Synaptic Dysfunction in Complex Psychiatric Disorders: from Genetics to Mechanisms Xinyuan Wang1,2, Kimberly M

Total Page:16

File Type:pdf, Size:1020Kb

Synaptic Dysfunction in Complex Psychiatric Disorders: from Genetics to Mechanisms Xinyuan Wang1,2, Kimberly M Wang et al. Genome Medicine (2018) 10:9 DOI 10.1186/s13073-018-0518-5 COMMENT Open Access Synaptic dysfunction in complex psychiatric disorders: from genetics to mechanisms Xinyuan Wang1,2, Kimberly M. Christian1, Hongjun Song1,3,4,5 and Guo-li Ming1,3,4,6* mechanistic studies that provide novel insights into Editorial summary synaptic dysfunction in complex psychiatric disorders. Breakthroughs on many fronts have provided strong evidence to support synaptic dysfunction as a causal factor for neuropsychiatric diseases. Genetic studies Genetics of synaptic dysfunction in psychiatric have identified variants implicated in novel biological disorders and synaptic pathways, and animal and patient-derived Despite different endophenotypes and ages of onset, SCZ, induced pluripotent stem cell-based models have ASD, and several other complex psychiatric disorders have allowed mechanistic investigations of synaptic a developmental origin and strong genetic contributions. dysfunction in pathological processes. Large consortium efforts have made substantial progress in identifying genetic risk factors and in describing the genetic architecture for these disorders, which suggest a Synaptic function and dysfunction in the brain convergence in molecular pathophysiology through synap- Synapses are structural elements that allow electrical or tic dysregulation. A large genome-wide association study chemical signals to flow from one neuron (presynaptic (GWAS) identified 128 independent single-nucleotide cell) to the next (postsynaptic cell). Synapses can undergo polymorphisms (SNPs) spanning 108 distinct genetic loci dynamic modifications in the form of synaptic plasticity, that are associated with SCZ [1]. Results from this study which supports essential brain functions such as learning provided strong evidence to support a polygenic contribu- and memory. Dysregulated synaptic development, proper- tion to SCZ and identified multiple risk genes that are ties, and plasticity have been hypothesized to underlie directly involved in synaptic transmission and plasticity. altered neuronal function in complex neuropsychiatric Another striking finding was the strong association of the disorders, such as schizophrenia (SCZ) and autism major histocompatibility complex (MHC) region with spectrum disorder (ASD). For example, adhesion mole- SCZ. The MHC region encodes proteins that are part of cules, such as neurexin (NRXN) at the presynaptic site the immune system but its relation to SCZ was unclear. and its ligand, neuroligin (NLGN), at the postsynaptic site, The answer came from the study of the complement com- are central organizing proteins for synapse formation and ponent 4 (C4) gene within the MHC region that controls maintenance. Mutations of NRXN, NLGN,andSHANK, the expression of various C4 alleles. C4A is expressed in which encodes the stabilizer scaffolding protein SHANK proportion to the allelic risk association with SCZ, and C4 at the postsynaptic site, are risk factors for both ASD and regulates synapse elimination, or ‘pruning,’ during postna- SCZ. Immune system components, such as microglia and tal neurodevelopment in an animal model [2]. Synaptic complement factor C4, also regulate synapse numbers, pruning fine tunes the number of synapses during and mutations in these pathways are linked to both ASD development and early adulthood. In humans, the number and SCZ. Here, we focus on recent genetic and of synapses in the prefrontal cortex peaks at 15 months of age, and then is gradually reduced via synaptic pruning through late adolescence or adulthood [3]. Children with * Correspondence: [email protected] ASD are thought to have excess synapses due to deficits in 1Department of Neuroscience and Mahoney Institute for Neurosciences, pruning, whereas patients with SCZ have fewer synapses Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA overall. Intriguingly, the window for synaptic pruning 19104, USA 3Department of Cell and Developmental Biology, Perelman School of roughly begins with the age of onset for ASD and ends at Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA the age of onset for SCZ, which suggests that dysregulation Full list of author information is available at the end of the article © The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Wang et al. Genome Medicine (2018) 10:9 Page 2 of 3 of synaptic pruning may be an essential part of the patho- Patient iPSC-based 3D human brain organoids have physiology in these disorders. provided additional insight into the biological basis of Whole-exome sequencing and targeted sequencing of neuropsychiatric diseases. Consistent with macrocephaly candidate genes, in deeply phenotyped cohorts, isolated reported in clinical MRI studies of ASD patients, brain populations, or family studies, have also revealed rare organoids derived from idiopathic ASD patient iPSCs ex- variants associated with psychiatric disorders. For hibited a transient increase in size and faster neural pro- example, a deleterious variant of CX3CR1, which encodes genitor proliferation when compared with controls [8]. a G protein-coupled receptor that binds the chemokine GABAergic neuron production was also increased in a CX3CL1, was found to be associated with increased risk FOXG1-dependent fashion. Another study focused on for both SCZ and ASD [4]. As CX3CR1 is expressed in two well-known SCZ risk genes and demonstrated that microglia only, this provides additional support for the specific interruption of the DISC1–Ndel1/Nde1 inter- role of immune components in psychiatric disorders. action leads to cell-cycle progression defects in radial glial Genetic convergence has also begun to emerge from ana- cells, both in embryonic mouse cortex and human fore- lyses of multiple psychiatric disorders. In addition to the brain organoids [9]. The same phenotype is also observed genes mentioned above, mutations of large genetic loci, in patient iPSC-derived organoids with a DISC1 mutation, which include 2p16.3/NRXN1, 15q13.3, and 22q11.21, are which disrupts DISC1–Ndel1/Nde1 interaction. These also associated with both SCZ and ASD. Genes in these loci studies suggest that early developmental events, such as have been implicated in neural developmental processes as neuronal proliferation and differentiation, which precede well as in synapse formation and plasticity. Together, synaptic development, might also contribute to ASD and genomic profiling studies have provided novel insights into SCZ. Considering that each neuron forms many synapses, psychiatric disorders, such as molecular pathways that these early neurogenic events may have a larger net im- directly or indirectly affect synaptic function and plasticity. pact on neuronal circuitry. As SCZ and ASD are complex disorders involving multiple Several recent studies have shed light on the role of brain regions, a central question remains as to how genetic microglia in regulating brain function by synaptic pruning. mutations affect specific neural circuits and contribute to In mice, loss of PGRN (progranulin), a key regulator of divergent clinical phenotypes. inflammation, leads to increased complement activation and excessive microglia-mediated pruning of inhibitory synapses in the ventral thalamus, which in turn resulted in How do genetic lesions impact synaptic function hyperexcitability in thalamocortical circuits and abnormal and lead to manifestation of psychiatric disorders? grooming behaviors [10]. Autophagy appears to be essential Identification of meaningful phenotypes and the use of for microglia-mediated synaptic pruning. Deletion of Atg7 appropriate functional assays are important challenges in (an autophagy essential gene) specifically in microglia understanding complex psychiatric diseases. In the past abolishes its ability to prune synapses, resulting in increased decade, with the development of human induced pluripo- synapse numbers, altered brain region connectivity, and tent stem cell (iPSC) technology and advanced 2D or 3D ASD-like repetitive behaviors and social behavior defects differentiation protocols, psychiatric disorders now can be [11]. Together with genetic findings that implicate immune modeled in a dish with disease-relevant cell populations. components in the risk for psychiatric disorders, these The most common 2D models rely on cortical or hippo- studies provide a mechanistic hypothesis for how dysregu- campal neurons differentiated from patient-specific iPSCs. lated microglia activation leads to synaptic dysfunction. Using distinct differentiation protocols to generate cortical neurons from idiopathic SCZ patients [5]orfrompatients Conclusions and future directions with a defined mutation at the DISC1 locus [6], results from Human genetic studies of psychiatric disorders are picking two independent studies showed synaptic defects in patient up pace with increasing cohort sizes and the use of whole- iPSC-derived glutamatergic neurons. Moreover, in
Recommended publications
  • Activation of Autophagy Rescues Synaptic and Cognitive Deficits in Fragile X Mice
    Activation of autophagy rescues synaptic and cognitive deficits in fragile X mice Jingqi Yana,1, Morgan W. Porcha,1, Brenda Court-Vazqueza, Michael V. L. Bennetta,2, and R. Suzanne Zukina,2 aDominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461 Contributed by Michael V. L. Bennett, August 17, 2018 (sent for review May 29, 2018; reviewed by Claudia Bagni and Leonard K. Kaczmarek) Fragile X syndrome (FXS) is the most frequent form of heritable (17–19). Upon activation, mTOR phosphorylates Unc-51–like intellectual disability and autism. Fragile X (Fmr1-KO) mice exhibit autophagy-activating kinase 1 (ULK-1) at S757, a target of aberrant dendritic spine structure, synaptic plasticity, and cogni- mTORC1 and a well-established antiautophagy site (Fig. 1) tion. Autophagy is a catabolic process of programmed degradation (20). This, in turn, sequesters ULK-1 away from AMP kinase and recycling of proteins and cellular components via the lyso- (AMPK). AMPK phosphorylates and activates ULK-1 at S317. somal pathway. However, a role for autophagy in the pathophys- Upon activation, ULK-1 promotes phosphorylation and activa- iology of FXS is, as yet, unclear. Here we show that autophagic tion of Beclin-1 at S14, a critical step in the nucleation phase of flux, a functional readout of autophagy, and biochemical markers autophagy (21). Beclin-1 promotes lipidation of LC3-I to gen- of autophagy are down-regulated in hippocampal neurons of frag- erate its lipidated form LC3-II, enabling elongation of the lim- ile X mice. We further show that enhanced activity of mammalian iting membrane and the formation of autophagosomes (22).
    [Show full text]
  • The Interplay Between Neurons and Glia in Synapse Development And
    Available online at www.sciencedirect.com ScienceDirect The interplay between neurons and glia in synapse development and plasticity Jeff A Stogsdill and Cagla Eroglu In the brain, the formation of complex neuronal networks and regulate distinct aspects of synaptic development and amenable to experience-dependent remodeling is complicated circuit connectivity. by the diversity of neurons and synapse types. The establishment of a functional brain depends not only on The intricate communication between neurons and glia neurons, but also non-neuronal glial cells. Glia are in and their cooperative roles in synapse formation are now continuous bi-directional communication with neurons to direct coming to light due in large part to advances in genetic the formation and refinement of synaptic connectivity. This and imaging tools. This article will examine the progress article reviews important findings, which uncovered cellular made in our understanding of the role of mammalian and molecular aspects of the neuron–glia cross-talk that perisynaptic glia (astrocytes and microglia) in synapse govern the formation and remodeling of synapses and circuits. development, maturation, and plasticity since the previ- In vivo evidence demonstrating the critical interplay between ous Current Opinion article [1]. An integration of past and neurons and glia will be the major focus. Additional attention new findings of glial control of synapse development and will be given to how aberrant communication between neurons plasticity is tabulated in Box 1. and glia may contribute to neural pathologies. Address Glia control the formation of synaptic circuits Department of Cell Biology, Duke University Medical Center, Durham, In the CNS, glial cells are in tight association with NC 27710, USA synapses in all brain regions [2].
    [Show full text]
  • The Association Between Gray Matter Volume and Reading Proficiency: a Longitudinal Study of Beginning Readers
    The Association between Gray Matter Volume and Reading Proficiency: A Longitudinal Study of Beginning Readers 1,2 1,3 1,2 Janosch Linkersdörfer , Alina Jurcoane , Sven Lindberg , Downloaded from http://mitprc.silverchair.com/jocn/article-pdf/27/2/308/1823454/jocn_a_00710.pdf by MIT Libraries user on 17 May 2021 Jochen Kaiser3, Marcus Hasselhorn1,2,3, Christian J. Fiebach1,3,4, and Jan Lonnemann1,2 Abstract ■ Neural systems involved in the processing of written lan- baseline gray matter volume in the left superior temporal gyrus guage have been identified by a number of functional imaging and subsequent changes in reading proficiency. Furthermore, a studies. Structural changes in cortical anatomy that occur in the negative relationship was found between reading proficiency at course of literacy acquisition, however, remain largely unknown. the second measurement time point and intraindividual cortical Here, we follow elementary school children over their first volume development in the inferior parietal lobule and the pre- 2 years of formal reading instruction and use tensor-based mor- central and postcentral gyri of the left hemisphere. These results phometry to relate reading proficiency to cortical volume at are interpreted as evidence that reading acquisition is associated baseline and follow-up measurement as well as to intraindividual with preexisting structural differences as well as with experience- longitudinal volume development between the two measure- dependent structural changes involving dendritic and synaptic ment time points. A positive relationship was found between pruning. ■ INTRODUCTION a second system in the inferior frontal gyrus has been Reading is a relatively recent human cultural invention associated with articulatory processes and the active that has to be taught explicitly and practiced intensively analysis of phonological elements (e.g., Schlaggar & to be mastered.
    [Show full text]
  • NEURAL CONNECTIONS: Some You Use, Some You Lose
    NEURAL CONNECTIONS: Some You Use, Some You Lose by JOHN T. BRUER SOURCE: Phi Delta Kappan 81 no4 264-77 D 1999 . The magazine publisher is the copyright holder of this article and it is reproduced with permission. Further reproduction of this article in violation of the copyright is prohibited JOHN T. BRUER is president of the James S. McDonnell Foundation, St. Louis. This article is adapted from his new book, The Myth of the First Three Years (Free Press, 1999), and is reprinted by arrangement with The Free Press, a division of Simon Schuster Inc. ©1999, John T. Bruer . OVER 20 YEARS AGO, neuroscientists discovered that humans and other animals experience a rapid increase in brain connectivity -- an exuberant burst of synapse formation -- early in development. They have studied this process most carefully in the brain's outer layer, or cortex, which is essentially our gray matter. In these studies, neuroscientists have documented that over our life spans the number of synapses per unit area or unit volume of cortical tissue changes, as does the number of synapses per neuron. Neuroscientists refer to the number of synapses per unit of cortical tissue as the brain's synaptic density. Over our lifetimes, our brain's synaptic density changes in an interesting, patterned way. This pattern of synaptic change and what it might mean is the first neurobiological strand of the Myth of the First Three Years. (The second strand of the Myth deals with the notion of critical periods, and the third takes up the matter of enriched, or complex, environments.) Popular discussions of the new brain science trade heavily on what happens to synapses during infancy and childhood.
    [Show full text]
  • Astrocytes Restore Connectivity and Synchronization in Dysfunctional Cerebellar Networks
    Astrocytes restore connectivity and synchronization in dysfunctional cerebellar networks Sivan Kannera, Miri Goldinb,c, Ronit Galrona, Eshel Ben Jacobb,d,1, Paolo Bonifazib,c,e,2,3, and Ari Barzilaia,d,2,3 aDepartment of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978 Tel Aviv, Israel; bSchool of Physics and Astronomy, Tel Aviv University, 69978 Tel Aviv, Israel; cComputational Neuroimaging Laboratory, Biocruces Health Research Institute, Hospital Universitario Cruces, 48903 Baracaldo, Vizcaya, Spain; dSagol School of Neuroscience, Tel Aviv University, 69978 Tel Aviv, Israel; and eIkerbasque: The Basque Foundation for Science, 48013 Bilbao, Bizkaia, Spain Edited by Tullio Pozzan, University of Padova, Padova, Italy, and approved June 26, 2018 (received for review October 24, 2017) Evidence suggests that astrocytes play key roles in structural and neuronal synchronizations (NSs), a hallmark activity pattern of functional organization of neuronal circuits. To understand how the developing nervous system that could be observed in many astrocytes influence the physiopathology of cerebellar circuits, we different circuits in various species and in in vitro preparations cultured cells from cerebella of mice that lack the ATM gene. Mu- including primary neuronal cultures (11–13). tations in ATM are causative of the human cerebellar degenerative We report that the absence of Atm in neurons and astrocytes disease ataxia-telangiectasia. Cerebellar cultures grown from severely alters astrocyte morphology and the number of pre- −/− Atm mice had disrupted network synchronization, atrophied synaptic and postsynaptic puncta, disrupting NSs within cere- − − astrocytic arborizations, reduced autophagy levels, and higher bellar networks. Higher numbers of synaptic puncta in Atm / numbers of synapses per neuron than wild-type cultures.
    [Show full text]
  • A New Organotypic Model of Synaptic Competition Reveals Activity-Dependent Localization of C1q
    bioRxiv preprint doi: https://doi.org/10.1101/118646; this version posted March 20, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. A new organotypic model of synaptic competition reveals activity-dependent localization of C1q Ryuta Koyama*1,2, Yuwen Wu*1, Allison R. Bialas1, Andrew Thompson1, Christina A. Welsh1, Arnaud Frouin1, Chinfei Chen1, Beth Stevens1 1Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA 2Present address: Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan * contributed equally to this work Running title: Imaging and Manipulation of Synaptic Competition All correspondence should be addressed to B.S. Email: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/118646; this version posted March 20, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Abstract Immature neural circuits undergo synaptic refinement, in which activity-dependent competition between synapses results in pruning of inappropriate connections and maintenance of appropriate ones. A longstanding question is how neuronal activity eliminates specific synapses based on their strength. The technical challenges of in vivo studies have made it difficult to identify a molecular link between decreased activity and synapse elimination.
    [Show full text]
  • Stronger Synaptic Connectivity As a Mechanism Behind Development of Working Memory–Related Brain Activity During Childhood
    Stronger Synaptic Connectivity as a Mechanism behind Development of Working Memory–related Brain Activity during Childhood Fredrik Edin1,2, Julian Macoveanu1, Pernille Olesen1, Jesper Tegne´r1,3,4, and Torkel Klingberg1 Downloaded from http://mitprc.silverchair.com/jocn/article-pdf/19/5/750/1756680/jocn.2007.19.5.750.pdf by guest on 18 May 2021 Abstract & The cellular maturational processes behind cognitive de- compared to brain activity measured with functional magnetic velopment during childhood, including the development of resonance imaging in children and adults. We found that net- working memory capacity, are still unknown. By using the works with stronger fronto-parietal synaptic connectivity be- most standard computational model of visuospatial working tween cells coding for similar stimuli, but not those with faster memory, we investigated the consequences of cellular matura- conduction, stronger connectivity within a region, or increased tional processes, including myelination, synaptic strengthen- coding specificity, predict measured developmental increases ing, and synaptic pruning, on working memory-related brain in both working memory-related brain activity and in correla- activity and performance. We implemented five structural de- tions of activity between regions. Stronger fronto-parietal syn- velopmental changes occurring as a result of the cellular matu- aptic connectivity between cells coding for similar stimuli was rational processes in the biophysically based computational thus the only developmental process that accounted for the network model. The developmental changes in memory activ- observed changes in brain activity associated with develop- ity predicted from the simulations of the model were then ment of working memory during childhood. & INTRODUCTION Klingberg, Forssberg, & Westerberg, 2002; Casey, Giedd, & Working memory (WM), the ability to temporarily main- Thomas, 2000; Giedd et al., 1999; Sowell, Thompson, tain visuospatial information in mind, is a key cognitive Holmes, Jernigan, & Toga, 1999).
    [Show full text]
  • Juraska-Willing-2016.Pdf
    Brain Research ∎ (∎∎∎∎) ∎∎∎–∎∎∎ Contents lists available at ScienceDirect Brain Research journal homepage: www.elsevier.com/locate/brainres Review Pubertal onset as a critical transition for neural development and cognition Janice M. Juraska n, Jari Willing Department of Psychology and Neuroscience Program University of Illinois, 603 E. Daniel St., Champaign, IL 61820, United States article info abstract Article history: Adolescence, broadly defined as the period between childhood and adulthood, is characterized by a Received 31 December 2015 variety of neuroanatomical and behavioral changes. In human adolescents, the cerebral cortex, especially Received in revised form the prefrontal cortex, decreases in size while the cortical white matter increases. Puberty appears to be 2 April 2016 an important factor in both of these changes. However, the white matter continues to grow beyond what Accepted 5 April 2016 is thought to be adolescence, while the gray matter of the cortex stabilizes by young adulthood. The size changes that are the manifestation of cortical reorganization during human adolescence are also seen in Keywords: cellular reorganization in the rat cortex. The prefrontal cortex loses neurons, dendrites and synapses Prefrontal cortex while myelination in the white matter continues to increase. All of this reorganization is more marked in Adolescence female rats, and there is evidence both from pubertal timing and from removal of the ovaries that Puberty puberty plays an important role in initiating these changes in females. The maturation of behavioral Neuron number Inhibitory control functions of the prefrontal cortex, such as inhibitory control, occurs in both humans and rats across adolescence. There is also evidence for puberty as a major factor in decreasing perseveration in rats, but few studies have been done using pubertal status as an experimental variable, and the role of the gonadal steroids in modulating behavior throughout life makes clear effects more difficult to document.
    [Show full text]
  • Mechanisms of Developmental Neurite Pruning
    Cell. Mol. Life Sci. (2015) 72:101–119 DOI 10.1007/s00018-014-1729-6 Cellular and Molecular Life Sciences REVIEW Mechanisms of developmental neurite pruning Oren Schuldiner • Avraham Yaron Received: 13 June 2014 / Revised: 2 September 2014 / Accepted: 4 September 2014 / Published online: 12 September 2014 Ó Springer Basel 2014 Abstract The precise wiring of the nervous system is a EcR Ecdysone receptor combined outcome of progressive and regressive events GAP GTPase activating protein during development. Axon guidance and synapse forma- GEF GTP exchange factor tion intertwined with cell death and neurite pruning sculpt IPB Infrapyramidal bundle the mature circuitry. It is now well recognized that pruning MARCM Mosaic analysis with a repressible cell marker of dendrites and axons as means to refine neuronal net- MB Mushroom body works, is a wide spread phenomena required for the normal MTs Microtubules development of vertebrate and invertebrate nervous sys- NFs Neurofilaments tems. Here we will review the arising principles of cellular NGF Nerve growth factor and molecular mechanisms of neurite pruning. We will NMJ Neuromuscular junction discuss these principles in light of studies in multiple PS Phosphatidylserine neuronal systems, and speculate on potential explanations RGCs Retinal ganglion cells for the emergence of neurite pruning as a mechanism to SC Superior colliculus sculpt the nervous system. SCG Superior cervical ganglion TGF-b Transforming growth factor-b Keywords Neuronal remodeling Á Axon pruning Á UPS Ubituitin proteasome System Axon degeneration Á Neurodevelopment WD Wallerian degeneration Abbreviations ALS Amyotrophic lateral sclerosis Introduction BDNF Brain derived neurotrophic factor CRMPs Collapsin response mediator proteins Since it was proposed in the middle of the 20th century, CST Corticospinal tract Roger Sperry’s chemoaffinity hypothesis [1] has been da Dendritic arborization validated in many neuronal systems across various model dLGN Dorsal lateral geniculate nucleus organisms [2–4].
    [Show full text]
  • Synapse Elimination and Learning Rules Coregulated by Major Histocompatibility Class I Protein H2-Db Hanmi Lee, Phd,1 Lowry A
    Synapse Elimination and Learning Rules Coregulated by Major Histocompatibility Class I Protein H2-Db Hanmi Lee, PhD,1 Lowry A. Kirkby, PhD,2 Barbara K. Brott, PhD,1 Jaimie D. Adelson, PhD,1 Sarah Cheng, BS,1 Marla B. Feller, PhD,2 Akash Datwani, PhD,1 and Carla J. Shatz, PhD1 1Departments of Biology and Neurobiology and Bio-X The James H. Clark Center Stanford, California 2Department of Molecular and Cell Biology Helen Wills Neuroscience Institute University of California, Berkeley Berkeley, California © 2017 Shatz Synapse Elimination and Learning Rules Coregulated by Major Histocompatibility Class I Protein H2-Db 71 Introduction C1q, and MHCI family members (Huh et al., 2000; NOTES The formation of precise connections between Bjartmar et al., 2006; Stevens et al., 2007). However, retina and LGN involves the activity-dependent it is not known whether any of these molecules elimination of some synapses and the strengthening regulate plasticity rules at developing synapses. and retention of others. Here we show that the major Moreover, because germline knock-out mice were histocompatibility class I (MHCI) molecule H2-Db examined in each of these examples, it is not known is necessary and sufficient for synapse elimination whether neuronal or immune function is required for in the retinogeniculate system. In mice lacking synapse elimination in vivo. Here we examine these both H2-Kb and H2-Db (KbDb–/–) despite intact questions and test whether genetically restoring H2- retinal activity and basal synaptic transmission, the Db expression selectively to CNS neurons in vivo can developmentally regulated decrease in functional rescue synapse elimination in mice that nevertheless convergence of retinal ganglion cell synaptic inputs lack an intact immune system.
    [Show full text]
  • Molecular Pathways Mediating Glial Responses During Wallerian Degeneration: a Dissertation
    University of Massachusetts Medical School eScholarship@UMMS GSBS Dissertations and Theses Graduate School of Biomedical Sciences 2015-05-14 Molecular Pathways Mediating Glial Responses during Wallerian Degeneration: A Dissertation Tsai-Yi Lu University of Massachusetts Medical School Let us know how access to this document benefits ou.y Follow this and additional works at: https://escholarship.umassmed.edu/gsbs_diss Part of the Molecular and Cellular Neuroscience Commons Repository Citation Lu T. (2015). Molecular Pathways Mediating Glial Responses during Wallerian Degeneration: A Dissertation. GSBS Dissertations and Theses. https://doi.org/10.13028/M26W2Q. Retrieved from https://escholarship.umassmed.edu/gsbs_diss/779 This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in GSBS Dissertations and Theses by an authorized administrator of eScholarship@UMMS. For more information, please contact [email protected]. MOLECULAR PATHWAYS MEDIATING GLIAL RESPONSES DURING WALLERIAN DEGENERATION A Dissertation Presented By Tsai-Yi Lu Submitted to the Faculty of the University of Massachusetts Graduate School of Biomedical Sciences, Worcester in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY May 14th, 2015 Interdisciplinary Graduate Program ii MOLECULAR PATHWAYS MEDIATING GLIAL RESPONSES DURING WALLERIAN DEGENERATION A Dissertation Presented By Tsai-Yi Lu The signatures of the Dissertation Defense Committee signify completion and approval as to style and content of the Dissertation
    [Show full text]
  • The Major Histocompatibility Complex (MHC) in Schizophrenia
    C al & ellu ic la n r li Im C m f u Journal of Mokhtari and Lachman, J Clin Cell Immunol 2016, o n l o a l n o r 7:6 g u y o J DOI: 10.4172/2155-9899.1000479 ISSN: 2155-9899 Clinical & Cellular Immunology Review Article Open Access The Major Histocompatibility Complex (MHC) in Schizophrenia: A Review Ryan Mokhtari1 and Herbert M Lachman1,2,3,4* 1Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, New York, USA 2Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, New York, USA 3Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, New York, USA 4Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, New York, USA *Corresponding author: Herbert M. Lachman, Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, New York, USA, Tel: 718-430-2428; E-mail: [email protected] Received date: November 11, 2016; Accepted date: December 14, 2016; Published date: December 21, 2016 Copyright: © 2016 Mokhtari R, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract Epidemiological studies and mouse models suggest that maternal immune activation, induced clinically through prenatal exposure to one of several infectious diseases, is a risk factor in the development of schizophrenia.
    [Show full text]