Genetic and Molecular Characterization of Maize Starch Debranching Enzymes Jason Robert Dinges Iowa State University

Total Page:16

File Type:pdf, Size:1020Kb

Genetic and Molecular Characterization of Maize Starch Debranching Enzymes Jason Robert Dinges Iowa State University Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2003 Genetic and molecular characterization of maize starch debranching enzymes Jason Robert Dinges Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Biochemistry Commons, Genetics Commons, and the Plant Sciences Commons Recommended Citation Dinges, Jason Robert, "Genetic and molecular characterization of maize starch debranching enzymes " (2003). Retrospective Theses and Dissertations. 576. https://lib.dr.iastate.edu/rtd/576 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Genetic and molecular characterization of maize starch debranching enzymes by Jason Robert Dinges A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Genetics Program of Study Committee: Alan M. Myers (Co-Major Professor) Martha G. James (Co-Major Professor) Philip W. Becraft M. Paul Scott Patrick S. Schnable Iowa State University Ames, Iowa 2003 UMI Number: 3085901 UMI UMI Microform 3085901 Copyright 2003 by ProQuest Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. ProQuest Information and Learning Company 300 North Zeeb Road P.O. Box 1346 Ann Arbor, Ml 48106-1346 ii Graduate College Iowa State University This is to certify that the doctoral dissertation of Jason Robert Dinges has met the dissertation requirements of Iowa State University Signature was redacted for privacy. Co-maJor Professor Signature was redacted for privacy. Co-mar Profe Signature was redacted for privacy. F the Major Program iii TABLE OF CONTENTS LIST OF FIGURES v LIST OF TABLES vii ABBREVIATIONS viii ABSTRACT x CHAPTER 1. GENERAL INTRODUCTION 1 Literature Review 2 Experimental Approach 50 Dissertation Organization 51 References 52 CHAPTER 2. MOLECULAR STRUCTURE OF THREE MUTATIONS AT THE MAIZE sul LOCUS AND THEIR ALLELE-SPECIFIC PHENOTYPIC EFFECTS 66 Abstract 66 Introduction 67 Results 71 Discussion 86 Materials and Methods 92 Acknowledgements 97 References 98 CHAPTER 3. MUTATIONAL ANALYSIS OF THE PULLULANASE-TYPE STARCH DEBRANCHING ENZYME OF MAIZE INDICATES MULTIPLE FUNCTIONS IN STARCH METABOLISM 102 Abstract 102 Introduction 103 Results 106 Discussion 128 Materials and Methods 135 Acknowledgements 142 References 142 CHAPTER 4. GENETIC ANALYSIS INDICATES MAIZE PULLULANASE- AND ISOAMYLASE-TYPE STARCH DEBRANCHING ENZYMES HAVE PARTIALLY OVERLAPPING FUNCTIONS IN STARCH METABOLISM 146 Abstract 146 Introduction 147 Results and Discussion 150 Materials and Methods 159 iv References 160 CHAPTER 5. GENE EXPRESSION ANALYSIS OF MAIZE STARCH 163 DEBRANCHING ENZYMES BY REAL-TIME QUANTITATIVE PCR Abstract 163 Introduction 164 Results and Discussion 167 Conclusion 177 Materials and Methods 179 Acknowledgements 183 References 183 CHAPTER 6. SUMMARY AND GENERAL CONCLUSIONS 186 General Discussion 186 Recommendations for Future Research 191 References 193 APPENDIX. REVERSE GENETICS OF ZmIso2 and ZmIso3 194 ACKNOWLEDGEMENTS 197 V LIST OF FIGURES Figure 1.1 Hierarchical levels of starch structure 7 Figure 1.2 Sucrose metabolism in endosperm tissue 11 Figure 1.3 Reactions catalyzed by starch metabolizing enzymes 17 Figure 1.4 Pathway of starch degradation 29 Figure 1.5 Models of DBE function in starch synthesis 47 Figure 2.1 Kernel phenotypes of sul- mutants 72 Figure 2.2 RNA gel blot analysis of sul- alleles 73 Figure 2.3 PCR and RT-PCR analyses of sul-st 76 Figure 2.4 Nucleotide sequence analysis of the sul-st allele 79 Figure 2.5 HPAEC-PAD analysis of chain length distributions 83 Figure 2.6 Native PAGE/activity gels of starch modifying activities 85 Figure 3.1 Molecular structure of zpul- mutant alleles 107 Figure 3.2 zpul-204 is a null allele 109 Figure 3.3 Leaf starch content during the diurnal cycle 111 Figure 3.4 Sepharose CL2B separation of leaf starch 114 Figure 3.5 Chain length distributions of amylopectin 116 Figure 3.6 Analysis of WSP from zpul-204 endosperm 117 Figure 3.7 Germination analysis of zpul-204 kernels 119 Figure 3.8 Activity gel analysis of starch modifying enzymes 122 Figure 3.9 Synthetic phenotypes of DBE double mutants 124 Figure 4.1 Crossing scheme used to generate sul' zpul' double mutants 151 Figure 4.2 Kernel phenotypes of sul' zpul' double mutants 152 Figure 5.1 Alignment of maize isoamylase-type DBEs 169 Figure 5.2 Phylogenetic relationships of plant and bacterial DBEs 171 Figure 5.3 Relative quantitation of DBE gene expression 174 Figure A.1 Molecular structure of ZmIso2 and ZmIso3 mutant alleles 196 vi LIST OF TABLES Table 2.1 Carbohydrate analysis of W64A and sul- mutant kernels 82 Table 3.1 Carbohydrate content of destarched leaves 113 Table 3.2 Endosperm carbohydrate content 118 Table 3.3 Endosperm carbohydrate content in DBE double mutants 126 Table 3.4 Starch granule characteristics of DBE mutants 127 Table 4.1 Carbohydrate content of individual DBE mutant kernels 154 Figure 5.1 Primer sequences for real-time PCR 181 vii ABBREVIATIONS ADP Adenosine 5'-diphosphate ATP Adenosine 5'-triphosphate ADP-Glc Adenosine diphosphoglucose AGPase ADP-glucose pyrophosphorylase bp Base pair C Carbon DAP Days after pollination DBE Debranching enzyme DNA Deoxyribonucleic acid DTT Dithiothreitol DP Degree of polymerization DW Dry weight EDTA Ethylenediaminetetraacetic acid FACE Fluorophore associated capillary electrophoresis Fru-6-P Fructose-6-phosphate FBPase Fructose-1,6-bisphosphatase Fru Fructose FW Fresh weight Glc-l-P Glucose-1-phosphate Glc-6-P Glucose-6-phosphate GBSS Granule bound starch synthase Glc Glucose h Hours HPAEC High performance anion exchange chromatography kD Kilodalton min Minutes MOPS 3 -(N-morpholino)propanesulphonic acid viii MOS Maltooligosaccharides ran Nanometer nt Nucleotide PCR Polymerase chain reaction 3-PGA 3-phosophoglycerate PG Phytoglycogen Pi Inorganic phosphate PPi Inorganic pyrophosphate Rubisco Ribulose-1,5-bisphosphate carboxylase/oxygenase RNA Ribonucleic acid SBE Starch branching enzyme ± SE ± Standard error of the mean SEM Scanning electron microscopy SDS Sodium dodecyl sulphate SS Soluble starch synthase Sue Sucrose Susy Sucrose synthase TEM Transmission electron microscopy TIR Terminal inverted repeat TPT Triose phosphate transporter Tris 3-N-tris(hyrdroxymethyl)aminomethane TUSC Trait utility system for corn U Units of enzyme activity UDP-Glc Uridine diphosphoglucose UGPase UDP-glucose pyrophosphorylase UTR Untranslated region v/v Volume by volume w/v Weight by volume w/w Weight by weight Starch is the primary carbohydrate reserve of plants, a significant source of food in the human diet, and an important industrial raw material. The arrangement of linear chains and branch linkages within amylopectin is responsible for the highly conserved architecture of the starch granule. This structure allows for efficient packaging of glucose and results in the unique functional properties of starch. It is known that starch synthases and branching enzymes catalyze a(l—»4) chain elongation and introduction of a(l—>6) branch linkages, respectively, but studies in several species suggests that starch debranching enzymes (DBE) are also involved in the process of starch synthesis. The overall goal of this research is to determine the role played in maize starch metabolism by each individual DBE. DBEs are broadly classified as either isoamylase- or pullulanase-type based upon their substrate specificity and sequence similarity to defined bacterial proteins. To determine the function(s) of the isoamylase-type DBE, an allelic series of mutations in the gene Sul was characterized. The molecular defects of the sul- alleles were associated with accumulation of phytoglycogen at the expense of granular starch. The phenotypic severity was also correlated to an alteration in the fine structure of the residual amylopectin. Thus, the SU1 isoamylase-type DBE functions directly in starch synthesis by removing branches from an amylopectin precursor. cDNAs coding for two other isoamylase-type DBE genes, ZmIso2 and ZmIso3, were cloned and characterized with respect to mRNA transcript accumulation. This analysis indicated metabolic specialization for some DBE isoforms either during starch catabolism or anabolism. To investigate the function(s) of the pullulanase-type DBE, reverse genetics was used to identify a transposable element insertion in the maize Zpul gene. X Characterization of this mutation demonstrated that pullulanase-type DBE is important for degradation of both leaf and endosperm starch. ZPUl also acts during starch synthesis significantly reducing phytoglycogen accumulation in some genetic backgrounds. This suggests that the biosynthetic function of ZPUl partially overlaps with the biosynthetic function of SU1. Together, these data indicate that isoamylase- and pullulanase-type DBEs are each involved in aspects of both starch synthesis and degradation. 1 CHAPTER 1. GENERAL INTRODUCTION Starch is the major carbohydrate storage form in higher plants. It serves a central role in providing energy in the absence of photosynthesis. Starch metabolism in maize, Arabidopsis, and other plants involves
Recommended publications
  • Product Guide
    www.megazyme.com es at dr hy o rb a C • s e t a r t s b u S e m y z n E • s e m y z n E • s t i K y a s s A Plant Cell Wall & Biofuels Product Guide 1 Megazyme Test Kits and Reagents Purity. Quality. Innovation. Barry V. McCleary, PhD, DScAgr Innovative test methods with exceptional technical support and customer service. The Megazyme Promise. Megazyme was founded in 1988 with the We demonstrate this through the services specific aim of developing and supplying we offer, above and beyond the products we innovative test kits and reagents for supply. We offer worldwide express delivery the cereals, food, feed and fermentation on all our shipments. In general, technical industries. There is a clear need for good, queries are answered within 48 hours. To validated methods for the measurement of make information immediately available to the polysaccharides and enzymes that affect our customers, we established a website in the quality of plant products from the farm 1994, and this is continually updated. Today, it gate to the final food. acts as the source of a wealth of information on Megazyme products, but also is the hub The commitment of Megazyme to “Setting of our commercial activities. It offers the New Standards in Test Technology” has been possibility to purchase and pay on-line, to continually recognised over the years, with view order history, to track shipments, and Megazyme and myself receiving a number many other features to support customer of business and scientific awards.
    [Show full text]
  • United States Patent (19) 11 Patent Number: 5,981,835 Austin-Phillips Et Al
    USOO598.1835A United States Patent (19) 11 Patent Number: 5,981,835 Austin-Phillips et al. (45) Date of Patent: Nov. 9, 1999 54) TRANSGENIC PLANTS AS AN Brown and Atanassov (1985), Role of genetic background in ALTERNATIVE SOURCE OF Somatic embryogenesis in Medicago. Plant Cell Tissue LIGNOCELLULOSC-DEGRADING Organ Culture 4:107-114. ENZYMES Carrer et al. (1993), Kanamycin resistance as a Selectable marker for plastid transformation in tobacco. Mol. Gen. 75 Inventors: Sandra Austin-Phillips; Richard R. Genet. 241:49-56. Burgess, both of Madison; Thomas L. Castillo et al. (1994), Rapid production of fertile transgenic German, Hollandale; Thomas plants of Rye. Bio/Technology 12:1366–1371. Ziegelhoffer, Madison, all of Wis. Comai et al. (1990), Novel and useful properties of a chimeric plant promoter combining CaMV 35S and MAS 73 Assignee: Wisconsin Alumni Research elements. Plant Mol. Biol. 15:373-381. Foundation, Madison, Wis. Coughlan, M.P. (1988), Staining Techniques for the Detec tion of the Individual Components of Cellulolytic Enzyme 21 Appl. No.: 08/883,495 Systems. Methods in Enzymology 160:135-144. de Castro Silva Filho et al. (1996), Mitochondrial and 22 Filed: Jun. 26, 1997 chloroplast targeting Sequences in tandem modify protein import specificity in plant organelles. Plant Mol. Biol. Related U.S. Application Data 30:769-78O. 60 Provisional application No. 60/028,718, Oct. 17, 1996. Divne et al. (1994), The three-dimensional crystal structure 51 Int. Cl. ............................. C12N 15/82; C12N 5/04; of the catalytic core of cellobiohydrolase I from Tricho AO1H 5/00 derma reesei. Science 265:524-528.
    [Show full text]
  • Synthesis and Structural Characterization of Glucooligosaccharides and Dextran from Weissella Confusa Dextransucrases
    YEB Recent Publications in this Series Dextran from and and Structural Characterization of Glucooligosaccharides QIAO SHI Synthesis 4/2016 Hany S.M. EL Sayed Bashandy Flavonoid Metabolomics in Gerbera hybrida and Elucidation of Complexity in the Flavonoid Biosynthetic Pathway 5/2016 Erja Koivunen Home-Grown Grain Legumes in Poultry Diets 6/2016 Paul Mathijssen DISSERTATIONES SCHOLA DOCTORALIS SCIENTIAE CIRCUMIECTALIS, Holocene Carbon Dynamics and Atmospheric Radiative Forcing of Different Types of Peatlands ALIMENTARIAE, BIOLOGICAE. UNIVERSITATIS HELSINKIENSIS 21/2016 in Finland 7/2016 Seyed Abdollah Mousavi Revised Taxonomy of the Family Rhizobiaceae, and Phylogeny of Mesorhizobia Nodulating Glycyrrhiza spp. 8/2016 Sedeer El-Showk Auxin and Cytokinin Interactions Regulate Primary Vascular Patterning During Root QIAO SHI Development in Arabidopsis thaliana 9/2016 Satu Olkkola Antimicrobial Resistance and Its Mechanisms among Campylobacter coli and Campylobacter Synthesis and Structural Characterization of upsaliensis with a Special Focus on Streptomycin 10/2016 Windi Indra Muziasari Glucooligosaccharides and Dextran from Impact of Fish Farming on Antibiotic Resistome and Mobile Elements in Baltic Sea Sediment Weissella confusa Dextransucrases 11/2016 Kari Kylä-Nikkilä Genetic Engineering of Lactic Acid Bacteria to Produce Optically Pure Lactic Acid and to Develop a Novel Cell Immobilization Method Suitable for Industrial Fermentations 12/2016 Jane Etegeneng Besong epse Ndika Molecular Insights into a Putative Potyvirus RNA Encapsidation
    [Show full text]
  • Transferable Step-Potentials For
    © 2013 ANTHONY COFFMAN ALL RIGHTS RESERVED PRODUCTION OF CARBOHYDRASES BY FUNGUS TRICHODERMA REESEI GROWN ON SOY-BASED MEDIA A Thesis Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment of the Requirements for the Degree Master of Science Anthony Coffman December, 2013 PRODUCTION OF CARBOHYDRASES BY FUNGUS TRICHODERMA REESEI GROWN ON SOY-BASED MEDIA Anthony Coffman Thesis Approved: Accepted: ___________________________________ ___________________________________ Advisor Department Chair Dr. Lu-Kwang Ju Dr. Lu-Kwang Ju ___________________________________ ___________________________________ Committee Member Dean of The College Dr. Gang Cheng Dr. George K. Haritos ___________________________________ ___________________________________ Committee Member Dean of the Graduate School Dr. Chelsea N. Monty Dr. George R. Newkome ___________________________________ Date ii ABSTRACT Trichoderma reesei RUT-C30 was cultivated in shaker flasks and pH-controlled, agitated batch fermentations to study the effects of soy-based media on the production of cellulase, xylanase, and pectinase (polygalacturonase) for the purposes of soybean polysaccharide hydrolysis. Growth on defatted soybean flour as sole nitrogen source was compared to the standard combination of ammonium sulfate, proteose peptone, and urea. Carbon source effect was also examined for a variety of substrates, including lactose, microcrystalline cellulose (Avicel), citrus pectin, soy molasses, soy flour hydrolysate, and soybean hulls (both pretreated and natural). Flask study results indicated exceptional enzyme induction by Avicel and soybean hulls, while citrus pectin, soy molasses, and soy flour hydrolysate did not promote enzyme production. Batch fermentation experiments reflected the flask system results, showing the highest cellulase and xylanase activities for systems grown with Avicel and soybean hulls at near-neutral pH levels, and the highest polygalacturonase activity resulting from growth on lactose and soybean hulls at lower pH levels, 4.0 to 4.5.
    [Show full text]
  • Function and Structure Studies of GH Family 31 and 97 \Alpha
    110610 (RV-17) Biosci. Biotechnol. Biochem., 75 (12), 110610-1–9, 2011 Award Review Function and Structure Studies of GH Family 31 and 97 -Glycosidases Masayuki OKUYAMA Research Faculty of Agriculture, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo 060-8589, Japan Online Publication, December 7, 2011 [doi:10.1271/bbb.110610] A huge number of glycoside hydrolases are classified an evolutionary relationship of proteins in the family, into the glycoside hydrolase family (GH family) based from which it is often possible to extract information on on their amino-acid sequence similarity. The glycoside function and structure.3) Classification in a GH family hydrolases acting on -glucosidic linkage are in GH has, accordingly, become indispensable for research on family 4, 13, 15, 31, 63, 97, and 122. This review deals glycoside hydrolases. Glycoside hydrolases are also mainly with findings on GH family 31 and 97 enzymes. divided into two mechanistic classes, inverting and Research on two GH family 31 enzymes is described: retaining enzymes: with inversion or net retention of clarification of the substrate recognition of Escherichia anomeric configuration during the catalytic reaction.4) coli -xylosidase, and glycosynthase derived from Schiz- The stereochemical outcome is generally conserved in a osaccharomyces pombe -glucosidase. GH family 97 is GH family. The inverting mechanism proceeds via a an aberrant GH family, containing inverting and simple single displacement. Two functional groups, retainingAdvance glycoside hydrolases. The inverting View enzyme usually carboxyl groups, act as general acid and general in GH family 97 displays significant similarity to base catalysts. The general acid catalyst donates a proton retaining -glycosidases, including GH family 97 retain- to the departure aglycon, and the general base catalyst ing -glycosidase, but the inverting enzyme has no simultaneously deprotonates the incoming water mole- catalytic nucleophile residue.
    [Show full text]
  • INVERTASE from SACCHAROMYCES CEREVISIAE
    INVERTASE from SACCHAROMYCES CEREVISIAE New specifications prepared at the 57th JECFA (2001) and published in FNP 52 Add 9 (2001); previously prepared at the 15th JECFA (1971) as part of the specifications for “Carbohydrase from Saccharomyces species”, published in FNP 52. The use of this enzyme was considered to h be acceptable by the 57t JECFA (2001) if limited by Good Manufacturing Practice. SYNONYMS INS No. 1103 SOURCES Produced by the controlled submerged aerobic fermentation of a non- pathogenic and non-toxigenic strain of Saccharomyces cerevisiae and extracted from the yeast cells after washing and autolysis. Active principles β-Fructofuranosidase (synonym: invertase, carbohydrase, saccharase) Systematic names and β-Fructofuranosidase (EC 3.2.1.26; C.A.S. No. 9001-57-4) numbers Reactions catalysed Hydrolyses sucrose to yield glucose and fructose DESCRIPTION Typically white to tan amorphous powders or liquids that may be dispersed in food grade diluents and may contain stabilisers; soluble in water and practically insoluble in ethanol and ether. FUNCTIONAL USES Enzyme preparation Used in confectionery and pastry applications GENERAL Must conform to the General Specifications and Considerations for SPECIFICATIONS Enzyme Preparations Used in Food Processing (see Volume Introduction) CHARACTERISTICS IDENTIFICATION The sample shows invertase activity See description under TESTS TESTS Invertase activity Principle Invertase hydrolyses the non-reducing β-d-fructofuranoside residues of sucrose to yield invert sugar. The invert sugar released is then reacted with 3.5 dinitrosalicylic acid (DNS). The colour change produced is proportional to the amount of invert sugar released, which in turn is proportional to the invertase activity present in the sample.
    [Show full text]
  • Immunobiologicals Purified Proteins
    Immunobiologicals i Cat. No. Enzyme Quantity PURIFIED PROTEINS 321731 Pullalanase, Crude Form 500 mg 835001 Superoxide Dismutase 25 mg 835002 100 mg Purified Enzymes 835011 Superoxide Dismutase 1 mg Cat. No. Enzyme Quantity 835012 5 mg 321241 β-N-Acetylhexosaminidase 0.5 U 321351 Thermolysin 250 mg 320941 N-Acetylmuramidase 10 mg 360941 Yeast LyticEnzyme,70,000u/mg 500mg 364841 Alkaline Phosphatase, Labeling Grade 5 KU 360942 1 g µ 360943 2 g 194966 Carboxypeptidase P, Excision Grade 20 g 360944 5 g 321271 Carboxypeptidase W 1 mg 360951 Yeast LyticEnzyme,5,000u/mg 5g 320961 Cellulase Y-C 10 g 360952 10 g 150 320301 Chondroitinase ABC Lyase, Protease Free 4x1 U 360953 25 g 320211 Chondroitinase ABC Lyase 4x5 U 360954 100 g Purified Proteins 320221 Chondroitinase AC-II Lyase 4x5 U 320921 Zymolyase 20T 1 g 320311 Chondroitinase AC-I 4x1 U 320932 Zymolyase 100T 250 mg 970551 Chondroitin Sulfate C 100 mg 320931 500 mg 970571 Chondroitin Sulfate D 10 mg 320231 Chondro-4-sulfatase 4x1.6 U 320241 Chondro-6-sulfatase 4x2.5 U 362001 Collagenase, Type 300C 300 KU Blood Proteins 321601 Dextranase 10 mg 321321 Endo-β-galactosidase 0.1 U ALBUMIN, BOVINE 321281 Endoglycosidase D 0.1 U Cat. No. Description Quantity 321282 0.5 U 810012 Crystalline 5 g 391311 Endoglycosidase H 0.2 U 810013 10 g 391312 2 U 810014 100 g 320182 Glucoamylase 2 KU 810032 Fraction V Powder, pH7.0 50 g 321291 Glycopeptidase A 1 mU 810033 100 g 321051 Glycosidases, Mixed 1 g 810034 500 g 321052 5 g 810035 1 kg 810036 5 kg 321001 Glycosidase 1 g 810532 Fraction V Powder, pH5.2
    [Show full text]
  • Invertase from Baker's Yeast (S
    Invertase from baker's yeast (S. cerevisiae) Catalog Number I4504 Storage Temperature –20 °C CAS RN 9001-57-4 Reported KM values are 25 mM for sucrose and EC 3.2.1.26 150 mM for raffinose. At high substrate concentrations Synonyms: Saccharase, b-Fructofuranosidase, (1 M), invertase exhibits transferase activity by b-D-Fructofuranoside fructohydrolase transferring the b-D-fructofuranosyl residue to primary alcohols including ethanol, methanol, and n-propanol. Product Description Invertase does not require any activators and is Molecular mass:1 270 kDa inhibited by iodine, Zn2+, and Hg2+.1,3 Extinction coefficient:1 E1% = 23.0 (280 nm) pI:2 3.4–4.4 Precautions and Disclaimer This product is for R&D use only, not for drug, Invertase from baker's yeast is a glycoprotein household, or other uses. Please consult the Material containing 50% mannan and 2-3% glucosamine. During Safety Data Sheet for information regarding hazards purification, a small percentage of the enzyme may and safe handling practices. have part of the carbohydrate moiety removed leaving a heterogeneous enzyme with a lower or even negligible Preparation Instructions mannan content. This difference in carbohydrate This enzyme is soluble in water (10 mg/ml), yielding a content has led to the conclusion that two forms of the clear solution. enzyme exist. An external invertase (predominant form), carbohydrate containing, located outside of the References cell membrane and an internal invertase, which is 1. Lampen, J.O., The Enzymes, Boyer, P.D., ed., located entirely within the cytoplasm and devoid of any Academic Press (New York, NY:1971), carbohydrate.1,3 pp.
    [Show full text]
  • A Soluble Starch Synthase I Gene, Ibssi, Alters the Content, Composition, Granule Size and Structure of Starch in Transgenic
    www.nature.com/scientificreports OPEN A soluble starch synthase I gene, IbSSI, alters the content, composition, granule size and Received: 23 January 2017 Accepted: 11 April 2017 structure of starch in transgenic Published: xx xx xxxx sweet potato Yannan Wang, Yan Li, Huan Zhang, Hong Zhai, Qingchang Liu & Shaozhen He Soluble starch synthase I (SSI) is a key enzyme in the biosynthesis of plant amylopectin. In this study, the gene named IbSSI, was cloned from sweet potato, an important starch crop. A high expression level of IbSSI was detected in the leaves and storage roots of the sweet potato. Its overexpression significantly increased the content and granule size of starch and the proportion of amylopectin by up- regulating starch biosynthetic genes in the transgenic plants compared with wild-type plants (WT) and RNA interference plants. The frequency of chains with degree of polymerization (DP) 5–8 decreased in the amylopectin fraction of starch, whereas the proportion of chains with DP 9–25 increased in the IbSSI-overexpressing plants compared with WT plants. Further analysis demonstrated that IbSSI was responsible for the synthesis of chains with DP ranging from 9 to 17, which represents a different chain length spectrum in vivo from its counterparts in rice and wheat. These findings suggest that theIbSSI gene plays important roles in determining the content, composition, granule size and structure of starch in sweet potato. This gene may be utilized to improve the content and quality of starch in sweet potato and other plants. In plants, starch consists of amylose and amylopectin. Amylose mainly comprises linear chains that are linked by α-1, 4 O-glycosidic bonds, whereas amylopectin is highly branched and contains 5–6% α-1,6 O-glycosidic bonds to generate glucan branches of various lengths1.
    [Show full text]
  • Characterization of Starch Debranching Enzymes of Maize Endosperm Afroza Rahman Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1998 Characterization of starch debranching enzymes of maize endosperm Afroza Rahman Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Biochemistry Commons, Molecular Biology Commons, and the Plant Sciences Commons Recommended Citation Rahman, Afroza, "Characterization of starch debranching enzymes of maize endosperm " (1998). Retrospective Theses and Dissertations. 12519. https://lib.dr.iastate.edu/rtd/12519 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps.
    [Show full text]
  • Production of Carbohydrases for Developing Soy Meal As
    PRODUCTION OF CARBOHYDRASES FOR DEVELOPING SOY MEAL AS PROTEIN SOURCE FOR ANIMAL FEED A Dissertation Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment Of the Requirements for the Degree Doctor of Philosophy Qian Li May, 2017 PRODUCTION OF CARBOHYDRASES FOR DEVELOPING SOY MEAL AS PROTEIN SOURCE FOR ANIMAL FEED Qian Li Dissertation Approved: Accepted: Advisor Department Chair Dr. Lu-Kwang Ju Dr. Michael H. Cheung Committee Member Dean of the College Dr. Jie Zheng Dr. Donald P. Visco Jr. Committee Member Dean of the Graduate School Dr. Lingyun Liu Dr. Chand Midha Committee Member Date Dr. Ge Zhang Committee Member Dr. Pei-Yang Liu ii ABSTRACT Global demand for seafood is growing rapidly and more than 40% of the demand is met by aquaculture. Conventional aquaculture diet used fishmeal as the protein source. The limited production of fishmeal cannot meet the increase of aquaculture production. Therefore, it is desirable to partially or totally replace fishmeal with less-expensive protein sources, such as poultry by-product meal, feather meal blood meal, or meat and bone meal. However, these feeds are deficient in one or more of the essential amino acids, especially lysine, isoleucine and methionine. And, animal protein sources are increasingly less acceptable due to health concerns. One option is to utilize a sustainable, economic and safe plant protein sources, such as soybean. The soybean industry has been very prominent in many countries in the last 20 years. The worldwide soybean production has increased 106% since 1996 to 2010[1]. Soybean protein is becoming the best choice of sustainable, economic and safe protein sources.
    [Show full text]
  • Understanding Starch Metabolism in Pea Seeds Towards Tailoring Functionality for Value-Added Utilization
    International Journal of Molecular Sciences Review Understanding Starch Metabolism in Pea Seeds towards Tailoring Functionality for Value-Added Utilization Bianyun Yu 1,*, Daoquan Xiang 1 , Humaira Mahfuz 1,2, Nii Patterson 1 and Dengjin Bing 3 1 Aquatic and Crop Resource Development Research Centre, National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada; [email protected] (D.X.); [email protected] (H.M.); [email protected] (N.P.) 2 Department of Biology, Faculty of Science, University of Ottawa, 30 Marie Curie, Ottawa, ON K1N 6N5, Canada 3 Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, 6000 C and E Trail, Lacombe, AB T4L 1W1, Canada; [email protected] * Correspondence: [email protected] Abstract: Starch is the most abundant storage carbohydrate and a major component in pea seeds, accounting for about 50% of dry seed weight. As a by-product of pea protein processing, current uses for pea starch are limited to low-value, commodity markets. The globally growing demand for pea protein poses a great challenge for the pea fractionation industry to develop new markets for starch valorization. However, there exist gaps in our understanding of the genetic mechanism underlying starch metabolism, and its relationship with physicochemical and functional properties, which is a prerequisite for targeted tailoring functionality and innovative applications of starch. This review Citation: Yu, B.; Xiang, D.; outlines the understanding of starch metabolism with a particular focus on peas and highlights Mahfuz, H.; Patterson, N.; Bing, D. the knowledge of pea starch granule structure and its relationship with functional properties, and Understanding Starch Metabolism in industrial applications.
    [Show full text]