Sampling Distributions
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Beta-Binomial Distribution Introduction Bayesian Derivation
In Danish: 2005-09-19 / SLB Translated: 2008-05-28 / SLB Bayesian Statistics, Simulation and Software The beta-binomial distribution I have translated this document, written for another course in Danish, almost as is. I have kept the references to Lee, the textbook used for that course. Introduction In Lee: Bayesian Statistics, the beta-binomial distribution is very shortly mentioned as the predictive distribution for the binomial distribution, given the conjugate prior distribution, the beta distribution. (In Lee, see pp. 78, 214, 156.) Here we shall treat it slightly more in depth, partly because it emerges in the WinBUGS example in Lee x 9.7, and partly because it possibly can be useful for your project work. Bayesian Derivation We make n independent Bernoulli trials (0-1 trials) with probability parameter π. It is well known that the number of successes x has the binomial distribution. Considering the probability parameter π unknown (but of course the sample-size parameter n is known), we have xjπ ∼ bin(n; π); where in generic1 notation n p(xjπ) = πx(1 − π)1−x; x = 0; 1; : : : ; n: x We assume as prior distribution for π a beta distribution, i.e. π ∼ beta(α; β); 1By this we mean that p is not a fixed function, but denotes the density function (in the discrete case also called the probability function) for the random variable the value of which is argument for p. 1 with density function 1 p(π) = πα−1(1 − π)β−1; 0 < π < 1: B(α; β) I remind you that the beta function can be expressed by the gamma function: Γ(α)Γ(β) B(α; β) = : (1) Γ(α + β) In Lee, x 3.1 is shown that the posterior distribution is a beta distribution as well, πjx ∼ beta(α + x; β + n − x): (Because of this result we say that the beta distribution is conjugate distribution to the binomial distribution.) We shall now derive the predictive distribution, that is finding p(x). -
9. Binomial Distribution
J. K. SHAH CLASSES Binomial Distribution 9. Binomial Distribution THEORETICAL DISTRIBUTION (Exists only in theory) 1. Theoretical Distribution is a distribution where the variables are distributed according to some definite mathematical laws. 2. In other words, Theoretical Distributions are mathematical models; where the frequencies / probabilities are calculated by mathematical computation. 3. Theoretical Distribution are also called as Expected Variance Distribution or Frequency Distribution 4. THEORETICAL DISTRIBUTION DISCRETE CONTINUOUS BINOMIAL POISSON Distribution Distribution NORMAL OR Student’s ‘t’ Chi-square Snedecor’s GAUSSIAN Distribution Distribution F-Distribution Distribution A. Binomial Distribution (Bernoulli Distribution) 1. This distribution is a discrete probability Distribution where the variable ‘x’ can assume only discrete values i.e. x = 0, 1, 2, 3,....... n 2. This distribution is derived from a special type of random experiment known as Bernoulli Experiment or Bernoulli Trials , which has the following characteristics (i) Each trial must be associated with two mutually exclusive & exhaustive outcomes – SUCCESS and FAILURE . Usually the probability of success is denoted by ‘p’ and that of the failure by ‘q’ where q = 1-p and therefore p + q = 1. (ii) The trials must be independent under identical conditions. (iii) The number of trial must be finite (countably finite). (iv) Probability of success and failure remains unchanged throughout the process. : 442 : J. K. SHAH CLASSES Binomial Distribution Note 1 : A ‘trial’ is an attempt to produce outcomes which is neither sure nor impossible in nature. Note 2 : The conditions mentioned may also be treated as the conditions for Binomial Distributions. 3. Characteristics or Properties of Binomial Distribution (i) It is a bi parametric distribution i.e. -
Chapter 6 Continuous Random Variables and Probability
EF 507 QUANTITATIVE METHODS FOR ECONOMICS AND FINANCE FALL 2019 Chapter 6 Continuous Random Variables and Probability Distributions Chap 6-1 Probability Distributions Probability Distributions Ch. 5 Discrete Continuous Ch. 6 Probability Probability Distributions Distributions Binomial Uniform Hypergeometric Normal Poisson Exponential Chap 6-2/62 Continuous Probability Distributions § A continuous random variable is a variable that can assume any value in an interval § thickness of an item § time required to complete a task § temperature of a solution § height in inches § These can potentially take on any value, depending only on the ability to measure accurately. Chap 6-3/62 Cumulative Distribution Function § The cumulative distribution function, F(x), for a continuous random variable X expresses the probability that X does not exceed the value of x F(x) = P(X £ x) § Let a and b be two possible values of X, with a < b. The probability that X lies between a and b is P(a < X < b) = F(b) -F(a) Chap 6-4/62 Probability Density Function The probability density function, f(x), of random variable X has the following properties: 1. f(x) > 0 for all values of x 2. The area under the probability density function f(x) over all values of the random variable X is equal to 1.0 3. The probability that X lies between two values is the area under the density function graph between the two values 4. The cumulative density function F(x0) is the area under the probability density function f(x) from the minimum x value up to x0 x0 f(x ) = f(x)dx 0 ò xm where -
3.2.3 Binomial Distribution
3.2.3 Binomial Distribution The binomial distribution is based on the idea of a Bernoulli trial. A Bernoulli trail is an experiment with two, and only two, possible outcomes. A random variable X has a Bernoulli(p) distribution if 8 > <1 with probability p X = > :0 with probability 1 − p, where 0 ≤ p ≤ 1. The value X = 1 is often termed a “success” and X = 0 is termed a “failure”. The mean and variance of a Bernoulli(p) random variable are easily seen to be EX = (1)(p) + (0)(1 − p) = p and VarX = (1 − p)2p + (0 − p)2(1 − p) = p(1 − p). In a sequence of n identical, independent Bernoulli trials, each with success probability p, define the random variables X1,...,Xn by 8 > <1 with probability p X = i > :0 with probability 1 − p. The random variable Xn Y = Xi i=1 has the binomial distribution and it the number of sucesses among n independent trials. The probability mass function of Y is µ ¶ ¡ ¢ n ¡ ¢ P Y = y = py 1 − p n−y. y For this distribution, t n EX = np, Var(X) = np(1 − p),MX (t) = [pe + (1 − p)] . 1 Theorem 3.2.2 (Binomial theorem) For any real numbers x and y and integer n ≥ 0, µ ¶ Xn n (x + y)n = xiyn−i. i i=0 If we take x = p and y = 1 − p, we get µ ¶ Xn n 1 = (p + (1 − p))n = pi(1 − p)n−i. i i=0 Example 3.2.2 (Dice probabilities) Suppose we are interested in finding the probability of obtaining at least one 6 in four rolls of a fair die. -
Economic Analysis of Optimal Sample Size in Legal Proceedings
International Journal of Statistics and Probability; Vol. 8, No. 4; July 2019 ISSN 1927-7032 E-ISSN 1927-7040 Published by Canadian Center of Science and Education Economic Analysis of Optimal Sample Size in Legal Proceedings Aren Megerdichian Correspondence: Aren Megerdichian, Compass Lexecon, 55 S. Lake Avenue, Ste 650, Pasadena CA 91101, United States. E-mail: [email protected] Received: May 6, 2019 Accepted: June 4, 2019 Online Published: June 11, 2019 doi:10.5539/ijsp.v8n4p13 URL: https://doi.org/10.5539/ijsp.v8n4p13 Abstract In many legal settings, a statistical sample can be an effective surrogate for a larger population when adjudicating questions of causation, liability, or damages. The current paper works through salient aspects of statistical sampling and sample size determination in legal proceedings. An economic model is developed to provide insight into the behavioral decision-making about sample size choice by a party that intends to offer statistical evidence to the court. The optimal sample size is defined to be the sample size that maximizes the expected payoff of the legal case to the party conducting the analysis. Assuming a probability model that describes a hypothetical court’s likelihood of accepting statistical evidence based on the sample size, the optimal sample size is reached at a point where the increase in the probability of the court accepting the sample from a unit increase in the chosen sample size, multiplied by the payoff from winning the case, is equal to the marginal cost of increasing the sample size. Keywords: cost-benefit analysis, economic model, legal proceeding, sample size, sampling 1. -
Solutions to the Exercises
Solutions to the Exercises Chapter 1 Solution 1.1 (a) Your computer may be programmed to allocate borderline cases to the next group down, or the next group up; and it may or may not manage to follow this rule consistently, depending on its handling of the numbers involved. Following a rule which says 'move borderline cases to the next group up', these are the five classifications. (i) 1.0-1.2 1.2-1.4 1.4-1.6 1.6-1.8 1.8-2.0 2.0-2.2 2.2-2.4 6 6 4 8 4 3 4 2.4-2.6 2.6-2.8 2.8-3.0 3.0-3.2 3.2-3.4 3.4-3.6 3.6-3.8 6 3 2 2 0 1 1 (ii) 1.0-1.3 1.3-1.6 1.6-1.9 1.9-2.2 2.2-2.5 10 6 10 5 6 2.5-2.8 2.8-3.1 3.1-3.4 3.4-3.7 7 3 1 2 (iii) 0.8-1.1 1.1-1.4 1.4-1.7 1.7-2.0 2.0-2.3 2 10 6 10 7 2.3-2.6 2.6-2.9 2.9-3.2 3.2-3.5 3.5-3.8 6 4 3 1 1 (iv) 0.85-1.15 1.15-1.45 1.45-1.75 1.75-2.05 2.05-2.35 4 9 8 9 5 2.35-2.65 2.65-2.95 2.95-3.25 3.25-3.55 3.55-3.85 7 3 3 1 1 (V) 0.9-1.2 1.2-1.5 1.5-1.8 1.8-2.1 2.1-2.4 6 7 11 7 4 2.4-2.7 2.7-3.0 3.0-3.3 3.3-3.6 3.6-3.9 7 4 2 1 1 (b) Computer graphics: the diagrams are shown in Figures 1.9 to 1.11. -
Chapter 8 Fundamental Sampling Distributions And
CHAPTER 8 FUNDAMENTAL SAMPLING DISTRIBUTIONS AND DATA DESCRIPTIONS 8.1 Random Sampling pling procedure, it is desirable to choose a random sample in the sense that the observations are made The basic idea of the statistical inference is that we independently and at random. are allowed to draw inferences or conclusions about a Random Sample population based on the statistics computed from the sample data so that we could infer something about Let X1;X2;:::;Xn be n independent random variables, the parameters and obtain more information about the each having the same probability distribution f (x). population. Thus we must make sure that the samples Define X1;X2;:::;Xn to be a random sample of size must be good representatives of the population and n from the population f (x) and write its joint proba- pay attention on the sampling bias and variability to bility distribution as ensure the validity of statistical inference. f (x1;x2;:::;xn) = f (x1) f (x2) f (xn): ··· 8.2 Some Important Statistics It is important to measure the center and the variabil- ity of the population. For the purpose of the inference, we study the following measures regarding to the cen- ter and the variability. 8.2.1 Location Measures of a Sample The most commonly used statistics for measuring the center of a set of data, arranged in order of mag- nitude, are the sample mean, sample median, and sample mode. Let X1;X2;:::;Xn represent n random variables. Sample Mean To calculate the average, or mean, add all values, then Bias divide by the number of individuals. -
Permutation Tests
Permutation tests Ken Rice Thomas Lumley UW Biostatistics Seattle, June 2008 Overview • Permutation tests • A mean • Smallest p-value across multiple models • Cautionary notes Testing In testing a null hypothesis we need a test statistic that will have different values under the null hypothesis and the alternatives we care about (eg a relative risk of diabetes) We then need to compute the sampling distribution of the test statistic when the null hypothesis is true. For some test statistics and some null hypotheses this can be done analytically. The p- value for the is the probability that the test statistic would be at least as extreme as we observed, if the null hypothesis is true. A permutation test gives a simple way to compute the sampling distribution for any test statistic, under the strong null hypothesis that a set of genetic variants has absolutely no effect on the outcome. Permutations To estimate the sampling distribution of the test statistic we need many samples generated under the strong null hypothesis. If the null hypothesis is true, changing the exposure would have no effect on the outcome. By randomly shuffling the exposures we can make up as many data sets as we like. If the null hypothesis is true the shuffled data sets should look like the real data, otherwise they should look different from the real data. The ranking of the real test statistic among the shuffled test statistics gives a p-value Example: null is true Data Shuffling outcomes Shuffling outcomes (ordered) gender outcome gender outcome gender outcome Example: null is false Data Shuffling outcomes Shuffling outcomes (ordered) gender outcome gender outcome gender outcome Means Our first example is a difference in mean outcome in a dominant model for a single SNP ## make up some `true' data carrier<-rep(c(0,1), c(100,200)) null.y<-rnorm(300) alt.y<-rnorm(300, mean=carrier/2) In this case we know from theory the distribution of a difference in means and we could just do a t-test. -
Sampling Distribution of the Variance
Proceedings of the 2009 Winter Simulation Conference M. D. Rossetti, R. R. Hill, B. Johansson, A. Dunkin, and R. G. Ingalls, eds. SAMPLING DISTRIBUTION OF THE VARIANCE Pierre L. Douillet Univ Lille Nord de France, F-59000 Lille, France ENSAIT, GEMTEX, F-59100 Roubaix, France ABSTRACT Without confidence intervals, any simulation is worthless. These intervals are quite ever obtained from the so called "sampling variance". In this paper, some well-known results concerning the sampling distribution of the variance are recalled and completed by simulations and new results. The conclusion is that, except from normally distributed populations, this distribution is more difficult to catch than ordinary stated in application papers. 1 INTRODUCTION Modeling is translating reality into formulas, thereafter acting on the formulas and finally translating the results back to reality. Obviously, the model has to be tractable in order to be useful. But too often, the extra hypotheses that are assumed to ensure tractability are held as rock-solid properties of the real world. It must be recalled that "everyday life" is not only made with "every day events" : rare events are rarely occurring, but they do. For example, modeling a bell shaped histogram of experimental frequencies by a Gaussian pdf (probability density function) or a Fisher’s pdf with four parameters is usual. Thereafter transforming this pdf into a mgf (moment generating function) by mgf (z)=Et (expzt) is a powerful tool to obtain (and prove) the properties of the modeling pdf . But this doesn’t imply that a specific moment (e.g. 4) is effectively an accessible experimental reality. -
Arxiv:1804.01620V1 [Stat.ML]
ACTIVE COVARIANCE ESTIMATION BY RANDOM SUB-SAMPLING OF VARIABLES Eduardo Pavez and Antonio Ortega University of Southern California ABSTRACT missing data case, as well as for designing active learning algorithms as we will discuss in more detail in Section 5. We study covariance matrix estimation for the case of partially ob- In this work we analyze an unbiased covariance matrix estima- served random vectors, where different samples contain different tor under sub-Gaussian assumptions on x. Our main result is an subsets of vector coordinates. Each observation is the product of error bound on the Frobenius norm that reveals the relation between the variable of interest with a 0 1 Bernoulli random variable. We − number of observations, sub-sampling probabilities and entries of analyze an unbiased covariance estimator under this model, and de- the true covariance matrix. We apply this error bound to the design rive an error bound that reveals relations between the sub-sampling of sub-sampling probabilities in an active covariance estimation sce- probabilities and the entries of the covariance matrix. We apply our nario. An interesting conclusion from this work is that when the analysis in an active learning framework, where the expected number covariance matrix is approximately low rank, an active covariance of observed variables is small compared to the dimension of the vec- estimation approach can perform almost as well as an estimator with tor of interest, and propose a design of optimal sub-sampling proba- complete observations. The paper is organized as follows, in Section bilities and an active covariance matrix estimation algorithm. -
Examination of Residuals
EXAMINATION OF RESIDUALS F. J. ANSCOMBE PRINCETON UNIVERSITY AND THE UNIVERSITY OF CHICAGO 1. Introduction 1.1. Suppose that n given observations, yi, Y2, * , y., are claimed to be inde- pendent determinations, having equal weight, of means pA, A2, * *X, n, such that (1) Ai= E ai,Or, where A = (air) is a matrix of given coefficients and (Or) is a vector of unknown parameters. In this paper the suffix i (and later the suffixes j, k, 1) will always run over the values 1, 2, * , n, and the suffix r will run from 1 up to the num- ber of parameters (t1r). Let (#r) denote estimates of (Or) obtained by the method of least squares, let (Yi) denote the fitted values, (2) Y= Eai, and let (zt) denote the residuals, (3) Zi =Yi - Yi. If A stands for the linear space spanned by (ail), (a,2), *-- , that is, by the columns of A, and if X is the complement of A, consisting of all n-component vectors orthogonal to A, then (Yi) is the projection of (yt) on A and (zi) is the projection of (yi) on Z. Let Q = (qij) be the idempotent positive-semidefinite symmetric matrix taking (y1) into (zi), that is, (4) Zi= qtj,yj. If A has dimension n - v (where v > 0), X is of dimension v and Q has rank v. Given A, we can choose a parameter set (0,), where r = 1, 2, * , n -v, such that the columns of A are linearly independent, and then if V-1 = A'A and if I stands for the n X n identity matrix (6ti), we have (5) Q =I-AVA'. -
8.3 Estimating Population Proportions ! We Use the Sample Proportion P ˆ As Our Estimate of the Population Proportion P
8.3 Estimating Population Proportions ! We use the sample proportion p ˆ as our estimate of the population proportion p. ! We should report some kind of ‘confidence’ about our estimate. Do we think it’s pretty accurate? Or not so accurate. ! What sample size n do we need for a given level of confidence about our estimate. " Larger n coincides with better estimate. 1 Recall: Sampling Distribution of p ˆ ! Shape: Approximately Normal ! Center: The mean is p. ! Spread: The standard deviation is p(1− p) n 2 95% Confidence Interval (CI) for a Population Proportion p ! The margin of error (MOE) for the 95% CI for p is pˆ(1− pˆ) MOE = E ≈ 2 n where p ˆ is the sample proportion. That is, the 95% confidence interval ranges from ( p ˆ – margin of error) to ( p ˆ + margin of error). 3 95% Confidence Interval (CI) for a Population Proportion p ! We can write this confidence interval more formally as pˆ − E < p < pˆ + E Or more briefly as pˆ ± E 4 Example ! Population: Registered voters in the U.S. ! Parameter: Proportion of U.S. voters who are concerned about the spread of bird flu in the United States. Unknown! 5 Example ! Sample: 900 randomly selected registered voters nationwide. FOX News/Opinion Dynamics Poll, Oct. 11-12, 2005. ! Statistic: 63% of the sample are somewhat or very concerned about the spread of bird flu in the United States. 6 Confidence Interval for p ! We are 95% confident that p will fall between pˆ(1− pˆ) pˆ(1− pˆ) pˆ − 2 and pˆ + 2 n n MOE MOE 7 Example Best guess for p.