Magnetization-Dependent Spin Hall Effect in a Perpendicular Magnetized film
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Spin Hall Angles in Solids Exhibiting a Giant Spin Hall Effect
Spin Hall Angles in Solids Exhibiting a Giant Spin Hall Effect BROWN Jamie Holber Thesis Advisor: Professor Gang Xiao Department of Physics Brown University A thesis submitted in fulfillment for the degree of Bachelor of Science in Physics April 2019 Abstract The Spin Hall Effect enables the conversion of charge current into spin current and provides a method for electrical control of the magnetization of a ferromagnet, enabling future applications in the transmission, storage, and control of information. The experimental values found for the Spin Hall Angle (ΘSH ), a way of quantifying the Spin Hall Effect in a nonmagnetic material, are studied in this thesis in regards to a variety of parameters including the atomic number, the fullness of the orbital, the spin diffusion length, thin film thickness, resistivity, temperature, and composition of alloys. We observed that the spin Hall angle dependence on atomic number, the fullness of the orbital, the spin diffusion length, and the resistivity aligned with the theory. The dependence on thickness and temperature was found to vary based on the material and more research is needed to determine larger trends. We found that alloys provide opportunities to create materials with large spin hall angles with lower resistivities. In particular, Au alloyed with other elements is a promising candidate. i Acknowledgements Thanks to my advisor, Professor Gang Xiao for his time and guidance working on my thesis. I would also like to thank the other members of my lab group who helped me and helped work on the project, Lijuan Qian, Wenzhe Chen, Guanyang He, Yiou Zhang, and Kang Wang. -
Week 10: Oct 27, 2016 Preamble to Quantum Hall Effect: Exotic
Week 10: Oct 27, 2016 Preamble to Quantum Hall Effect: Exotic Phenomenon in Quantum Physics The quantum Hall effect is one of the most remarkable of all quantum-matter phenomena, quite unanticipated by the physics community at the time of its discovery in 1980. This very surprising discovery earned von Klitzing the Nobel Prize in physics in 1985. The basic experimental observation is the quantization of resistance, in two-dimensional systems, to an extreme precision, irrespective of the sample’s shape and of its degree of purity. This intriguing phenomenon is a manifestation of quantum mechanics on a macroscopic scale, and for that reason, it rivals superconductivity and Bose–Einstein condensation in its fundamental importance. As we will see later in this class, that this effect is an example of Berry phase and the “quanta” that appear in the quantization of Hall conductivity are the topological integers that emerge from quantum analog of Gauss-Bonnet theorem. This years Nobel prize to David Thouless is for explaining this exotic quantization in terms of topology. It turns out that the classical and quantum anholonomy are described by the same mathematics. To understand that, we need to introduce the concept of “curvature. As we know, it is the curved space that leads to anholonomy in classical physics. This allows us to define curvature in quantum physics. That is, using the concept of anholonomy in quantum physics, we can define the concept of curvature in quantum physics – that is, in Hilbert space. Curvature leads us to Topological Invariants that tells us that anholonomy may have its roots in topology. -
Topological Insulators Physicsworld.Com Topological Insulators This Newly Discovered Phase of Matter Has Become One of the Hottest Topics in Condensed-Matter Physics
Feature: Topological insulators physicsworld.com Topological insulators This newly discovered phase of matter has become one of the hottest topics in condensed-matter physics. It is hard to understand – there is no denying it – but take a deep breath, as Charles Kane and Joel Moore are here to explain what all the fuss is about Charles Kane is a As anyone with a healthy fear of sticking their fingers celebrated by the 2010 Nobel prize – that inspired these professor of physics into a plug socket will know, the behaviour of electrons new ideas about topology. at the University of in different materials varies dramatically. The first But only when topological insulators were discov- Pennsylvania. “electronic phases” of matter to be defined were the ered experimentally in 2007 did the attention of the Joel Moore is an electrical conductor and insulator, and then came the condensed-matter-physics community become firmly associate professor semiconductor, the magnet and more exotic phases focused on this new class of materials. A related topo- of physics at University of such as the superconductor. Recent work has, how- logical property known as the quantum Hall effect had California, Berkeley ever, now uncovered a new electronic phase called a already been found in 2D ribbons in the early 1980s, and a faculty scientist topological insulator. Putting the name to one side for but the discovery of the first example of a 3D topologi- at the Lawrence now, the meaning of which will become clear later, cal phase reignited that earlier interest. Given that the Berkeley National what is really getting everyone excited is the behaviour 3D topological insulators are fairly standard bulk semi- Laboratory, of materials in this phase. -
Introduction to Spin Hall Effect Spin-Dependent Lorentz Force Our
The spin Hall effect in a quantum gas M. C. Beeler*, R. A. Williams, K. Jimenez-Garcia, L. J. LeBlanc, A. R. Perry, I. B. Spielman Joint Quantum Institute, National Institute of Standards and Technology and Department of Physics, University of Maryland, Gaithersburg, MD 20899, USA Introduction to spin Hall effect Our system Spin currents Vector potential gradient • Spin Hall effect is separation of Vector potential is electron spins perpendicular to current proportional to flow coupling strength (intensity) • No external magnetic field needed – spin-orbit coupling drives effect Adjust equilibrium Current Flow Current position of BEC along • Effect is integral for spintronic devices Gaussian intensity and topological insulators gradient of Raman Color indicates predominant spin composition.1 beams 87 • Rb atoms in F = 1 ground state, confined in 90° cross-beam This is the first observation of the spin Hall effect in a optical dipole trap (ODT) Snapping off Raman cold atom system. beams gives electric • λ =790.21 nm Raman beams (Δω/2π = 15 MHz) couple mF = 0 field kick Spin-Dependent Lorentz Force and mF = -1 spin states, with large bias magnetic field along ez In intensity gradient, Lorentz Force • Adjustment of acousto-optic modulator frequency allows kick is spatially 퐹 = force dynamic control of BEC y-position by displacing one ODT beam dependent, shearing 퐹 = 푞 v × 퐵 q = charge the cloud after 2 v = velocity • No crystal structure, but system has spin-orbit coupling expansion • Cross product means that 퐵 = magnetic field particles always move • Atoms play the role of electrons, with spin coupling to linear Shear is opposite for perpendicular to velocity and 퐵 momentum along ex two pseudo-spins field. -
Observation of the Magnon Hall Effect
Observation of the magnon Hall effect [One-sentence summary] We have observed the Hall effect of magnons for the first time in terms of transverse thermal transport in a ferromagnetic insulator Lu2V2O7 with pyrochlore structure. Y. Onose,1,2 † T. Ideue,1 H. Katsura, 3 Y. Shiomi,1,4 N. Nagaosa,1, 4 and Y. Tokura1, 2, 4 1Department of Applied Physics, University of Tokyo, Tokyo 113-8656, Japan 2 Multiferroics Project, ERATO, Japan Science and Technology Agency (JST), c/o Department of Applied Physics, University of Tokyo, Tokyo 113-8656, Japan 3Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106, USA 4Cross-Correlated Materials Research Group (CMRG) and Correlated Electron Research Group (CERG), Advanced Science Institute, RIKEN, Wako,351-0198, Japan † To whom correspondence should be addressed E-mail: [email protected] [abstract] The Hall effect usually occurs when the Lorentz force acts on a charge current in a conductor in the presence of perpendicular magnetic field. On the other hand, neutral quasi-particles such as phonons and spins can carry heat current and potentially show the Hall effect without resorting to the Lorentz force. We report experimental evidence for the anomalous thermal Hall effect caused by spin excitations (magnons) in an insulating ferromagnet with a pyrochlore lattice structure. Our theoretical analysis indicates that the propagation of the spin wave is influenced by the Dzyaloshinskii-Moriya spin-orbit interaction, which plays the role of the vector potential as in the intrinsic anomalous Hall effect in metallic ferromagnets. [text] Electronics based on the spin degree of freedom, (spintronics), holds promise for new developments beyond Si-based-technologies (1), and avoids the dissipation from Joule heating by replacing charge currents with currents of the magnetic moment (spin currents). -
Understanding & Applying Hall Effect Sensor Datasheets
Application Report SLIA086 – July 2014 Understanding & Applying Hall Effect Sensor Datasheets Ross Eisenbeis Motor Drive Business Unit ABSTRACT Hall effect sensors measure magnetic fields, and their datasheet parameters can initially be difficult to understand and apply toward system design. This article provides a baseline of information. Units A magnet produces a magnetic field that travels from the North pole to the South pole. The total amount of field through a 2-dimensional slice is the “flux”, in units of weber. Webers per square meter describes flux density, in units of tesla (T). The unit of gauss (G) also describes flux density, where 1 T = 10000 G. In millitesla, 1 mT = 10 G. Tesla is the official SI unit, and it’s used by TI datasheets, but many other sources use gauss. Practical Concepts The closer you are to a magnet, the higher the flux density. The flux density at the surface of the magnet depends on its material and the magnetization amount. Typical magnets have surface fields between 40 to 600 mT. At a given distance, physically large magnets project a larger flux density. Polarity The symbol “B” is used for flux density. TI Hall sensors use the convention that magnetic fields traveling from the bottom of the device through the top are “positive B”, and fields traveling from the top to the bottom of the device are “negative B”. Only the perpendicular vector component of the magnetic field is sensed by the internal element. N S S N B > 0 mT B < 0 mT Figure 1. Polarity of field directions 1 Digital Hall Sensor Functionality Digital Hall Sensor Functionality Digital Hall sensors have an open-drain output that pulls Low if B exceeds the threshold BOP (the Operate Point). -
Hall Effect Metamaterials: Guiding Fields in the Unit Cell
Hall effect metamaterials: guiding fields in the unit cell Marc Briane, Rennes, France Christian Kern, KIT, Germany Muamer Kadic, FEMTO-ST, France Graeme Milton, University of Utah Martin Wegener, KIT, Germany Group of Martin Wegener Group of Julia Greer Wegener (2018): Metamaterials are rationally designed composites made of tailored building blocks or unit cells, which are composed of one or more constituent bulk materials. The metamaterial properties go beyond those of the ingredient materials – qualitatively or quantitatively. With an addition: ….The properties of the metamaterial can be mapped onto effective-medium parameters Metamaterials are not new: -Dispersions of metallic particles for optical effects in stained glasses (Maxwell-Garnett, 1904 ) -Bubbly fluids for absorbing sound (masking submarine prop. noise) -Split ring resonators for artificial magnetic permeability (Schelkunoff and Friis, 1952) -Wire metamaterials with artificial electric permittivity (Brown, 1953) -Metamaterials with negative and anisotropic mass densities (Auriault and Bonnet, 1985, 1994) -Metamaterials with negative Poisson’s ratio (Lakes 1987, Milton 1992) What is new is the unprecedented ability to tailor-make structures the explosion of interest, and the variety of emerging novel directions. One can get a similar effect for poroelasticity Qu, et.al 2017 New classes of elastic materials (with Cherkaev, 1995) Like a fluid it only supports one loading, unlike a fluid that loading may be anisotropic. Desired support of a given anisotropic loading is achieved by moving P to another position in the unit cell. KEY POINT is the coordination number of 4 at each vertex: the tension in one double cone connector, by balance of forces, determines uniquely the tension in the other 3 connecting double cones, and by induction the entire average stress field in the material. -
Application Information Hall-Effect IC Applications Guide
Application Information Hall-Effect IC Applications Guide Allegro™ MicroSystems uses the latest integrated circuit Sensitive Circuits for Rugged Service technology in combination with the century-old Hall The Hall-effect sensor IC is virtually immune to environ- effect to produce Hall-effect ICs. These are contactless, mental contaminants and is suitable for use under severe magnetically activated switches and sensor ICs with the service conditions. The circuit is very sensitive and provides potential to simplify and improve electrical and mechanical reliable, repetitive operation in close-tolerance applications. systems. Applications Low-Cost Simplified Switching Applications for Hall-effect ICs include use in ignition sys- Simplified switching is a Hall sensor IC strong point. Hall- tems, speed controls, security systems, alignment controls, effect IC switches combine Hall voltage generators, signal micrometers, mechanical limit switches, computers, print- amplifiers, Schmitt trigger circuits, and transistor output cir- ers, disk drives, keyboards, machine tools, key switches, cuits on a single integrated circuit chip. The output is clean, and pushbutton switches. They are also used as tachometer fast, and switched without bounce (an inherent problem with pickups, current limit switches, position detectors, selec- mechanical switches). A Hall-effect switch typically oper- tor switches, current sensors, linear potentiometers, rotary ates at up to a 100 kHz repetition rate, and costs less than encoders, and brushless DC motor commutators. many common electromechanical switches. The Hall Effect: How Does It Work? Efficient, Effective, Low-Cost Linear Sensor ICs The basic Hall element is a small sheet of semiconductor The linear Hall-effect sensor IC detects the motion, position, material, referred to as the Hall element, or active area, or change in field strength of an electromagnet, a perma- represented in figure 1. -
Terahertz Spin Currents and Inverse Spin Hall Effect in Thin-Film Heterostructures Containing Complex Magnetic Compounds
Terahertz spin currents and inverse spin Hall effect in thin-film heterostructures containing complex magnetic compounds T. Seifert1, U. Martens2, S. Günther3, M. A. W. Schoen4, F. Radu5, X. Z. Chen6, I. Lucas7 , R. Ramos8, M. H. Aguirre9, P. A. Algarabel10, A. Anadón9, H. Körner4, J. Walowski2, C. Back4, M. R. Ibarra7, L. Morellón7, E. Saitoh8, M. Wolf1, C. Song6, K. Uchida11, M. Münzenberg2, I. Radu5, T. Kampfrath1,* 1Physical Chemistry, Fritz Haber Institute of the Max Planck Society, 14195 Berlin, Germany 2Institute of Physics, Ernst Moritz Arndt University, 17489 Greifswald, Germany 3Multifunctional Ferroic Materials Group, ETH Zürich, 8093 Zürich, Switzerland 4Institute for Experimental and Applied Physics, University of Regensburg, 93053 Regensburg, Germany 5Max-Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, 12489 Berlin, Germany 6Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, 100084 Beijing, China 7Instituto de Nanociencia de Aragón, Universidad de Zaragoza, E-50018 Zaragoza, Spain 8WPI Advanced Institute for Materials Research, Tohoku University, 980-8577 Sendai, Japan 9Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50009 Zaragoza, Spain 10Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza and Consejo Superior de Investigaciones Científicas, E- 50009 Zaragoza, Spain 11National Institute for Materials Science, 305-0047 Tsukuba, Japan * E-mail: [email protected] Abstract: Terahertz emission spectroscopy of ultrathin multilayers of magnetic and heavy metals has recently attracted much interest. This method not only provides fundamental insights into photoinduced spin transport and spin-orbit interaction at highest frequencies but has also paved the way to applications such as efficient and ultrabroadband emitters of terahertz electromagnetic radiation. -
Quantum Hall Effect
Preprint typeset in JHEP style - HYPER VERSION January 2016 The Quantum Hall Effect TIFR Infosys Lectures David Tong Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, Wilberforce Road, Cambridge, CB3 OBA, UK http://www.damtp.cam.ac.uk/user/tong/qhe.html [email protected] arXiv:1606.06687v2 [hep-th] 20 Sep 2016 –1– Abstract: There are surprisingly few dedicated books on the quantum Hall effect. Two prominent ones are Prange and Girvin, “The Quantum Hall Effect” • This is a collection of articles by most of the main players circa 1990. The basics are described well but there’s nothing about Chern-Simons theories or the importance of the edge modes. J. K. Jain, “Composite Fermions” • As the title suggests, this book focuses on the composite fermion approach as a lens through which to view all aspects of the quantum Hall effect. It has many good explanations but doesn’t cover the more field theoretic aspects of the subject. There are also a number of good multi-purpose condensed matter textbooks which contain extensive descriptions of the quantum Hall effect. Two, in particular, stand out: Eduardo Fradkin, Field Theories of Condensed Matter Physics • Xiao-Gang Wen, Quantum Field Theory of Many-Body Systems: From the Origin • of Sound to an Origin of Light and Electrons Several excellent lecture notes covering the various topics discussed in these lec- tures are available on the web. Links can be found on the course webpage: http://www.damtp.cam.ac.uk/user/tong/qhe.html. Contents 1. The Basics 5 1.1 Introduction 5 1.2 The Classical Hall Effect 6 1.2.1 Classical Motion in a Magnetic Field 6 1.2.2 The Drude Model 7 1.3 Quantum Hall Effects 10 1.3.1 Integer Quantum Hall Effect 11 1.3.2 Fractional Quantum Hall Effect 13 1.4 Landau Levels 14 1.4.1 Landau Gauge 18 1.4.2 Turning on an Electric Field 21 1.4.3 Symmetric Gauge 22 1.5 Berry Phase 27 1.5.1 Abelian Berry Phase and Berry Connection 28 1.5.2 An Example: A Spin in a Magnetic Field 32 1.5.3 Particles Moving Around a Flux Tube 35 1.5.4 Non-Abelian Berry Connection 38 2. -
Magnetic Fields, Hall Effect and Electromagnetic Induction
Magnetic Fields, Hall e®ect and Electromagnetic induction (Electricity and Magnetism) Umer Hassan, Wasif Zia and Sabieh Anwar LUMS School of Science and Engineering May 18, 2009 Why does a magnet rotate a current carrying loop placed close to it? Why does the secondary winding of a transformer carry a current when it is not connected to a voltage source? How does a bicycle dynamo work? How does the Mangla Power House generate electricity? Let's ¯nd out the answers to some of these questions with a simple experiment. KEYWORDS Faraday's Law ¢ Magnetic Field ¢ Magnetic Flux ¢ Induced EMF ¢ Magnetic Dipole Moment ¢ Hall Sensor ¢ Solenoid APPROXIMATE PERFORMANCE TIME 4 hours 1 Conceptual Objectives In this experiment, we will, 1. understand one of the fundamental laws of electromagnetism, 2. understand the meaning of magnetic ¯elds, flux, solenoids, magnets and electromagnetic induction, 3. appreciate the working of magnetic data storage, such as in hard disks, and 4. interpret the physical meaning of di®erentiation and integration. 2 Experimental Objectives The experimental objective is to use a Hall sensor and to ¯nd the ¯eld and magnetization of a magnet. We will also gain practical knowledge of, 1. magnetic ¯eld transducers, 2. hard disk operation and data storage, 3. visually and analytically determining the relationship between induced EMF and magnetic flux, and 4. indirect measurement of the speed of a motor. 1 3 The Magnetic Field B and Flux © The magnetic ¯eld exists when we have moving electric charges. About 150 years ago, physicists found that, unlike the electric ¯eld, which is present even when the charge is not moving, the magnetic ¯eld is produced only when the charge moves. -
Dynamical Measurements of the Spin Hall Angle Dissertation Zur
Dynamical measurements of the Spin Hall angle Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften (Dr.rer.nat) der Fakultät für Physik der Universität Regensburg vorgelegt von Oleksandr Talalaevskyy aus Kiew März 2017 3 Contents Introduction 5 1. Magnetization Dynamics 9 1.1 Ferromagnetism…………………………………………………………………………………… 9 1.2 Landau-Lifshitz equation….…………………………………………………………..…………. 11 1.3 Consideration of the damping mechanism. Energy dissipation mechanisms…………………….. 13 1.4 FMR in thin films……………………………………………………………………………...…. 19 1.5 Magnetic properties of YIG……………………………………………………………………..... 21 2. Magnetostatic spin waves 23 2.1 Maxwell equations………………………………………………………………………………... 23 2.2 Magnetostatic approach and Walkers equation…………………………………………………... 24 2.3 Magnetostatic volume and surface waves………………………………………………………… 24 3. Spin pumping and spin Hall effect 29 3.1 Phenomenological explanation of spin pumping………………………………………………… 29 3.2 Theory of the spin pumping……………………………………………………………………… 29 3.3 Spin Hall effect phenomena……………………………………………………………………… 33 3.4 Skew scattering contribution……………………………………………………………………... 34 3.5 Side-jump contribution………………………………………………………………………….... 36 3.6 Intrinsic contribution………………………………………………………………………......…. 37 3.7 Experimental approach to SHE measurements…………………..……………………………….. 39 4 4. Experimental setups and sample preparation 41 4.1 FMR setup with coplanar waveguide……………………………………………………..……… 41 4.2 FMR setup with cavity………………….………………………………………………………... 43 4.3 Magneto-optical Kerr effect (MOKE)…………………………………………………………….