2. The probability of a success remains constant from trial-to-trial and is denoted by p.
    [Show full text]
  • Chapter 13 the Poisson Distribution
    Chapter 13 The Poisson Distribution Jeanne Antoinette Poisson (1721–1764), Marquise de Pompadour, was a member of the French court and was the official chief mistress of Louis XV from 1745 until her death. The pompadour hairstyle was named for her. In addition, poisson is French for fish. The Poisson distribution, however, is named for Simeon-Denis Poisson (1781–1840), a French mathematician, geometer and physicist. 13.1 Specification of the Poisson Distribution In this chapter we will study a family of probability distributions for a countably infinite sample space, each member of which is called a Poisson distribution. Recall that a binomial distribution is characterized by the values of two parameters: n and p. A Poisson distribution is simpler in that it has only one parameter, which we denote by θ, pronounced theta. (Many books and websites use λ, pronounced lambda, instead of θ. We save λ for a related purpose.) The parameter θ must be positive: θ> 0. Below is the formula for computing probabilities for the Poisson. e−θθx P (X = x)= , for x =0, 1, 2, 3,.... (13.1) x! In this equation, e is the famous number from calculus, n e =n lim→∞(1+1/n) =2.71828 .... You might recall, from the study of infinite series in calculus, that ∞ x b X b /x!= e , x=0 for any real number b. Thus, ∞ ∞ −θ x −θ θ X P (X = x)= e X θ /x!= e e =1. x=0 x=0 321 Table 13.1: A comparison of three probability distributions. Distribution of X is: Poisson(1) Bin(1000, 0.001) Bin(500, 0.002) Mean : 1 1 1 Variance : 1 0.999 0.998 x P (X = x) P (X = x) P (X = x) 0 0.3679 0.3677 0.3675 1 0.3679 0.3681 0.3682 2 0.1839 0.1840 0.1841 3 0.0613 0.0613 0.0613 4 0.0153 0.0153 0.0153 5 0.0031 0.0030 0.0030 6 0.0005 0.0005 0.0005 7 0.0001 0.0001 0.0001 ≥ Total 1.0000 1.0000 1.0000 Thus, we see that Formula 13.1 is a mathematically valid way to assign probabilities to the non- negative integers; i.e., all probabilities are nonnegative—indeed, they are positive—and they sum to one.
    [Show full text]
  • Lecture 8: Special Probability Densities
    The Uniform Distribution The Normal Distribution The Normal Approximation to the Binomial Distribution The Normal Approximation Lecture 8: Special Probability Densities Assist. Prof. Dr. Emel YAVUZ DUMAN Int. to Prob. Theo. and Stat & Int. to Probability Istanbul˙ K¨ult¨ur University Faculty of Engineering The Uniform Distribution The Normal Distribution The Normal Approximation to the Binomial Distribution The Normal Approximation Outline 1 The Uniform Distribution 2 The Normal Distribution 3 The Normal Approximation to the Binomial Distribution 4 The Normal Approximation to the Poisson Distribution The Uniform Distribution The Normal Distribution The Normal Approximation to the Binomial Distribution The Normal Approximation Outline 1 The Uniform Distribution 2 The Normal Distribution 3 The Normal Approximation to the Binomial Distribution 4 The Normal Approximation to the Poisson Distribution The Uniform Distribution The Normal Distribution The Normal Approximation to the Binomial Distribution The Normal Approximation Definition 1 A random variable has a uniform distribution and it is refereed to as a continuous uniform random variable if and only if its probability density is given by 1 β α for α< x < β, u(x; α,β)= − (0 elsewhere. The Uniform Distribution The Normal Distribution The Normal Approximation to the Binomial Distribution The Normal Approximation Definition 1 A random variable has a uniform distribution and it is refereed to as a continuous uniform random variable if and only if its probability density is given by 1 β α for α< x < β, u(x; α,β)= − (0 elsewhere. The parameters α and β of this probability density are real constants, with α<β, The Uniform Distribution The Normal Distribution The Normal Approximation to the Binomial Distribution The Normal Approximation Definition 1 A random variable has a uniform distribution and it is refereed to as a continuous uniform random variable if and only if its probability density is given by 1 β α for α< x < β, u(x; α,β)= − (0 elsewhere.
    [Show full text]
  • Hypothesis Testing
    Public Health & Intelligence Hypothesis Testing Document Control Version 0.4 Date Issued 29/11/2018 Authors David Carr, Nicole Jarvie Comments to [email protected] or [email protected] Version Date Comment Authors 0.1 24/08/2018 1st draft David Carr, Nicole Jarvie 0.2 11/09/2018 1st draft with formatting David Carr, Nicole Jarvie 0.3 17/10/2018 Final draft with changes from David Carr, Nicole Jarvie Statistical Advisory Group 0.4 29/11/2018 Final version David Carr, Nicole Jarvie Acknowledgements The authors would like to acknowledge Prof. Chris Robertson and colleagues at the University of Strathclyde for allowing the use of the data for the examples in this paper. The simulated HAI data sets used in the worked examples were originally created by the Health Protection Scotland SHAIPI team in collaboration with the University of Strathclyde. i Table of Contents 1 Introduction .............................................................................................................. 1 2 Constructing a Hypothesis Test .................................................................................. 3 2.1 Defining the Hypotheses ............................................................................................. 3 2.1.1 Null and Alternative Hypotheses .................................................................................... 3 2.1.2 One-Sided and Two-Sided Tests ..................................................................................... 4 2.2 Significance Level and Statistical Power ....................................................................
    [Show full text]
  • Critical Review and Comparison of Continuity Correction Methods: the Normal Approximation to the Binomial Distribution
    Communications in Statistics - Simulation and Computation ISSN: 0361-0918 (Print) 1532-4141 (Online) Journal homepage: http://www.tandfonline.com/loi/lssp20 Critical review and comparison of continuity correction methods: The normal approximation to the binomial distribution Takeshi Emura & Yu-Ting Liao To cite this article: Takeshi Emura & Yu-Ting Liao (2017): Critical review and comparison of continuity correction methods: The normal approximation to the binomial distribution, Communications in Statistics - Simulation and Computation, DOI: 10.1080/03610918.2017.1341527 To link to this article: http://dx.doi.org/10.1080/03610918.2017.1341527 Accepted author version posted online: 14 Jun 2017. Published online: 14 Jun 2017. Submit your article to this journal Article views: 11 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=lssp20 Download by: [National Central University] Date: 01 August 2017, At: 21:06 COMMUNICATIONS IN STATISTICS—SIMULATION AND COMPUTATION® ,VOL.,NO.,– https://doi.org/./.. Critical review and comparison of continuity correction methods: The normal approximation to the binomial distribution Takeshi Emura and Yu-Ting Liao Graduate Institute of Statistics, National Central University, Taoyuan City, Taiwan ABSTRACT ARTICLE HISTORY We provide a comprehensive and critical review of Yates’continuity cor- Received September rection for the normal approximation to the binomial distribution, in Accepted June particular emphasizing its poor ability to approximate extreme tail prob- KEYWORDS abilities. As an alternative method, we also review Cressie’s finely tuned Central limit theorem; continuity correction. In addition, we demonstrate how Yates’continuity Confidence limit; Control correction is used to improve the coverage probability of binomial con- chart; Statistical process fidence limits, and propose new confidence limits by applying Cressie’s control; Yates’correction continuity correction.
    [Show full text]