EA41CH05-Cavicchioli ARI 30 April 2013 11:9 Psychrophiles Khawar S. Siddiqui,1 Timothy J. Williams,1 David Wilkins,1 Sheree Yau,1 Michelle A. Allen,1 Mark V. Brown,1,2 Federico M. Lauro,1 and Ricardo Cavicchioli1 1School of Biotechnology and Biomolecular Sciences and 2Evolution and Ecology Research Center, The University of New South Wales, Sydney, New South Wales 2052, Australia; email:
[email protected] Annu. Rev. Earth Planet. Sci. 2013. 41:87–115 Keywords First published online as a Review in Advance on microbial cold adaptation, cold-active enzymes, metagenomics, microbial February 14, 2013 diversity, Antarctica The Annual Review of Earth and Planetary Sciences is online at earth.annualreviews.org Abstract This article’s doi: Psychrophilic (cold-adapted) microorganisms make a major contribution 10.1146/annurev-earth-040610-133514 to Earth’s biomass and perform critical roles in global biogeochemical cy- Copyright c 2013 by Annual Reviews. cles. The vast extent and environmental diversity of Earth’s cold biosphere All rights reserved has selected for equally diverse microbial assemblages that can include ar- Access provided by University of Nevada - Reno on 05/25/15. For personal use only. Annu. Rev. Earth Planet. Sci. 2013.41:87-115. Downloaded from www.annualreviews.org chaea, bacteria, eucarya, and viruses. Underpinning the important ecological roles of psychrophiles are exquisite mechanisms of physiological adaptation. Evolution has also selected for cold-active traits at the level of molecular adaptation, and enzymes from psychrophiles are characterized by specific structural, functional, and stability properties. These characteristics of en- zymes from psychrophiles not only manifest in efficient low-temperature activity, but also result in a flexible protein structure that enables biocatalysis in nonaqueous solvents.