Chapter 4 Sampling Distributions and Limits
Chapter 4 Sampling Distributions and Limits CHAPTER OUTLINE Section 1 Sampling Distributions Section 2 Convergence in Probability Section 3 Convergence with Probability 1 Section 4 Convergence in Distribution Section 5 Monte Carlo Approximations Section 6 Normal Distribution Theory Section 7 Further Proofs (Advanced) In many applications of probability theory, we will be faced with the following prob- lem. Suppose that X1, X2,...,Xn is an identically and independently distributed (i.i.d.) sequence, i.e., X1, X2,...,Xn is a sample from some distribution, and we are interested in the distribution of a new random variable Y h(X1, X2,...,Xn) for some function h. In particular, we might want to compute the= distribution function of Y or perhaps its mean and variance. The distribution of Y is sometimes referred to as its sampling distribution,asY is based on a sample from some underlying distribution. We will see that some of the methods developed in earlier chapters are useful in solving such problems — especially when it is possible to compute an exact solution, e.g., obtain an exact expression for the probability or density function of Y. Section 4.6 contains a number of exact distribution results for a variety of functions of normal random variables. These have important applications in statistics. Quite often, however, exact results are impossible to obtain, as the problem is just too complex. In such cases, we must develop an approximation to the distribution of Y. For many important problems, a version of Y is defined for each sample size n (e.g., a sample mean or sample variance), so that we can consider a sequence of random variables Y1, Y2,..., etc.
[Show full text]