Toward Commercialization of Stable Devices: an Overview on Encapsulation of Hybrid Organic-Inorganic Perovskite Solar Cells

Total Page:16

File Type:pdf, Size:1020Kb

Toward Commercialization of Stable Devices: an Overview on Encapsulation of Hybrid Organic-Inorganic Perovskite Solar Cells crystals Review Toward Commercialization of Stable Devices: An Overview on Encapsulation of Hybrid Organic-Inorganic Perovskite Solar Cells Clara A. Aranda 1,2, Laura Caliò 3 and Manuel Salado 4,* 1 Institute for Photovoltaics (IPV), University of Stuttgart, 70569 Stuttgart, Germany; [email protected] 2 IEK-5 Photovoltaics, Forschungzentrum Jülich, 52425 Jülich, Germany 3 Multifunctional Optical Materials Group, Institute of Materials Science of Sevilla, Consejo Superior de Investigaciones Científicas—Universidad de Sevilla (CSIC-US), Américo Vespucio 49, 41092 Sevilla, Spain; [email protected] 4 BCMaterials—Basque Center for Materials Applications and Nanostructures, UPV/EHU Science Park, Barrio Sarriena s/n, 48940 Leioa, Spain * Correspondence: [email protected] Abstract: Perovskite solar cells (PSCs) represent a promising technology for energy harvesting due to high power conversion efficiencies up to 26%, easy manufacturing, and convenient deposition techniques, leading to added advantages over other contemporary competitors. In order to promote this technology toward commercialization though, stability issues need to be addressed. Lately, many researchers have explored several techniques to improve the stability of the environmentally- sensitive perovskite solar devices. Challenges posed by environmental factors like moisture, oxygen, temperature, and UV-light exposure, could be overcome by device encapsulation. This review focuses the attention on the different materials, methods, and requirements for suitable encapsulated Citation: Aranda, C.A.; Caliò, L.; perovskite solar cells. A depth analysis on the current stability tests is also included, since accurate Salado, M. Toward Commercialization of Stable Devices: An Overview on and reliable testing conditions are needed in order to reduce mismatching involved in reporting the Encapsulation of Hybrid efficiencies of PSC. Organic-Inorganic Perovskite Solar Cells. Crystals 2021, 11, 519. https:// Keywords: perovskite; encapsulation; stability doi.org/10.3390/cryst11050519 Academic Editor: Sergey V. Makarov 1. Introduction Received: 14 April 2021 Perovskite Solar Cells (PSCs) have demonstrated outstanding performance, achieving Accepted: 2 May 2021 power conversion efficiencies (PCE) as high as 25.5% and theoretical efficiencies up to 31%. Published: 7 May 2021 Since the inception of PSCs in 2009 [1], a lot of improvements have been done in various aspects, like composition [2], synthesis technique, fabrication method [3], and interfacial Publisher’s Note: MDPI stays neutral studies [4]. In addition, an even higher PCE can be obtained by combining the two silicon with regard to jurisdictional claims in and PSC devices together, i.e., perovskite/silicon tandem solar cells, by exceeding the published maps and institutional affil- Shockley–Queisser limit [5]. Unfortunately, it is challenging to obtain satisfactory lifetime iations. during PSC operation when compared to that of silicon solar cells. In fact, unlike the silicon solar cells, the instability of hybrid organic-inorganic PSC devices remains a significant bottleneck to commercialization [6]. Currently, PSCs are only stable up to few months at an outdoor environment [7,8], since PSCs are sensitive to harsh environmental condi- Copyright: © 2021 by the authors. tions (see Figure1) such as UV light exposure [ 9], high temperature [10,11], and, most Licensee MDPI, Basel, Switzerland. importantly, oxygen [12] and humidity [13,14]. In the last few years, different approaches This article is an open access article have been explored in order to overcome the mentioned issues. A comprehensive under- distributed under the terms and standing of these issues in PSCs is required to achieve stability breakthroughs for practical conditions of the Creative Commons commercial applications. Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). Crystals 2021, 11, 519. https://doi.org/10.3390/cryst11050519 https://www.mdpi.com/journal/crystals Crystals 2021, 11, 519 2 of 16 Figure 1. Schematic representation of different factors affecting the stability of perovskite solar cells. Sources of Degradation of Perovskite Devices Snaith and co-workers studied the stability of PSCs under UV radiation for the first time [15], demonstrating that perovskite solar cells with TiO2 as photoanode suffered from a rapid decay in photocurrent and power conversion efficiency after encapsulation in a nitrogen atmosphere. The authors showed how an electron–hole pair is formed on TiO2 and the hole in the valence band combines with the electron at the oxygen adsorption site after UV illumination. This might be overcome by introduction of small amount of oxygen, which could decrease the number of empty deep trap sites [15,16]. Another solution to UV degradation of the TiO2 layer was introduced by Komarala and co-workers [17]. The 3+ authors proposed that the deposition of a down-shifting (DS) YVO4:Eu nano-phosphor layer on the reverse side of fluorine doped tin oxide (FTO) glass could improve the PSC stability. In fact, the phosphor layer can absorb UV light and emit visible light, which could be absorbed by the underlying perovskite layer. The device showed an improvement in stability under prolonged illumination, retaining more than 50% of its initial efficiency, whereas for PSCs without the phosphor layer, the efficiency diminished to 35% of its initial value [16,17]. On the other hand, temperature enhancement under continuous sun illumination can produce phase changing and instability in the perovskite layer [18]. Connings et al., ◦ studied the thermal stability of ITO/TiO2/perovskite set up at 85 C in order to focus on the absorber layer of the PSCs [19]. Results revealed a high amount of deterioration in the ambient environment than in the presence of nitrogen and oxygen. Pisoni and co-workers showed that MAPI (CH3NH3PbI3) had a very low thermal conductivity for both large single crystals and the polycrystalline form. This meant that the light-deposited heat inside the perovskite itself could not spread out quickly, which caused mechanical stress and limited the lifetime of the photovoltaic devices [20]. Also, studies conducted by Pister et al., stressed the fact that the annealing temperature of MAPI film is important for both thermal stability and efficiency of PSCs, with an ideal temperature range to carry out annealing of MAPb(I/Cl) perovskite between 100 and 150 ◦C[21]. Furthermore, oxygen represents a crucial environmental parameter related to PSC stability, both during perovskite film preparation and subsequent device exposure. Haque and co-workers showed that photodegradation reaction of MAPI film is triggered by the action of active oxygen species (superoxide O2−) on the organic component (i.e., methy- lammonium) of the perovskite absorber layer [22]. Lately, also Maier and co-workers demonstrated that since MAPI shows a certain oxygen solubility, and that O2, once in- troduced, acts as an acceptor dopant owing to O2− replacing I− or being accommodated interstitially. Under these conditions, MAPI is thermodynamically expected to degrade, forming water and iodine [12]. On the other hand, it has been proved that oxygen passi- vation could enhance the photoluminescence (PL) intensity of the perovskite due to the decrease of the non-radiative recombination. Lately, it has also been demonstrated that if perovskite layer is exposed to oxygen by exclusion of light illumination, the halide vacancies could be passivated by oxygen Crystals 2021, 11, 519 3 of 16 atoms, meanwhile, the reaction between oxygen molecule and photogenerated electrons might be prevented, which will lead to the improvement of both efficiency and stability for PSCs [23,24]. Apart of the degradation sources cited above, it is now well established that PSCs are very susceptible to high humidity. The degradation is notably quicker under high humidity conditions, as demonstrated by Zhu et al. [25] by performing stability tests under constant illumination over a short time period in an N2 glovebox to prevent the intrusion of humidity. In order to get over the above-cited problems, many solutions have been addressed in order to improve the stability. For instance, compositional tuning of perovskite materials has been well explored over recent years. For example, it has been demonstrated that the incorporation of different organic and inorganic cations (like cesium, formamidinium, and rubidium) in the structure is beneficial to internal perovskite stability [2,26]. However, phase segregation due to temperature changes can induce instabilities inside the perovskite structure depending on the composition. Table1 summarizes the phase stability of common perovskite compounds. %clearpage Table 1. Summary of the different crystal structure depending on the composition and the temperature of the per- ovskite material. Non-Optical Perovskite Low T Medium T High T Ref. Active <162.2 K 162.2–327.4 K MAPbI >327.4 K (cubic) [27] 3 (orthorhombic) (tetragonal) 149.5–155.1 K 155.1–236.9 K MAPbBr >236.9 K (cubic) [28] 3 (tetragonal) (tetragonal) 140–285 K Pure FAPbI <438 K (hexagonal) >285 K (cubic) [29] 3 (tetragonal) <588 K CsPbI >588 K (cubic) 3 (orthorhombic) <257–283 K <298 to >523 K FAxMA PbI forms if x > 0.85 [30,31] 1-x 3 (cubic) (tetragonal) <398 K, x = 0.85 >398 K, x = 0.85 Mixed FAxCs1-xPbI3 [32] A-cation (hexagonal) (tetragonal) 298 K, tetragonal for x ≤ MAPb(I Br ) [33] 1-x x 3 0.13, cubic for x ≥ 0.2 298 K, trigonal for x < amorphous phase Mixed FAPb(I Br ) 0.3, cubic for x > 0.5, [34] X-anion 1-x x 3 for x = 0.3 to 0.5 possibly metastable FA0.83Cs0.17Pb(I1-xBrx)3 298 K, (cubic) [35] FA0.75MA0.15Cs0.10Pb(I0.83Br0.17)3 298 K (cubic) [36] 298 K (not anion Mixed cation- FA MA Cs Rb Pb(I Br ) [37] 0.75 0.15 0.05 0.05 0.83 0.17 3 specified) Also, the addition of additives in both perovskites, or the charge selective layers, was largely investigated. For instance, the use of hydrophobic ionic liquid have been proved to be effective in order to both enhance device stability and efficiency [38].
Recommended publications
  • Perovskite Solar Cells with Large Area CVD-Graphene for Tandem
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by HZB Repository 1 Perovskite Solar Cells with Large-Area CVD-Graphene 2 for Tandem Solar Cells 3 Felix Lang *, Marc A. Gluba, Steve Albrecht, Jörg Rappich, Lars Korte, Bernd Rech, and 4 Norbert H. Nickel 5 Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Institut für Silizium 6 Photovoltaik, Kekuléstr. 5, 12489 Berlin, Germany. 7 8 ABSTRACT: Perovskite solar cells with transparent contacts may be used to compensate 9 thermalization losses of silicon solar cells in tandem devices. This offers a way to outreach 10 stagnating efficiencies. However, perovskite top cells in tandem structures require contact layers 11 with high electrical conductivity and optimal transparency. We address this challenge by 12 implementing large area graphene grown by chemical vapor deposition as highly transparent 13 electrode in perovskite solar cells leading to identical charge collection efficiencies. Electrical 14 performance of solar cells with a graphene-based contact reached those of solar cells with 15 standard gold contacts. The optical transmission by far exceeds that of reference devices and 16 amounts to 64.3 % below the perovskite band gap. Finally, we demonstrate a four terminal 17 tandem device combining a high band gap graphene-contacted perovskite top solar cell 18 (Eg=1.6 eV) with an amorphous/crystalline silicon bottom solar cell (Eg=1.12 eV). 19 1 1 TOC GRAPHIC. 2 3 4 Hybrid perovskite methylammonium lead iodide (CH3NH3PbI3) attracts ever-growing interest 5 for use as a photovoltaic absorber.1 Only recently, Jeon et al.
    [Show full text]
  • Perovskite Solar Cell - a Source of Renewable Green Power
    International Journal of Scientific and Research Publications, Volume 5, Issue 7, July 2015 1 ISSN 2250-3153 Perovskite Solar Cell - A Source of Renewable Green Power Prof. (Dr.) R. S. Rohella, Prof. (Dr.), S. K. Panda and Prof. Parthasarthi Das Hi-Tech Institute of Technology, Khurda Industrial Estate, Bhubaneswar-752057 Abstract- The earth receives 2.9X1015 kW of energy every day in the form of electromagnetic radiation from the sun, which is Daryl Chapin, Calvin Fuller, and Gerald Pearson Daryl about one hundred times the total energy consumption of the Chapin, Calvin Fuller, and Gerald Pearson at Bell Telephone world in a year. Bell Telephone Laboratories produced a silicon Laboratories, USA produced a silicon solar cell with 4% in 1954 solar cell in 1954 with an efficiency of 4% efficiency which later efficiency and later achieved 11% efficiency [2]. The enhanced to achieve 11%. The cost of generation of one watt of development of solar concentrators was necessitated due very solar power in 1977 was $77/watt which was later brought down low current and voltage capabilities of a solar cell and it all to about 80 cents/watt. Recently a new substance called a started only after 1970s. Today we have everything from solar perovskite used for solar cell preparation could cut the cost of a powered buildings to solar powered vehicles. However, till date watt of solar generating capacity by three-quarters. The potential the efficiency of the solar cells could not cross 16 to 17% and the of this material that it could lead to solar panels that cost just 10 electrical power produced by solar costs $5-6 per watt.
    [Show full text]
  • Comparison of Three Solar Cells Based on DSSC, Perovskite and Polymer Structures
    Proceedings of the 2nd International Conference of Energy Harvesting, Storage, and Transfer (EHST'18) Niagara Falls, Canada – June 7 – 9, 2018 Paper No. 111 DOI: 10.11159/ehst18.111 Comparison of Three Solar Cells Based on DSSC, Perovskite and Polymer Structures Melika Dolatdoost, Farhad A. Boroumand Organic Electronics Laboratory, Electrical Engineering Faculty, K. N. Toosi University of Technology Seyed Khandan Bridge, Shariati Ave. Tehran, Iran [email protected]; [email protected] Extended Abstract In this work, we compare three solar cell structures that have been captured the attention of scientists as future technologies for green energy production. Dye synthesized solar cell was fabricated on FTO anode substrate using N719 dye active layer and platinum cathode based on Dr. Blade technique [1]. Perovskite solar cell was also made on uniform FTO on Glass as positive electrode. Mesoporous titania was deposited with Spin-Dip method and then, PbI2 was deposited and the whole sample placed in CH3NH3I and Spiro-OMeTAD was added to the solution. The structure was completed with depositing Gold as cathode of Perovskite cell [2]. For polymer based solar cell ITO on PET was considered as anode contact with MEH-PPV:ZnO nanocomposite polymer as active layer and Aluminum as negative electrode [3]. Perovskite structure had its own features such as high absorption coefficient, deep diffusion length of carriers and slow recombination speed. Also existence of Spiro-OMeTAD material reduced the recombination of charges, resulting in 2 highest efficiency of 8.7% among three devices and the utmost Isc of 19.98 mA/cm . Voc for this cell was acquired as 0.874V.
    [Show full text]
  • Next-Generation Solar Power Dutch Technology for the Solar Energy Revolution Next-Generation High-Tech Excellence
    Next-generation solar power Dutch technology for the solar energy revolution Next-generation high-tech excellence Harnessing the potential of solar energy calls for creativity and innovative strength. The Dutch solar sector has been enabling breakthrough innovations for decades, thanks in part to close collaboration with world-class research institutes and by fostering the next generation of high-tech talent. For example, Dutch student teams have won a record ten titles in the World Solar Challenge, a biennial solar-powered car race in Australia, with students from Delft University of Technology claiming the title seven out of nine times. 2 Solar Energy Guide 3 Index The sunny side of the Netherlands 6 Breeding ground of PV technology 10 Integrating solar into our environment 16 Solar in the built environment 18 Solar landscapes 20 Solar infrastructure 22 Floating solar 24 Five benefits of doing business with the Dutch 26 Dutch solar expertise in brief 28 Company profiles 30 4 Solar Energy Guide The Netherlands, a true solar country If there’s one thing the Dutch are remarkably good at, it’s making the most of their natural circumstances. That explains how a country with a relatively modest amount of sunshine has built a global reputation as a leading innovator in solar energy. For decades, Dutch companies and research institutes have been among the international leaders in the worldwide solar PV sector. Not only with high-level fundamental research, but also with converting this research into practical applications. Both by designing and refining industrial production processes, and by developing and commercialising innovative solutions that enable the integration of solar PV into a product or environment with another function.
    [Show full text]
  • Fabrication and Simulation of Perovskite Solar Cells
    University of Kentucky UKnowledge Theses and Dissertations--Electrical and Computer Engineering Electrical and Computer Engineering 2021 Fabrication and Simulation of Perovskite Solar Cells Maniell Workman University of Kentucky, [email protected] Author ORCID Identifier: https://orcid.org/0000-0002-9599-1673 Digital Object Identifier: https://doi.org/10.13023/etd.2021.160 Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Workman, Maniell, "Fabrication and Simulation of Perovskite Solar Cells" (2021). Theses and Dissertations--Electrical and Computer Engineering. 165. https://uknowledge.uky.edu/ece_etds/165 This Master's Thesis is brought to you for free and open access by the Electrical and Computer Engineering at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Electrical and Computer Engineering by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File. I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-free license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known.
    [Show full text]
  • Perovskites-Based Solar Cells: a Review of Recent Progress, Materials and Processing Methods
    materials Review Perovskites-Based Solar Cells: A Review of Recent Progress, Materials and Processing Methods Zhengqi Shi and Ahalapitiya H. Jayatissa * Nanotechnology and MEMS Laboratory, Department of Mechanical, Industrial and Manufacturing Engineering (MIME), University of Toledo, Toledo, OH 43606, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-419-530-8245 Received: 19 March 2018; Accepted: 2 May 2018; Published: 4 May 2018 Abstract: With the rapid increase of efficiency up to 22.1% during the past few years, hybrid organic-inorganic metal halide perovskite solar cells (PSCs) have become a research “hot spot” for many solar cell researchers. The perovskite materials show various advantages such as long carrier diffusion lengths, widely-tunable band gap with great light absorption potential. The low-cost fabrication techniques together with the high efficiency makes PSCs comparable with Si-based solar cells. But the drawbacks such as device instability, J-V hysteresis and lead toxicity reduce the further improvement and the future commercialization of PSCs. This review begins with the discussion of crystal and electronic structures of perovskite based on recent research findings. An evolution of PSCs is also analyzed with a greater detail of each component, device structures, major device fabrication methods and the performance of PSCs acquired by each method. The following part of this review is the discussion of major barriers on the pathway for the commercialization of PSCs. The effects of crystal structure, fabrication temperature, moisture, oxygen and UV towards the stability of PSCs are discussed. The stability of other components in the PSCs are also discussed.
    [Show full text]
  • Mapping and Manipulating Optoelectronic Processes in Emerging Photovoltaic Materials
    Mapping and manipulating optoelectronic processes in emerging photovoltaic materials By Sibel Yontz Leblebici A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Engineering – Materials Science and Engineering in the Graduate Division of the University of California, Berkeley Committee in charge: Doctor Alexander Weber-Bargioni, Co-Chair Professor Ting Xu, Co-Chair Professor Junqiao Wu Professor Ana Arias Spring 2016 Mapping and manipulating optoelectronic processes in emerging photovoltaic materials Copyright 2016 By Sibel Yontz Leblebici Abstract Mapping and manipulating optoelectronic processes in emerging photovoltaic materials by Sibel Yontz Leblebici Doctor of Philosophy in Engineering - Materials Science and Engineering University of California, Berkeley Doctor Alexander Weber-Bargioni, Co-Chair Professor Ting Xu, Co-Chair The goal of the work in this dissertation is to understand and overcome the limiting optoelectronic processes in emerging second generation photovoltaic devices. There is an urgent need to mitigate global climate change by reducing greenhouse gas emissions. Renewable energy from photovoltaics has great potential to reduce emissions if the energy to manufacture the solar cell is much lower than the energy the solar cell generates. Two emerging thin film solar cell materials, organic semiconductors and hybrid organic-inorganic perovskites, meet this requirement because the active layers are processed at low temperatures, e.g. 150 °C. Other advantages of these two classes of materials include solution processability, composted of abundant materials, strongly light absorbing, highly tunable bandgaps, and low cost. Organic solar cells have evolved significantly from 1% efficient devices in 1989 to 11% efficient devices today. Although organic semiconductors are highly tunable and inexpensive, the main challenges to overcome are the large exciton binding energies and poor understanding of exciton dynamics.
    [Show full text]
  • Perovskite Solar Cells with Large Area CVD-Graphene for Tandem Solar
    1 Perovskite Solar Cells with Large-Area CVD-Graphene 2 for Tandem Solar Cells 3 Felix Lang *, Marc A. Gluba, Steve Albrecht, Jörg Rappich, Lars Korte, Bernd Rech, and 4 Norbert H. Nickel 5 Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Institut für Silizium 6 Photovoltaik, Kekuléstr. 5, 12489 Berlin, Germany. 7 8 ABSTRACT: Perovskite solar cells with transparent contacts may be used to compensate 9 thermalization losses of silicon solar cells in tandem devices. This offers a way to outreach 10 stagnating efficiencies. However, perovskite top cells in tandem structures require contact layers 11 with high electrical conductivity and optimal transparency. We address this challenge by 12 implementing large area graphene grown by chemical vapor deposition as highly transparent 13 electrode in perovskite solar cells leading to identical charge collection efficiencies. Electrical 14 performance of solar cells with a graphene-based contact reached those of solar cells with 15 standard gold contacts. The optical transmission by far exceeds that of reference devices and 16 amounts to 64.3 % below the perovskite band gap. Finally, we demonstrate a four terminal 17 tandem device combining a high band gap graphene-contacted perovskite top solar cell 18 (Eg=1.6 eV) with an amorphous/crystalline silicon bottom solar cell (Eg=1.12 eV). 19 1 1 TOC GRAPHIC. 2 3 4 Hybrid perovskite methylammonium lead iodide (CH3NH3PbI3) attracts ever-growing interest 5 for use as a photovoltaic absorber.1 Only recently, Jeon et al. demonstrated the great potential of 6 this material in a single-junction solar cell with an efficiency of 18% 2.
    [Show full text]
  • Understanding the Photostability of Perovskite Solar Cell Pranav Hemanta Joshi Iowa State University
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2016 Understanding the photostability of perovskite solar cell Pranav Hemanta Joshi Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Electrical and Electronics Commons, Materials Science and Engineering Commons, Mechanics of Materials Commons, and the Physics Commons Recommended Citation Joshi, Pranav Hemanta, "Understanding the photostability of perovskite solar cell" (2016). Graduate Theses and Dissertations. 15732. https://lib.dr.iastate.edu/etd/15732 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Understanding the photostability of perovskite solar cell by Pranav H Joshi A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Electrical Engineering Program of Study Committee: Vikram Dalal, Major Professor Rana Biswas Sumit Chaudhary Ruth Shinar Mani Mina Iowa State University Ames, Iowa 2016 Copyright © Pranav H Joshi, 2016. All rights reserved. ii || श्री || iii TABLE OF CONTENTS Page LIST OF FIGURES ..................................................................................................
    [Show full text]
  • A Review on Perovskite/Silicon Tandem Solar Cells Shivani Chauhan1, Rachna Singh2
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 May 2021 doi:10.20944/preprints202105.0188.v1 A Review on perovskite/silicon Tandem solar cells 1 2 Shivani Chauhan , Rachna Singh 1 Department of electronics and communication, Jaypee Institute of Information technology, Noida 2 Department of electronics and communication, Jaypee Institute of Information technology, Noida Ghaziabad, India [email protected] Abstract— The tandem Solar cell has high power conversion efficiency (PCE), so they are taken as the next step in photovoltaic evolution. The tandem solar cell also overcome the limitations of Single-junction solar cells by reducing thermalization losses and also reduce the fabrication cost. The fabrication of tandem solar cells is highly efficient after the origination of halide perovskite absorber material, this material will shape the future of tandem solar cells. Researchers have already shown that this material can convert light more efficiently than standalone sub cell. Today, researchers around the world are keeping the configuration of a tandem solar cell as their agenda. A Tandem solar cell is a stacking of multiple layers having different bandgaps with specific maximum absorption and width. We reviewed perovskite/silicon tandem solar cells with different sub-module configurations. Move forward, we discuss the tandem module technology, sub cell of a tandem can be wired in several ways two terminals 2T monolithic and mechanically stacked, a four-terminal 4T mechanically stacked, and three-terminal 3T monolithic stack devices. This review paper provides a side-by-side comparison of theoretical efficiencies of multijunction solar cells. The highest efficiency has been evaluated at 39.4% for a three-level structure.
    [Show full text]
  • Conference Programme
    Monday, 20 June 2016 Monday, 20 June 2016 CONFERENCE PROGRAMME ORAL PRESENTATIONS 1AO.1 13:30 - 15:00 Fundamental Characterisation, Theoretical and Modelling Studies Please note, that this Programme may be subject to alteration and the organisers reserve the right to do so without giving prior notice. The current version of the Programme is available at www.photovoltaic-conference.com. Chairpersons: (i) = invited invited invited Monday, 20 June 2016 1AO.1.1 Fast Qualification Method for Thin Film Absorber Materials PLENARY SESSION 1AP.1 L.W. Veldhuizen, Y. Kuang, D. Koushik & R.E.I. Schropp Eindhoven University of Technology, Netherlands 08:30 - 09:30 New Materials and Concepts for Solar Cells and Modules G. Adhyaksa & E. Garnett FOM Institute AMOLF, Amsterdam, Netherlands 1AO.1.2 Transient I-V Measurement Set-Up of Photovoltaic Laser Power Converters under Chairpersons: Monochromatic Irradiance A.W. Bett S.K. Reichmuth, D. Vahle, M. de Boer, M. Mundus, G. Siefer, A.W. Bett & H. Helmers Fraunhofer ISE, Germany Fraunhofer ISE, Freiburg, Germany M. Rusu C.E. Garza HZB, Germany Nanoscribe, Eggenstein-Leopoldshafen, Germany 1AP.1.1 Keynote Presentation: 37% Efficient One-Sun Minimodule and over 40% Efficient 1AO.1.3 Imaging of Terahertz Emission from Individual Subcells in Multi-Junction Solar Cells Concentrator Submodules S. Hamauchi, Y. Sakai, T. Umegaki, I. Kawayama, H. Murakami & M. Tonouchi M.A. Green, M.J. Keevers, B. Concha-Ramon & J. Jiang Osaka University, Japan UNSW, Sydney, Australia A. Ito & H. Nakanishi P.J. Verlinden, Y. Yang & X. Zhang SCREEN, Kyoto, Japan Trina Solar, Changzhou, China 1AO.1.4 Simulation-Based Optimization for Solar Cells and Modules with Novel Silver Nanowire 1AP.1.2 Keynote Presentation: Innovative Approaches to Interconnect Back-Contact Cells Transparent Electrodes J.
    [Show full text]
  • Opportunities and Challenges for Tandem Solar Cells Using Metal Halide Perovskite Semiconductors
    REVIEW ARTICLE https://doi.org/10.1038/s41560-018-0190-4 Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors Tomas Leijtens 1,2*, Kevin A. Bush1, Rohit Prasanna 1 and Michael D. McGehee1* Metal halide perovskite semiconductors possess excellent optoelectronic properties, allowing them to reach high solar cell performances. They have tunable bandgaps and can be rapidly and cheaply deposited from low-cost precursors, making them ideal candidate materials for tandem solar cells, either by using perovskites as the wide-bandgap top cell paired with low- bandgap silicon or copper indium diselenide bottom cells or by using both wide- and small-bandgap perovskite semiconductors to make all-perovskite tandem solar cells. This Review highlights the unique potential of perovskite tandem solar cells to reach solar-to-electricity conversion efficiencies far above those of single-junction solar cells at low costs. We discuss the recent developments in perovskite-based tandem fabrication, and detail directions for future research to take this technology beyond the proof-of-concept stage. apid cost reductions in photovoltaic module manufacturing perovskites for multi-junction solar cell applications, highlight cur- have made non-module costs (known as balance-of-system rent developments of perovskite tandems and discuss the work that costs) and installation costs the major contributors to the price remains to be done to bridge the gap to commercial readiness. As R 1 of installed solar in both residential and utility settings . These costs laboratory-scale devices continue to exhibit high efficiencies, prov- scale with the solar panel area required, making the efficiency of ing the potential of perovskite tandem solar cells, it will become photovoltaic panels one of the most important and promising tech- increasingly important to consider the design of the tandem devices nical directions for reducing the cost of solar installations.
    [Show full text]