materials Review Perovskites-Based Solar Cells: A Review of Recent Progress, Materials and Processing Methods Zhengqi Shi and Ahalapitiya H. Jayatissa * Nanotechnology and MEMS Laboratory, Department of Mechanical, Industrial and Manufacturing Engineering (MIME), University of Toledo, Toledo, OH 43606, USA;
[email protected] * Correspondence:
[email protected]; Tel.: +1-419-530-8245 Received: 19 March 2018; Accepted: 2 May 2018; Published: 4 May 2018 Abstract: With the rapid increase of efficiency up to 22.1% during the past few years, hybrid organic-inorganic metal halide perovskite solar cells (PSCs) have become a research “hot spot” for many solar cell researchers. The perovskite materials show various advantages such as long carrier diffusion lengths, widely-tunable band gap with great light absorption potential. The low-cost fabrication techniques together with the high efficiency makes PSCs comparable with Si-based solar cells. But the drawbacks such as device instability, J-V hysteresis and lead toxicity reduce the further improvement and the future commercialization of PSCs. This review begins with the discussion of crystal and electronic structures of perovskite based on recent research findings. An evolution of PSCs is also analyzed with a greater detail of each component, device structures, major device fabrication methods and the performance of PSCs acquired by each method. The following part of this review is the discussion of major barriers on the pathway for the commercialization of PSCs. The effects of crystal structure, fabrication temperature, moisture, oxygen and UV towards the stability of PSCs are discussed. The stability of other components in the PSCs are also discussed.