remote sensing Article Source Characteristics of the 28 September 2018 Mw 7.4 Palu, Indonesia, Earthquake Derived from the Advanced Land Observation Satellite 2 Data Yongzhe Wang 1,*, Wanpeng Feng 2,3, Kun Chen 1 and Sergey Samsonov 4 1 Institute of Geophysics, China Earthquake Administration, Beijing 100081, China 2 Guangdong Provincial Key Laboratory of Geodynamics and Geohazards, School of Earth Sciences and Engineering, Sun Yat-sen University, Guangzhou 510275, China 3 Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China 4 Canada Centre for Mapping and Earth Observation, Natural Resources Canada, Ottawa, ON K1A0E4, Canada * Correspondence:
[email protected]; Tel.: +86-10-6872-9449 Received: 18 July 2019; Accepted: 21 August 2019; Published: 24 August 2019 Abstract: On 28 September 2018, an Mw 7.4 earthquake, followed by a tsunami, struck central Sulawesi, Indonesia. It resulted in serious damage to central Sulawesi, especially in the Palu area. Two descending paths of the Advanced Land Observation Satellite 2 (ALOS-2) synthetic aperture radar (SAR) data were processed with interferometric synthetic aperture radar (InSAR) and pixel tracking techniques to image the coseismic deformation produced by the earthquake. The deformation measurement was used to determine the fault geometry and the coseismic distributed slip model with a constrained least square algorithm based on the homogeneous elastic half-space model. We divided the fault into four segments (named AS, BS, CS and DS, from the north to the south) in the inversion. The BS segment was almost parallel to the DS segment, the CS segment linked the BS and DS segments, and these three fault segments formed a fault step-over system.