Fish and Fishery Products Hazards

Total Page:16

File Type:pdf, Size:1020Kb

Fish and Fishery Products Hazards CHAPTER 16: Pathogenic Bacteria Survival Through Cooking or Pasteurization This guidance represents the Food and Drug Administration’s (FDA’s) current thinking on this topic. It does not create or confer any rights for or on any person and does not operate to bind FDA or the public. You can use an alternative approach if the approach satisfies the requirements of the applicable statutes and regulations. If you want to discuss an alternative approach, contact the FDA staff responsible for implementing this guidance. If you cannot identify the appropriate FDA staff, call the telephone number listed on the title page of this guidance. UNDERSTAND THE POTENTIAL HAZARD. Pasteurization is a treatment (usually, but not always, the application of heat) applied to The survival of pathogenic bacteria through eliminate the most resistant pathogenic bacteria cooking or pasteurization can cause consumer of public health concern that is reasonably likely illness. The primary pathogens of concern are to be present in the food for as long as the shelf- Clostridium botulinum (C. botulinum), Listeria life of the product, when stored under normal monocytogenes (L. monocytogenes), Campylobacter and moderate abuse conditions. With fishery jejuni (C. jejuni), pathogenic strains of Escherichia products, pasteurization is usually performed after coli (E. coli), Salmonella spp., Shigella spp., Yersinia the product is placed in the hermetically sealed enterocolitica (Y. enterocolitica), Staphylococcus finished product container. It is applied to fishery aureus (S. aureus), Vibrio cholera (V. cholera), products that are distributed either refrigerated or Vibrio vulnificus( V. vulnificus), and Vibrio frozen. Examples of pasteurized fishery products parahaemolyticus (V. parahaemolyticus). See are pasteurized crabmeat, pasteurized surimi-based Appendix 7 for a description of the public health analog products, and pasteurized lobster meat. impacts of these pathogens. In addition to eliminating bacterial pathogens, It is not practical to target viral pathogens in cooking and pasteurization also greatly reduce cooking or pasteurization processes because of the number of spoilage bacteria present in the their extreme heat resistance. Viral pathogens fishery product. These bacteria normally restrict should be controlled through a rigorous sanitation the growth of pathogens through competition. regime as part of a prerequisite program or as Elimination of spoilage bacteria allows rapid part of Hazard Analysis Critical Control Point growth of newly introduced pathogenic bacteria. (HACCP) itself. The Procedures for the Safe and Sanitary Processing and Importing of Fish and Pathogenic bacteria that may be introduced after Fishery Products regulation, 21 CFR 123 (called cooking or pasteurization are, therefore, a concern. the Seafood HACCP Regulation in this guidance This is especially true for pasteurization, because document) requires such a regime. that process can significantly extend the shelf-life of the fishery product, providing more time for • Types of heat processing pathogenic bacteria growth and toxin formation. Cooking is a heat treatment, usually performed Retorting is a heat treatment that eliminates all before the product is placed in the finished product food-borne pathogens and produces a product container. It is applied to fishery products that are that is shelf stable. Mandatory controls for retorting distributed either refrigerated or frozen. Generally, are provided in the Thermally Processed Low-Acid after cooking, fishery products are referred to as Foods Packaged in Hermetically Sealed Containers cooked, ready to eat. Examples of cooked, ready- to-eat fishery products are crabmeat, lobster meat, regulation, 21 CFR 113 (hereinafter, the Low Acid crayfish meat, cooked shrimp, surimi-based analog Canned Foods (LACF) Regulation), but are not products, seafood salads, seafood soups and covered in this chapter. sauces, and hot-smoked fish. CHAPTER 16: Pathogenic Bacteria Survival Through Cooking or Pasteurization 315 • Goal of pasteurization (38°F (3.3°C)) are not uncommon. Therefore, Selection of the target pathogen is critical to refrigeration alone cannot be relied upon for the effectiveness of pasteurization. You should control of the C. botulinum hazard. When consider the potential that C. botulinum type freezing is relied upon to control the growth of E or non-proteolytic types B and F will survive C. botulinum type E and non-proteolytic types B the pasteurization process and grow under and F, controls should be in place to ensure that normal storage conditions or moderate abuse the product is labeled with instructions that it be conditions. This is of particular concern if the kept frozen throughout distribution. product is reduced oxygen packaged (e.g., For pasteurization processes that target C. vacuum packaged or modified atmosphere botulinum type E and non-proteolytic types B and packaged), does not contain a barrier that is F, generally a reduction of six orders of magnitude sufficient to prevent growth and toxin formation (six logarithms, e.g., from 103 to 10 -3) in the level by this pathogen, is not equipped with a time of contamination is suitable. This is called a 6D and temperature integrator, and is stored or process. However, lower degrees of destruction distributed refrigerated (not frozen). In such may be acceptable if supported by a scientific products, you should ordinarily select C. study of the normal levels in the food before botulinum type E and non-proteolytic types pasteurization. It is also possible that higher levels B and F as the target pathogen. For example, of destruction may be necessary in some foods, if vacuum-packaged lobster meat that is pasteurized especially high initial levels of the target pathogen to kill L. monocytogenes, but not C. botulinum are anticipated. Table A-4 (Appendix 4) provides type E or non-proteolytic types B and F, and 6D process times for a range of pasteurization is not equipped with a Time-Temperature temperatures, with C. botulinum type B (the Indicator should be frozen to prevent growth most heat resistant form of non-proteolytic C. and toxin formation by C. botulinum type E botulinum) as the target pathogen. The lethal rates and non-proteolytic types B and F, and should and process times provided in the table may not be labeled to be held frozen and to be thawed be sufficient for the destruction of C. botulinum under refrigeration immediately before use (e.g., type E and non-proteolytic types B and F in “Important, keep frozen until used, thaw under dungeness crabmeat, because of the potential that refrigeration immediately before use”). naturally occurring substances, such as lysozyme, If the product is not reduced oxygen packaged, may enable the pathogen to more easily recover or contains a barrier that is sufficient to prevent after heat damage. the growth and toxin formation by C. botulinum Examples of properly pasteurized products are type E or non-proteolytic types B and F, or fish and fishery products generally (e.g., surimi­ is equipped with a time and temperature based products, soups, or sauces) pasteurized integrator, or is distributed frozen, then selection to a minimum cumulative total lethality of F194°F of another target pathogen may be appropriate. (F90°C) = 10 minutes, where z = 12.6°F (7°C) for L. monocytogenes may be selected as the target temperatures less than 194°F (90°C) and z = 18°F pathogen for pasteurization of this type of (10°C) for temperatures above 194°F (90°C); blue product because it is the most resistant bacterial crabmeat pasteurized to a minimum cumulative pathogen of public health concern that is total lethality of F185°F (F85°C) = 31 minutes, where z reasonably likely to be present. = 16°F (9°C); and dungeness crabmeat pasteurized Surveys of retail display cases and home to a minimum cumulative total lethality of F194°F refrigerators indicate that temperatures above the (F90°C) = 57 minutes, where z = 15.5°F (8.6°C). minimum growth temperature of C. botulinum Equivalent processes at different temperatures can type E and non-proteolytic types B and F be calculated using the z values provided. CHAPTER 16: Pathogenic Bacteria Survival Through Cooking or Pasteurization 316 forming unit (CFU)/g and that approximately 91% EXAMPLES OF PROPERLY are contaminated at less than 1 CFU/g. Less than PASTEURIZED PRODUCTS 1% of raw seafood are contaminated at levels MINIMUM CUMULATIVE 3 PRODUCT Z VALUE greater than 10 CFU/g and none at levels greater TOTAL LETHALITY than 106 CFU/g. FDA’s limit for L. monocytogenes Fish and F194°F (F90°C) = 10 minutes 12.6°F (7°C), for fishery temperatures in ready-to-eat products, nondetectable, products less than 194°F corresponds to a level of less than 1 CFU/25g. generally (90°C) (e.g., surimi­ Table A-3 (Appendix 4) provides 6D process based 18°F (10°C) for products, temperatures times for a range of pasteurization temperatures, soups, or above 194°F (90°C) with L. monocytogenes as the target pathogen. sauces) Lower degrees of destruction may be acceptable Blue F (F ) = 31 minutes 16°F (9°C) 185°F 85°C if supported by a scientific study of the normal crabmeat levels in the food before pasteurization. It is also Dungeness F194°F (F90°C) = 57 minutes 15.5°F (8.6°C) crabmeat possible that higher degrees of destruction may be necessary in some foods if especially high In some pasteurized surimi-based products, salt, initial levels are anticipated. in combination with a milder heat pasteurization Products that are pasteurized in the finished process in the finished product container, works product container are at risk for recontamination to prevent growth and toxin formation by C. after pasteurization. Controls, such as container botulinum type E and non-proteolytic types B seal integrity and protection from contaminated and F. An example of a properly pasteurized cooling water, are critical to the safety of these surimi-based product in which 2.4% water phase products and are covered in Chapter 18.
Recommended publications
  • Melioidosis: an Emerging Infectious Disease
    Review Article www.jpgmonline.com Melioidosis: An emerging infectious disease Raja NS, Ahmed MZ,* Singh NN** Department of Medical ABSTRACT Microbiology, University of Malaya Medical Center, Kuala Lumpur, Infectious diseases account for a third of all the deaths in the developing world. Achievements in understanding Malaysia, *St. the basic microbiology, pathogenesis, host defenses and expanded epidemiology of infectious diseases have Bartholomew’s Hospital, resulted in better management and reduced mortality. However, an emerging infectious disease, melioidosis, West Smithfield, London, is becoming endemic in the tropical regions of the world and is spreading to non-endemic areas. This article UK and **School of highlights the current understanding of melioidosis including advances in diagnosis, treatment and prevention. Biosciences, Cardiff Better understanding of melioidosis is essential, as it is life-threatening and if untreated, patients can succumb University, Cardiff, UK to it. Our sources include a literature review, information from international consensus meetings on melioidosis Correspondence: and ongoing discussions within the medical and scientific community. N. S. Raja, E-mail: [email protected] Received : 21-2-2005 Review completed : 20-3-2005 Accepted : 30-5-2005 PubMed ID : 16006713 KEY WORDS: Melioidosis, Burkholderia pseudomallei, Infection J Postgrad Med 2005;51:140-5 he name melioidosis [also known as Whitmore dis- in returning travellers to Europe from endemic areas.[14] The T ease] is taken from the Greek word ‘melis’ meaning geographic area of the prevalence of the organism is bound to distemper of asses and ‘eidos’ meaning resembles glanders. increase as the awareness increases. Melioidosis is a zoonotic disease caused by Pseudomonas pseudomallei [now known as Burkholderia pseudomallei], a B.
    [Show full text]
  • Pressure Canner and Cooker
    Pressure Canner and Cooker Estas instrucciones también están disponibles en español. Para obtener una copia impresa: • Descargue en formato PDF en www.GoPresto.com/espanol. • Envíe un correo electrónico a [email protected]. • Llame al 1-800-877-0441, oprima 2 y deje un mensaje. For more canning information and recipes, visit www.GoPresto.com/recipes/canning Instructions and Recipes ©2019 National Presto Industries, Inc. Form 72-719J TABLE OF CONTENTS Important Safeguards.............................Below How to Can Foods Using Boiling Water Method .......... 21 Getting Acquainted .................................. 2 How to Pressure Cook Foods in Your Pressure Canner ....... 24 Before Using the Canner for the First Time................ 3 Important Safety Information ......................... 24 Canning Basics...................................... 4 Helpful Hints for Pressure Cooking..................... 25 How to Pressure Can Foods............................ 5 Pressure Cooking Meat .............................. 26 Troubleshooting ..................................... 7 Pressure Cooking Poultry ............................ 29 Care and Maintenance ................................ 7 Pressure Cooking Dry Beans and Peas .................. 30 Canning Fruits ...................................... 9 Pressure Cooking Soups and Stocks .................... 31 Canning Tomatoes and Tomato Products................. 12 Pressure Cooking Desserts............................ 32 Pressure Canning Vegetables .......................... 15 Recipe Index .....................................
    [Show full text]
  • USING BOILING WATER-BATH CANNERS Kathleen Riggs, Family and Consumer Sciences Iron County Office 585 N
    USING BOILING WATER-BATH CANNERS Kathleen Riggs, Family and Consumer Sciences Iron County Office 585 N. Main St. #5 Cedar City, UT 84720 FN/Canning/FS-02 December 1998 (or salt) to offset acid taste, if desired. This does not WHY CHOOSE BOILING WATER-BATH effect the acidity of the tomatoes. CANNING TO PRESERVE FOOD? BECOMING FAMILIAR WITH THE Boiling water-bath canning is a safe and economical method of preserving high acid foods. It has been used for PARTS OF A BOILING WATER-BATH decades—especially by home gardeners and others CANNER (See Illustration) interested in providing food storage for their families where quality control of the food is in ones’ own hands. These canners are made of aluminum or porcelain- Home food preservation also promotes a sense of personal covered steel. They have removable perforated racks or satisfaction and accomplishment. Further, the guesswork wire baskets and fitted lids. The canner must be deep is taken out of providing a safe food supply which has enough so that at least 1 inch of briskly boiling water will been preserved at home when guidelines for operating a be over the tops of jars during processing. water-bath canner are followed exactly, scientifically tested/approved recipes are utilized (1988 or later), and Some boiling-water canners do not have flat bottoms. A good quality equipment, supplies and produce are used. flat bottom must be used on an electric range. Either a flat or ridged bottom can be used on a gas burner. To WHAT FOODS ARE TYPICALLY ensure uniform processing of all jars with an electric PROCESSED USING THE BOILING range, the canner should be no more than 4 inches wider in diameter than the element on which it is heated.
    [Show full text]
  • REDUCTION of PURINE CONTENT in COMMONLY CONSUMED MEAT PRODUCTS THROUGH RINSING and COOKING by Anna Ellington (Under the Directio
    REDUCTION OF PURINE CONTENT IN COMMONLY CONSUMED MEAT PRODUCTS THROUGH RINSING AND COOKING by Anna Ellington (Under the direction of Yen-Con Hung) Abstract The commonly consumed meat products ground beef, ground turkey, and bacon were analyzed for purine content before and after a rinsing treatment. The rinsing treatment involved rinsing the meat samples using a wrist shaker in 5:1 ratio water: sample for 2 or 5 minutes then draining or centrifuging to remove water. The total purine content of 25% fat ground beef significantly decreased (p<0.05) from 8.58 mg/g protein to a range of 5.17-7.26 mg/g protein after rinsing treatments. After rinsing and cooking an even greater decrease was seen ranging from 4.59-6.32 mg/g protein. The total purine content of 7% fat ground beef significantly decreased from 7.80 mg/g protein to a range of 5.07-5.59 mg/g protein after rinsing treatments. A greater reduction was seen after rinsing and cooking in the range of 4.38-5.52 mg/g protein. Ground turkey samples showed no significant changes after rinsing, but significant decreases were seen after rinsing and cooking. Bacon samples showed significant decreases from 6.06 mg/g protein to 4.72 and 4.49 after 2 and 5 minute rinsing and to 4.53 and 4.68 mg/g protein after 2 and 5 minute rinsing and cooking. Overall, this study showed that rinsing foods in water effectively reduces total purine content and subsequent cooking after rinsing results in an even greater reduction of total purine content.
    [Show full text]
  • Avoidance of Mechanisms of Innate Immune Response by Neisseria Gonorrhoeae
    ADVANCEMENTS OF MICROBIOLOGY – POSTĘPY MIKROBIOLOGII 2019, 58, 4, 367–373 DOI: 10.21307/PM–2019.58.4.367 AVOIDANCE OF MECHANISMS OF INNATE IMMUNE RESPONSE BY NEISSERIA GONORRHOEAE Jagoda Płaczkiewicz* Department of Virology, Institute of Microbiology, Faculty of Biology, University of Warsaw Submitted in July, accepted in October 2019 Abstract: Neisseria gonorrhoeae (gonococcus) is a Gram-negative bacteria and an etiological agent of the sexually transmitted disease – gonorrhea. N. gonorrhoeae possesses many mechanism to evade the innate immune response of the human host. Most are related to serum resistance and avoidance of complement killing. However the clinical symptoms of gonorrhea are correlated with a significant pres- ence of neutrophils, whose response is also insufficient and modulated by gonococci. 1. Introduction. 2. Adherence ability. 3. Serum resistance and complement system. 4. Neutrophils. 4.1. Phagocytosis. 4.1.1. Oxygen- dependent intracellular killing. 4.1.2. Oxygen-independent intracellular killing. 4.2. Neutrophil extracellular traps. 4.3. Degranulation. 4.4. Apoptosis. 5. Summary UNIKANIE MECHANIZMÓW WRODZONEJ ODPOWIEDZI IMMUNOLOGICZNEJ PRZEZ NEISSERIA GONORRHOEAE Streszczenie: Neisseria gonorrhoeae (gonokok) to Gram-ujemna dwoinka będąca czynnikiem etiologicznym choroby przenoszonej drogą płciową – rzeżączki. N. gonorrhoeae posiada liczne mechanizmy umożliwiające jej unikanie wrodzonej odpowiedzi immunologicznej gospodarza. Większość z nich związana jest ze zdolnością gonokoków do manipulowania układem dopełniacza gospodarza oraz odpor- nością tej bakterii na surowicę. Jednakże symptomy infekcji N. gonorrhoeae wynikają między innymi z obecności licznych neutrofili, których aktywność jest modulowana przez gonokoki. 1. Wprowadzenie. 2. Zdolność adherencji. 3. Surowica i układ dopełniacza. 4. Neutrofile. 4.1. Fagocytoza. 4.1.1. Wewnątrzkomórkowe zabijanie zależne od tlenu. 4.1.2.
    [Show full text]
  • Jirou Bao Zi
    Jīròu Bāo Zǐ Fàn Chinese Clay Pot Rice with Chicken and Mushrooms Yield: Serves 2-4 Ingredients: Rice: 1 Cup Jasmine Rice (Tàiguó Xiāng Mǐ) - can substitute long grain white rice 1 Cup Chicken Stock (Jītāng) 1 Tbs Oil - can use vegetable, canola, or rapeseed oil ¼ tsp Kosher Salt (Yàn) Chicken and Marinade: 2 lbs Boneless/Skinless Chicken Thighs (Jītuǐ Ròu) - cut into bite sized pieces (apx ¼" strips) 1 Green Onion (Cōng) - minced ½ inch piece Fresh Ginger (Jiāng) - peeled and finely julienned 1 ½ Tbs Cornstarch (Yùmǐ Diànfěn) 1 Tbs Light Soy Sauce (Shēng Chōu) 1 Tbs Dark Soy Sauce (Lǎo Chōu) 2 tsp Oyster Sauce (Háoyóu) 1 tsp Shao Xing Rice Wine (Liàojiǔ) 1 tsp Toasted Sesame Oil (Zhīmayóu) ½ tsp Granulated Sugar (Táng) ⅛ tsp Ground White Pepper (Bái Hújiāo) - or to taste 'Veggies and Garnish': 8-10 Dried Black Mushrooms [AKA Shiitake] (Xiānggū) 3 Tbs Dried Black Fungus [AKA Wood Ear OR Cloud Ear Mushroom] (Yún ěr) 6-8 Dried Lily Buds (Bǎihé Yá) 2 Green Onions (Cōng) - chopped -OPTIONAL- ½ lb Chinese Broccoli (Jiè Lán) - cut into 2 inch pieces Taz Doolittle www.TazCooks.com Jīròu Bāo Zǐ Fàn Chinese Clay Pot Rice with Chicken and Mushrooms Preparation: 1) Place your dried black fungus and dried lily buds in a small bowl and cover with water - Set aside for 15 minutes 2) Place your dried black mushrooms in a small bowl and cover with hot water - Set aside for 30 minutes 3) After 15 minutes, rinse the black fungus and lily buds with clean water - Trim off the woody stems from the lily buds and cut them in half - Return the black fungus and
    [Show full text]
  • Chapter 7 Food Safety Fact Sheets
    Food Safety Fact Sheets Kitchen Food Safety Tips How safe is your kitchen? Did you know that most foodborne illness results from poor food handling at home? Your kitchen could be a high risk environment. Bacteria can thrive in food that is improperly stored or handled. Reduce the risks by following these tips from Canada’s food safety experts. Play it “food safe” in your kitchen! Get off to a CLEAN start! • Handwashing is one of the best ways to prevent the spread of foodborne illness. Do you wash your hands for at least 20 seconds with soap and warm water before and after handling food? Wash again when you switch from one food to another. • Are your countertops and utensils clean and sanitized? Sanitizing reduces bacteria and can prevent foodborne illness. It’s important to thoroughly clean everything that comes in contact with your hands or your food! Don’t forget about kitchen cloths . faucet handles . sink drains . garbage disposals . can opener blades . refrigerator handles . small appliances . utensils, and so on. BLEACH SANITIZER • Combine 2 mL (1/2 tsp) of liquid chlorine for every 1 litre of H20 to make a disinfection solution of 100 mg/lor 100ppm. • After cleaning, spray sanitizer on the surface/utensil and let stand briefly. • Rinse with lots of clean water, and air dry (or use clean towels). Eight quick tips for the kitchen (at home, work, school, etc.) 1. Keep separate cutting boards for raw meat, poultry and seafood and a different one for ready-to-eat and cooked foods. Clean and sanitize cutting boards after each use.
    [Show full text]
  • Laboratory Manual for Diagnosis of Sexually Transmitted And
    Department of AIDS Control LaborLaboraattororyy ManualManual fforor DiagnosisDiagnosis ofof SeSexxuallyually TTrransmitansmittteded andand RRepreproductivoductivee TTrractact InInffectionsections FOREWORD Sexually Transmitted Infections (STIs) and Reproductive Tract Infections (RTIs) are diseases of major global concern. About 6% of Indian population is reported to be having STIs. In addition to having high levels of morbidity, they also facilitate transmission of HIV infection. Thus control of STIs goes hand in hand with control of HIV/AIDS. Countrywide strengthening of laboratories by helping them to adopt uniform standardized protocols is very important not only for case detection and treatment, but also to have reliable epidemiological information which will help in evaluation and monitoring of control efforts. It is also essential to have good referral services between primary level of health facilities and higher levels. This manual aims to bring in standard testing practices among laboratories that serve health facilities involved in managing STIs and RTIs. While generic procedures such as staining, microscopy and culture have been dealt with in detail, procedures that employ specific manufacturer defined kits have been left to the laboratories to follow the respective protocols. An introduction to quality system essentials and quality control principles has also been included in the manual to sensitize the readers on the importance of quality assurance and quality management system, which is very much the need of the hour. Manual of Operating Procedures for Diagnosis of STIs/RTIs i PREFACE Sexually Transmitted Infections (STIs) are the most common infectious diseases worldwide, with over 350 million new cases occurring each year, and have far-reaching health, social, and economic consequences.
    [Show full text]
  • Detection of Tick-Borne Pathogens of the Genera Rickettsia, Anaplasma and Francisella in Ixodes Ricinus Ticks in Pomerania (Poland)
    pathogens Article Detection of Tick-Borne Pathogens of the Genera Rickettsia, Anaplasma and Francisella in Ixodes ricinus Ticks in Pomerania (Poland) Lucyna Kirczuk 1 , Mariusz Piotrowski 2 and Anna Rymaszewska 2,* 1 Department of Hydrobiology, Faculty of Biology, Institute of Biology, University of Szczecin, Felczaka 3c Street, 71-412 Szczecin, Poland; [email protected] 2 Department of Genetics and Genomics, Faculty of Biology, Institute of Biology, University of Szczecin, Felczaka 3c Street, 71-412 Szczecin, Poland; [email protected] * Correspondence: [email protected] Abstract: Tick-borne pathogens are an important medical and veterinary issue worldwide. Environ- mental monitoring in relation to not only climate change but also globalization is currently essential. The present study aimed to detect tick-borne pathogens of the genera Anaplasma, Rickettsia and Francisella in Ixodes ricinus ticks collected from the natural environment, i.e., recreational areas and pastures used for livestock grazing. A total of 1619 specimens of I. ricinus were collected, including ticks of all life stages (adults, nymphs and larvae). The study was performed using the PCR technique. Diagnostic gene fragments msp2 for Anaplasma, gltA for Rickettsia and tul4 for Francisella were ampli- fied. No Francisella spp. DNA was detected in I. ricinus. DNA of A. phagocytophilum was detected in 0.54% of ticks and Rickettsia spp. in 3.69%. Nucleotide sequence analysis revealed that only one species of Rickettsia, R. helvetica, was present in the studied tick population. The present results are a Citation: Kirczuk, L.; Piotrowski, M.; part of a large-scale analysis aimed at monitoring the level of tick infestation in Northwest Poland.
    [Show full text]
  • Antigen Detection Assay for the Diagnosis of Melioidosis
    PI: Title: Antigen Detection assay for the Diagnosis of Melioidosis Received: 12/05/2013 FOA: PA10-124 Council: 05/2014 Competition ID: ADOBE-FORMS-B1 FOA Title: NIAID ADVANCED TECHNOLOGY STTR (NIAID-AT-STTR [R41/R42]) 2 R42 AI102482-03 Dual: Accession Number: 3650491 IPF: 3966401 Organization: INBIOS INTERNATIONAL, INC. Former Number: Department: IRG/SRG: ZRG1 IDM-V (12)B AIDS: N Expedited: N Subtotal Direct Costs Animals: N New Investigator: N (excludes consortium F&A) Humans: Y Early Stage Investigator: N Year 3: Clinical Trial: N Year 4: Current HS Code: E4 Year 5: HESC: N Senior/Key Personnel: Organization: Role Category: Always follow your funding opportunity's instructions for application format. Although this application demonstrates good grantsmanship, time has passed since the grantee applied. The sample may not reflect the latest format or rules. NIAID posts new samples periodically: https://www.niaid.nih.gov/grants-contracts/sample-applications The text of the application is copyrighted. You may use it only for nonprofit educational purposes provided the document remains unchanged and the PI, the grantee organization, and NIAID are credited. Note on Section 508 conformance and accessibility: We have reformatted these samples to improve accessibility for people with disabilities and users of assistive technology. If you have trouble accessing the content, please contact the NIAID Office of Knowledge and Educational Resources at [email protected]. Additions for Review Accepted Publication Accepted manuscript news Post-submission supplemental material. Information about manuscript accepted for publication. OMB Number: 4040-0001 Expiration Date: 06/30/2011 APPLICATION FOR FEDERAL ASSISTANCE 3. DATE RECEIVED BY STATE State Application Identifier SF 424 (R&R) 1.
    [Show full text]
  • For Several Commercial Pasteurization and Sterilization Processes: Overview, Uses, and Restrictions
    R&D AND PRODUCTION RETORTS SPECIALISTS (33 to 175 L) www.terrafoodtech.com Heat Process Values F (2nd Ed.) for several Commercial Pasteurization and Sterilization Processes: Overview, Uses, and Restrictions Janwillem Rouweler - [email protected]; June 12, 2015 Which heat process value F should a particular food receive to make it safe and shelf stable? 10 * Section 1 lists reported sterilization values F0 = F 121.1 (= F zero) for commercial food preservation processes of all types of food products, for several package sizes and types. * Section2 contains reported pasteurization values F, or P, of a great variety of foods. The required storage conditions of the pasteurized foods, either at ambient temperature, or refrigerated (4-7 °C), are indicated. * Section 3 shows a decision scheme: should a particular food be pasteurized or sterilized? This depends on the intended storage temperature (refrigerated or ambient) after heating, the required shelf life (7 days to 4 years), the food pH (high acid, acid, or low acid), the food - water activity aW, and on the presence of preservatives such as nitrite NO2 (E250) miXed with salt NaCl, or nisin. * In Section 4, two worked eXamples are presented on how to use an F value when calculating the actual sterilization time Pt: - C.R. Stumbo’s (1973) calculation method has been manually applied, verified by computer program STUMBO.eXe, to find the sterilization time and the thiamine retention of bottled liquid milk in a rotating steam retort; - O.T. Pham’s (1987; 1990) formula method, incorporated in EXcel program “Heat Process calculations according to Pham.xls”, has been used to find the sterilization time and the nutrient retention of canned carrot purée in a still steam retort.
    [Show full text]
  • Non-Coding Rnas of the Q Fever Agent, Coxiella Burnetii
    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 2015 Non-coding RNAs of the Q fever agent, Coxiella burnetii Indu Ramesh Warrier The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Warrier, Indu Ramesh, "Non-coding RNAs of the Q fever agent, Coxiella burnetii" (2015). Graduate Student Theses, Dissertations, & Professional Papers. 4620. https://scholarworks.umt.edu/etd/4620 This Dissertation is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. NON-CODING RNAS OF THE Q FEVER AGENT, COXIELLA BURNETII By INDU RAMESH WARRIER M.Sc (Med), Kasturba Medical College, Manipal, India, 2010 Dissertation presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy Cellular, Molecular and Microbial Biology The University of Montana Missoula, MT August, 2015 Approved by: Sandy Ross, Dean of The Graduate School Graduate School Michael F. Minnick, Chair Division of Biological Sciences Stephen J. Lodmell Division of Biological Sciences Scott D. Samuels Division of Biological Sciences Scott Miller Division of Biological Sciences Keith Parker Department of Biomedical and Pharmaceutical Sciences Warrier, Indu, PhD, Summer 2015 Cellular, Molecular and Microbial Biology Non-coding RNAs of the Q fever agent, Coxiella burnetii Chairperson: Michael F. Minnick Coxiella burnetii is an obligate intracellular bacterial pathogen that undergoes a biphasic developmental cycle, alternating between a small cell variant (SCV) and a large cell variant (LCV).
    [Show full text]