Microtubule Dynamics Regulates Mitochondrial Fission

Total Page:16

File Type:pdf, Size:1020Kb

Microtubule Dynamics Regulates Mitochondrial Fission bioRxiv preprint doi: https://doi.org/10.1101/178913; this version posted January 20, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Microtubule dynamics regulates mitochondrial fission 2 Kritika Mehta1, Manjyot Kaur Chug1, Siddharth Jhunjhunwala1 and Vaishnavi 3 Ananthanarayanan1,* 4 1 Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 5 560012 6 * To whom correspondence may be addressed. Email: [email protected] 7 8 Abstract 9 Mitochondria are organised as tubular networks in the cell and undergo fission and fusion. 10 Equilibrium between fission and fusion events is necessary to maintain normal 11 mitochondrial function. While several of the molecular players involved in mediating the 12 dynamics of mitochondria have been identified, the precise cellular cues that initiate fission 13 or fusion remain largely unknown. In fission yeast, as in mammalian cells, mitochondrial 14 positioning and partitioning are microtubule-mediated. In interphase, fission yeast 15 mitochondria associate with microtubule bundles that are aligned along the long axis of the 16 cell. Here, we perturbed microtubule dynamics via kinesin-like proteins to produce cells with 17 long and short microtubules and observed that cells with long microtubules exhibited long, 18 but fewer mitochondria, whereas cells with short microtubules exhibited short, but several 19 mitochondria. We quantified that mitochondrial fission frequency correlated inversely with 20 microtubule length. In agreement with these results, upon onset of mitosis wherein 21 interphase microtubules assemble to form the spindle within the nucleus, we measured 22 increased fission of mitochondria in the absence of interphase microtubules. We confirmed 23 that partitioning of mitochondria at mitosis follows a stochastic, independent segregation 24 mechanism and that the increase in mitochondrial fission prior to cell division therefore 25 likely serves to increase the likelihood of equal partitioning of mitochondria between the two 26 future daughter cells. Further, association of mitochondria with microtubules inhibited 27 activity of the dynamin GTPase-related fission protein Dnm1, such that cells overexpressing 28 Dnm1 but containing long microtubules were protected from increased fission. Thus, we 29 demonstrate a general mechanism by which mitochondrial dynamics is dictated by the 30 dynamics of the microtubule cytoskeleton. bioRxiv preprint doi: https://doi.org/10.1101/178913; this version posted January 20, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 31 Introduction 32 Mitochondria are double-membraned organelles whose functions range from ATP 33 production to calcium signalling. Inside cells, mitochondrial form is dynamic and transitions 34 from tubular networks to fragmented entities depending on the activity of the mitochondrial 35 fission and fusion machinery. The major mitochondrial fission protein is dynamin-related 36 Drp1 GTPase1 (Dnm1 in yeast2,3). Multimeric Drp1 rings assemble around the mitochondrial 37 membrane and utilize the energy from GTP hydrolysis to catalyse the constriction and 38 fission of mitochondria4,5. Fusion of mitochondria requires two sets of proteins namely 39 Opa16 for the inner membrane (Mgm1 in yeast7) and Mfn1/28 for the outer membrane (Fzo1 40 in yeast9). 41 The requirement for dynamic mitochondria has been attributed to two primary 42 reasons, namely quality control and energy production10. Larger/longer mitochondria 43 resulting from fusion are hypothesized to be capable of producing more energy whereas 44 shorter/smaller mitochondria formed following a fission event are likely to undergo 45 mitophagy11. In the case of the latter, fission could serve as an efficient mechanism to 46 segregate and eliminate damaged mitochondria. Dysfunction of fission and fusion 47 processes has been implicated in neurodegeneration12,13, cancer14 and cardiomyopathies15, 48 amongst a host of metabolic disorders. 49 In mammalian cells, mitochondria are transported along microtubule tracks by the 50 activity of motor proteins kinesin-1 and dynein16. Kinesin-1 and dynein bind to the outer 51 membrane of mitochondria via the Miro/Milton complex17–19 and move mitochondria in the 52 anterograde and retrograde direction respectively. In neuronal cells, increase in calcium 53 levels results in the attachment of kinesin-1 motor to mitochondria via syntaphilin, which 54 inhibits the ATPase activity of kinesin and hence leads to stationary mitochondria on 55 neuronal microtubules20. About 70% of mitochondria in neuronal cells have been visualized 56 in this stationary state21. 57 In contrast to mammalian cells, mitochondria in fission yeast do not undergo motor- 58 driven movement along microtubules. However, the protein Mmb1 has been identified to 59 associate mitochondria with dynamic microtubules22. Upon microtubule depolymerisation 60 using methyl benzimidazol-2-yl-carbamate (MBC) or deletion of Mmb1, mitochondria have 61 been observed to undergo fragmentation3,22,23. Conversely, in cells overexpressing Mmb1, 62 mitochondria seemingly undergo reduced fission and exhibit long mitochondria22. bioRxiv preprint doi: https://doi.org/10.1101/178913; this version posted January 20, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 63 Cells employ several strategies to reduce partitioning error of organelles during 64 mitosis, such as ordered segregation mediated by spindle poles, or increasing copy 65 numbers of organelles prior to cell division24. In the latter, homogeneous distribution of the 66 multiple organelle copies serves to increase the probability of equal partitioning 67 stochastically. Mitochondrial inheritance has been observed to be microtubule-dependent 68 in mammalian cells25. In fission yeast, mitochondrial partitioning during cell division has 69 been proposed to be mediated by attachment of mitochondria with spindle poles26–28, 70 similar to the segregation of endosomes, lysosomes and Golgi bodies in mammalian 71 cells29,30 . However, only a portion of the observed mitochondria associated with the spindle 72 poles26. Additionally, increased mitochondrial fragmentation upon the onset of mitosis has 73 also been observed3, perhaps indicating a stochastic mechanism for mitochondrial 74 partitioning. 75 While the molecular players that effect fission and fusion have been identified in 76 several systems, the cellular signals that regulate these events are largely elusive. Here, 77 we demonstrate that mitochondria piggyback on dynamic microtubules to selectively 78 undergo fission while microtubules depolymerise. Reorganisation of interphase 79 microtubules into the nucleus when cells prepare for division also provided the cue for 80 increased mitochondrial fission. We quantified the number of mitochondria in mother cells 81 immediately after formation of mitotic spindle within the nucleus and the number of 82 mitochondria in the resulting daughter cells, and confirmed that the partitioning was indeed 83 a good fit to a binomial distribution, indicating that the mitochondria were stochastically 84 segregated into the two daughter cells. We observed that the fission protein Dnm1 was 85 excluded from regions of microtubules localisation and that the presence of long and 86 stabilised microtubules was inhibitory to uncontrolled fission even when Dnm1 was 87 overexpressed. bioRxiv preprint doi: https://doi.org/10.1101/178913; this version posted January 20, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 88 Results 89 1. Perturbation of microtubule dynamics leads to changes in mitochondrial 90 numbers 91 We observed that mitochondria underwent increased fission in the absence of 92 microtubules, but did not observe their subsequent aggregation as reported previously 93 (Extended Data Fig. 1a-c). Instead, the fragmented mitochondria were mobile and 94 frequently in close contact with each other (Extended Data Fig. 1b, c, Supplementary Video 95 S1). Since the depolymerisation of microtubules had a direct effect on mitochondrial fission, 96 we set out to study the consequence of modification of microtubule dynamics on 97 mitochondrial dynamics. To this end, we visualised the mitochondria and microtubules of 98 fission yeast strains carrying deletions of antagonistic kinesin-like proteins, Klp5/Klp6 and 99 Klp4 in high-resolution deconvolved images (Fig. 1a, Supplementary Videos S2, S3 and 100 S4). 101 102 Figure 1. Mitochondrial number is inversely proportional to microtubule 103 length. a, Maximum intensity projections of deconvolved Z-stack images of microtubules bioRxiv preprint doi: https://doi.org/10.1101/178913; this version posted January 20, 2018. The copyright holder for this preprint (which was not certified by peer review) is the
Recommended publications
  • Dynamin Functions and Ligands: Classical Mechanisms Behind
    1521-0111/91/2/123–134$25.00 http://dx.doi.org/10.1124/mol.116.105064 MOLECULAR PHARMACOLOGY Mol Pharmacol 91:123–134, February 2017 Copyright ª 2017 by The American Society for Pharmacology and Experimental Therapeutics MINIREVIEW Dynamin Functions and Ligands: Classical Mechanisms Behind Mahaveer Singh, Hemant R. Jadhav, and Tanya Bhatt Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Pilani Campus, Rajasthan, India Received May 5, 2016; accepted November 17, 2016 Downloaded from ABSTRACT Dynamin is a GTPase that plays a vital role in clathrin-dependent pathophysiology of various disorders, such as Alzheimer’s disease, endocytosis and other vesicular trafficking processes by acting Parkinson’s disease, Huntington’s disease, Charcot-Marie-Tooth as a pair of molecular scissors for newly formed vesicles originating disease, heart failure, schizophrenia, epilepsy, cancer, dominant ’ from the plasma membrane. Dynamins and related proteins are optic atrophy, osteoporosis, and Down s syndrome. This review is molpharm.aspetjournals.org important components for the cleavage of clathrin-coated vesicles, an attempt to illustrate the dynamin-related mechanisms involved phagosomes, and mitochondria. These proteins help in organelle in the above-mentioned disorders and to help medicinal chemists division, viral resistance, and mitochondrial fusion/fission. Dys- to design novel dynamin ligands, which could be useful in the function and mutations in dynamin have been implicated in the treatment of dynamin-related disorders. Introduction GTP hydrolysis–dependent conformational change of GTPase dynamin assists in membrane fission, leading to the generation Dynamins were originally discovered in the brain and identi- of endocytic vesicles (Praefcke and McMahon, 2004; Ferguson at ASPET Journals on September 23, 2021 fied as microtubule binding partners.
    [Show full text]
  • How Microtubules Control Focal Adhesion Dynamics
    JCB: Review Targeting and transport: How microtubules control focal adhesion dynamics Samantha Stehbens and Torsten Wittmann Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143 Directional cell migration requires force generation that of integrin-mediated, nascent adhesions near the cell’s leading relies on the coordinated remodeling of interactions with edge, which either rapidly turn over or connect to the actin cytoskeleton (Parsons et al., 2010). Actomyosin-mediated the extracellular matrix (ECM), which is mediated by pulling forces allow a subset of these nascent FAs to grow integrin-based focal adhesions (FAs). Normal FA turn- and mature, and provide forward traction forces. However, in over requires dynamic microtubules, and three members order for cells to productively move forward, FAs also have to of the diverse group of microtubule plus-end-tracking release and disassemble underneath the cell body and in the proteins are principally involved in mediating micro- rear of the cell. Spatial and temporal control of turnover of tubule interactions with FAs. Microtubules also alter these mature FAs is important, as they provide a counterbalance to forward traction forces, and regulated FA disassembly is the assembly state of FAs by modulating Rho GTPase required for forward translocation of the cell body. An important signaling, and recent evidence suggests that microtubule- question that we are only beginning to understand is how FA mediated clathrin-dependent and -independent endo­ turnover is spatially and temporally regulated to allow cells cytosis regulates FA dynamics. In addition, FA-associated to appropriately respond to extracellular signals, allowing for microtubules may provide a polarized microtubule track for coordinated and productive movement.
    [Show full text]
  • Dynamin Autonomously Regulates Podocyte Focal Adhesion Maturation
    BRIEF COMMUNICATION www.jasn.org Dynamin Autonomously Regulates Podocyte Focal Adhesion Maturation † † † Changkyu Gu,* Ha Won Lee, Garrett Garborcauskas,* Jochen Reiser, Vineet Gupta, and Sanja Sever* *Department of Medicine, Harvard Medical School, Division of Nephrology, Massachusetts General Hospital, Charlestown, Massachusetts; and †Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois ABSTRACT Rho family GTPases, the prototypical members of which are Cdc42, Rac1, and RhoA, in podocytes via a parallel signaling path- are molecular switches best known for regulating the actin cytoskeleton. In addition way to RhoA. to the canonical small GTPases, the large GTPase dynamin has been implicated in To induce actin polymerization, dy- regulating the actin cytoskeleton via direct dynamin-actin interactions. The physio- naminmustformDynOLIGO.12 The logic role of dynamin in regulating the actin cytoskeleton has been linked to the availability of Bis-T-23 (Aberjona Labo- maintenance of the kidney filtration barrier. Additionally, the small molecule Bis-T- ratories, Inc., Woburn, MA) allowed us 23, which promotes actin–dependent dynamin oligomerization and thus, increases to examine whether DynOLIGO–induced actin polymerization, improved renal health in diverse models of CKD, implicating actin polymerization affects the forma- dynamin as a potential therapeutic target for the treatment of CKD. Here, we show tion of FAs and stress fibers in podocytes. that treating cultured mouse podocytes with Bis-T-23 promoted stress fiber forma- The effect of Bis-T-23 on the actin cyto- tion and focal adhesion maturation in a dynamin-dependent manner. Furthermore, skeleton in mouse podocytes (Figure 1A) Bis-T-23 induced the formation of focal adhesions and stress fibers in cells in which was examined using a fully automated the RhoA signaling pathway was downregulated by multiple experimental ap- high–throughput assay that measures proaches.
    [Show full text]
  • Myosin 1E Interacts with Synaptojanin-1 and Dynamin and Is Involved in Endocytosis
    FEBS Letters 581 (2007) 644–650 Myosin 1E interacts with synaptojanin-1 and dynamin and is involved in endocytosis Mira Krendela,*, Emily K. Osterweila, Mark S. Moosekera,b,c a Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA b Department of Cell Biology, Yale University, New Haven, CT 06511, USA c Department of Pathology, Yale University, New Haven, CT 06511, USA Received 21 November 2006; revised 8 January 2007; accepted 11 January 2007 Available online 18 January 2007 Edited by Felix Wieland Myo1 isoforms (Myo3p and Myo5p) leads to defects in endo- Abstract Myosin 1E is one of two ‘‘long-tailed’’ human Class I myosins that contain an SH3 domain within the tail region. SH3 cytosis [3].InAcanthamoeba, various Myo1 isoforms are domains of yeast and amoeboid myosins I interact with activa- found in association with intracellular vesicles [10].InDictyos- tors of the Arp2/3 complex, an important regulator of actin poly- telium, long-tailed Myo1s (myo B, C, and D) are required for merization. No binding partners for the SH3 domains of myosins fluid-phase endocytosis [11]. I have been identified in higher eukaryotes. In the current study, Myo1e, the mouse homolog of the human long-tailed myo- we show that two proteins with prominent functions in endocyto- sin, Myo1E (formerly referred to as Myo1C under the old myo- sis, synaptojanin-1 and dynamin, bind to the SH3 domain of sin nomenclature [12]), has been previously localized to human Myo1E. Myosin 1E co-localizes with clathrin- and dyn- phagocytic structures [13]. In this study, we report that Myo1E amin-containing puncta at the plasma membrane and this co- binds to two proline-rich proteins, synaptojanin-1 and dyn- localization requires an intact SH3 domain.
    [Show full text]
  • Drebrin Restricts Rotavirus Entry by Inhibiting Dynamin-Mediated Endocytosis
    Drebrin restricts rotavirus entry by inhibiting dynamin-mediated endocytosis Bin Lia,b,c,d,1, Siyuan Dinga,b,c,1,2, Ningguo Fenga,b,c, Nancie Mooneya,e, Yaw Shin Ooia, Lili Renf, Jonathan Diepa, Marcus R. Kellya,e, Linda L. Yasukawaa,b,c, John T. Pattong, Hiroyuki Yamazakih, Tomoaki Shiraoh, Peter K. Jacksona,e, and Harry B. Greenberga,b,c,2 aDepartment of Microbiology and Immunology, Stanford University, Stanford, CA 94305; bDepartment of Medicine, Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA 94305; cPalo Alto Veterans Institute of Research, VA Palo Alto Health Care System, Palo Alto, CA 94304; dInstitute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; eBaxter Laboratory for Stem Cell Biology, Stanford University, Stanford, CA 94305; fSchool of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China; gDepartment of Veterinary Medicine, University of Maryland, College Park, MD 20740; and hDepartment of Neurobiology and Behavior, Gunma University, Maebashi, Gunma 371-8511, Japan Edited by Peter Palese, Icahn School of Medicine at Mount Sinai, New York, New York, and approved March 28, 2017 (received for review November 22, 2016) Despite the wide administration of several effective vaccines, cells relies primarily on the viral outer capsid spike protein VP4 (8, rotavirus (RV) remains the single most important etiological agent 9). After VP4 binds to its cognate receptors on cellular surfaces, it of severe diarrhea in infants and young children worldwide, with undergoes a marked conformational change that allows the RV an annual mortality of over 200,000 people. RV attachment and particles to be taken up by the host cells via endocytosis.
    [Show full text]
  • In Vivo Analysis of Formation and Endocytosis of the Wnt/B-Catenin Signaling Complex in Zebrafish Embryos
    ß 2015. Published by The Company of Biologists Ltd | Journal of Cell Science (2015) 000, 000–000 doi:10.1242/jcs.165704 CORRECTION In vivo analysis of formation and endocytosis of the Wnt/b-Catenin signaling complex in zebrafish embryos Anja I. H. Hagemann, Jennifer Kurz, Silke Kauffeld, Qing Chen, Patrick M. Reeves, Sabrina Weber, Simone Schindler, Gary Davidson, Tomas Kirchhausen and Steffen Scholpp There was an error published in J. Cell Sci. 127, 3970-3982. The first line of the Abstract should read as follows: After activation by Wnt/b-Catenin ligands, a multi-protein complex assembles at the plasma membrane as membrane-bound receptors and intracellular signal transducers are clustered into the so-called Lrp6-signalosome. We apologise to the readers for any confusion that this error might have caused. 1 Journal of Cell Science JCS165704.3d 10/11/14 12:36:43 The Charlesworth Group, Wakefield +44(0)1924 369598 - Rev 9.0.225/W (Oct 13 2006) ß 2014. Published by The Company of Biologists Ltd | Journal of Cell Science (2014) 127, 3970–3982 doi:10.1242/jcs.148767 RESEARCH ARTICLE In vivo analysis of formation and endocytosis of the Wnt/b-Catenin signaling complex in zebrafish embryos Anja I. H. Hagemann1, Jennifer Kurz1, Silke Kauffeld1, Qing Chen1, Patrick M. Reeves2, Sabrina Weber1, Simone Schindler1,*, Gary Davidson1, Tomas Kirchhausen2 and Steffen Scholpp1,` ABSTRACT lipoprotein receptor-related proteins 5 and 6 (Lrp5 and Lrp6; hereafter referred to as Lrp5/6) cluster together. This ligand-receptor After activation by Wnt/b-Catenin ligands, a multi-protein complex complex recruits cytoplasmic proteins such as Dvl and Axin1 to the assembles at the clustering membrane-bound receptors and membrane (Cong et al., 2004).
    [Show full text]
  • Regulation of Wnt Signaling by Protein-Protein Interaction and Post-Translational Modifications
    EXPERIMENTAL and MOLECULAR MEDICINE, Vol. 38, No. 1, 1-10, February 2006 Regulation of Wnt signaling by protein-protein interaction and post-translational modifications Akira Kikuchi1,2, Shosei Kishida1 rich secreted ligands that control development in and Hideki Yamamoto1 organisms ranging from nematode worms to mammals (Wodarz and Nusse, 1998). The intra- 1Department of Biochemistry cellular signaling pathway of Wnt is also conserved evolutionally and regulates cellular proliferation, Graduate School of Biomedical Sciences morphology, motility, fate, axis formation, and organ Hiroshima University, 1-2-3 Kasumi, Minami-ku development (Wodarz and Nusse, 1998; Polakis, Hiroshima 734-8551, Japan 2000). Wnt regulates at least three distinct path- 2Corresponding author: Tel, 81-82-257-5130; ways: the canonical -catenin pathway, planar cell Fax, 81-82-257-5134; E-mail, [email protected] 2+ polarity pathway, and Ca pathway (Veeman et al., 2003; Nelson and Nusse, 2004) (Figure 1). Among Abbreviations: APC, adenomatous polyposis coli gene product; CaMK, Ca2+/calmodulin-dependent protein kinase; CBP, CREB- these intracellular cascades, the canonical -catenin pathway has been most extensively studied. It has binding protein; CKI , casein kinase I ; Gs, the oligomeric GTP- been shown that abnormalities of this pathway lead binding protein; GSK-3 , glycogen synthase kinase-3 ; HMG, high to several human diseases, including tumor for- mobility group; Lef, lymphoid enhancer factor; LRP5/6, lipoprotein mation and bone abnormalities. receptor-related protein 5/6; NLK, NEMO-like kinase; PIAS, protein According to the most widely accepted current inhibitor of activated STAT; PKA, cAMP-dependent protein kinase; model of the -catenin pathway, when Wnt does not PKC, protein kinase C; SUMO, small ubiquitin-related modifier; Tcf, act on the cells, casein kinase I (CKI ) and T-cell factor glycogen synthase kinase-3 (GSK-3 ) phospho- rylate -catenin in the Axin complex (Ikeda et al., 1998; Kikuchi, 1999; Liu et al., 2002) (Figure 2).
    [Show full text]
  • Differential Curvature Sensing and Generating Activities of Dynamin Isoforms Provide Opportunities for Tissue-Specific Regulation
    Differential curvature sensing and generating activities of dynamin isoforms provide opportunities for tissue-specific regulation Ya-Wen Liua,1, Sylvia Neumanna,1, Rajesh Ramachandrana,2, Shawn M. Fergusonb, Thomas J. Pucadyila,3, and Sandra L. Schmida,4 aDepartment of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037; and bDepartment of Cell Biology, Yale University, New Haven, CT 06520 Edited by Ari Helenius, Swiss Federal Institute of Technology, Zurich, Switzerland, and approved April 29, 2011 (received for review February 17, 2011) Dynamin 1 (Dyn1) and Dyn2 are neuronal and ubiquitously expressed Dynamin consists of five functionally defined domains (1, 7, 12), isoforms, respectively, of the multidomain GTPase required for three of which are conserved among all dynamin-related family clathrin-mediated endocytosis (CME). Although they are 79% iden- members. These include the N-terminal G domain, which medi- tical, Dyn1 and Dyn2 are not fully functionally redundant. Through ates GTP hydrolysis, and a middle domain and GTPase effector direct measurements of basal and assembly-stimulated GTPase domain (GED) that together form an α-helical stalk involved in activities, membrane binding, self-assembly, and membrane fission quaternary structure and self-assembly. Two domains that are on planar and curved templates, we have shown that Dyn1 is an specific to classical dynamins are the pleckstrin homology (PH) fi ef cient curvature generator, whereas Dyn2 is primarily a curva- domain, which mediates lipid interactions, and the C-terminal fi ture sensor. Using Dyn1/Dyn2 chimeras, we identi ed the lipid- Pro/Arg domain (PRD), which mediates interactions with dyna- binding pleckstrin homology domain as being responsible for the min’s SH3 domain-containing partners.
    [Show full text]
  • Interaction of the Wiskott–Aldrich Syndrome Protein with Sorting Nexin 9 Is Required for CD28 Endocytosis and Cosignaling in T Cells
    Interaction of the Wiskott–Aldrich syndrome protein with sorting nexin 9 is required for CD28 endocytosis and cosignaling in T cells Karen Badour*, Mary K. H. McGavin*, Jinyi Zhang*, Spencer Freeman*, Claudia Vieira*, Dominik Filipp†, Michael Julius†, Gordon B. Mills‡, and Katherine A. Siminovitch*§ *Departments of Medicine, Immunology, Medical Genetics, and Microbiology, University of Toronto, Toronto General Hospital and Samuel Lunenfeld Research Institutes, Mount Sinai Hospital, Toronto, ON, Canada M5G 1X5; †Department of Immunology, University of Toronto, Sunnybrook Research Institute, Toronto, ON, Canada M4N 3M5; and ‡Department of Molecular Therapeutics, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030 Communicated by Louis Siminovitch, Mount Sinai Hospital, Toronto, ON, Canada, December 1, 2006 (received for review October 4, 2006) The Wiskott–Aldrich syndrome protein (WASp) plays a major role coupling WASp to CD2 receptors and actin polymerization at the in coupling T cell antigen receptor (TCR) stimulation to induction of immune synapse (5). WASp effects on T cell behaviors thus are actin cytoskeletal changes required for T cell activation. Here, we mediated via interactions with multiple upstream binding partners report that WASp inducibly binds the sorting nexin 9 (SNX9) in T that activate and redistribute WASp so as to transduce TCR cells and that WASp, SNX9, p85, and CD28 colocalize within stimulatory signals to actin cytoskeletal rearrangement. clathrin-containing endocytic vesicles after TCR/CD28 costimula- WASp deficiency is also associated with impaired T cell response tion. SNX9, implicated in clathrin-mediated endocytosis, binds to TCR/CD28 costimulation (3). CD28 costimulatory signals, trig- WASp via its SH3 domain and uses its PX domain to interact gered by binding to B7 ligand on antigen-presenting cells, are key with the phosphoinositol 3-kinase regulatory subunit p85 and to the activation of resting naı¨ve T cells, enabling sustained acti- product, phosphoinositol (3,4,5)P3.
    [Show full text]
  • Dynamin 1- and 3-Mediated Endocytosis Is Essential for the Development of a Large Central Synapse in Vivo
    The Journal of Neuroscience, June 1, 2016 • 36(22):6097–6115 • 6097 Development/Plasticity/Repair Dynamin 1- and 3-Mediated Endocytosis Is Essential for the Development of a Large Central Synapse In Vivo Fan Fan, X Laura Funk, and XXuelin Lou Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, Wisconsin 53706 Dynamin is a large GTPase crucial for endocytosis and sustained neurotransmission, but its role in synapse development in the mam- malian brain has received little attention. We addressed this question using the calyx of Held (CH), a large nerve terminal in the auditory brainstem in mice. Tissue-specific ablation of different dynamin isoforms bypasses the early lethality of conventional knock-outs and allows us to examine CH development in a native brain circuit. Individual gene deletion of dynamin 1, a primary dynamin isoform in neurons, as well as dynamin 2 and 3, did not affect CH development. However, combined tissue-specific knock-out of both dynamin 1 and 3 (cDKO) severely impaired CH formation and growth during the first postnatal week, and the phenotypes were exacerbated by further additiveconditionalknock-outofdynamin2.ThedevelopmentaldefectofCHincDKOfirstbecameevidentonpostnatalday3(P3),atime point when CH forms and grows abruptly. This is followed by a progressive loss of postsynaptic neurons and increased glial infiltration late in development. However, early CH synaptogenesis before protocalyx formation was not altered in cDKO. Functional maturation of synaptic transmission in the medial nucleus of the trapezoid body in cDKO was impeded during development and accompanied by an increase in the membrane excitability of medial nucleus of the trapezoid body neurons.
    [Show full text]
  • Muscle-Specific Mis-Splicing and Heart Disease Exemplified by RBM20
    G C A T T A C G G C A T genes Review Muscle-Specific Mis-Splicing and Heart Disease Exemplified by RBM20 Maimaiti Rexiati 1,2 ID , Mingming Sun 1,2 and Wei Guo 1,2,* 1 Animal Science, University of Wyoming, Laramie, WY 82071, USA; [email protected] (M.R.); [email protected] (M.S.) 2 Center for Cardiovascular Research and integrative medicine, University of Wyoming, Laramie, WY 82071, USA * Correspondence: [email protected]; Tel.: +1-307-766-3429 Received: 20 November 2017; Accepted: 27 December 2017; Published: 5 January 2018 Abstract: Alternative splicing is an essential post-transcriptional process to generate multiple functional RNAs or proteins from a single transcript. Progress in RNA biology has led to a better understanding of muscle-specific RNA splicing in heart disease. The recent discovery of the muscle-specific splicing factor RNA-binding motif 20 (RBM20) not only provided great insights into the general alternative splicing mechanism but also demonstrated molecular mechanism of how this splicing factor is associated with dilated cardiomyopathy. Here, we review our current knowledge of muscle-specific splicing factors and heart disease, with an emphasis on RBM20 and its targets, RBM20-dependent alternative splicing mechanism, RBM20 disease origin in induced Pluripotent Stem Cells (iPSCs), and RBM20 mutations in dilated cardiomyopathy. In the end, we will discuss the multifunctional role of RBM20 and manipulation of RBM20 as a potential therapeutic target for heart disease. Keywords: alternative splicing; muscle-specific splicing factor; heart disease; RNA-binding motif 20; titin 1. Introduction Alternative splicing is a molecular process by which introns are removed from pre-mRNA, while exons are linked together to encode for different protein products in various tissues [1].
    [Show full text]
  • 2. Bio2-Cytoskelette-2-Myosin
    Proteínes Moteur : la Myosine Structure des divers Types de La proteolyse de la Myosine II révèle Myosine les differents domaines de structure Figure 18-20. Structure of various myosin molecules. (a) The three major myosin proteins are organized into head, neck, and tail domains, which carry out different functions. The head domain binds actin and has ATPase activity. The light chains, bound to the neck domain, regulate the head domain. The tail domain dictates the specific role of each myosin in the cell. Note that myosin II, the form that functions in muscle contraction, is a dimer with a long rigid coiled-coil tail. (b) (b) Proteolysis of myosin II reveals its domain structure. For example, most proteases cleave myosin II at the base of the neck domain to generate a paired-head and neck fragment, called heavy meromyosin (HMM), and a rodlike tail fragment, called light meromyosin (LMM). Further digestion of HMM with papain splits off the neck region (S2 fragment) and leads to separation of the two head domains into single myosin head fragments (S1 fragments). (Fuente: Lodish et al., 2000) Microvillosités MYOSINES Figure 16-77. Freeze-etch electron micrograph of an intestinal epithelial MICROViLLOSITES cell, showing the terminal web beneath the apical plasma membrane. Bundles of actin filaments forming the core of microvilli extend into the terminal INTESTINALES web, where they are linked together by a complex set of cytoskeletal proteins that includes spectrin and myosin-II. Beneath the terminal web is a layer of intermediate filaments. (From N. Hirokawa and J.E. Heuser, J. Cell Biol.
    [Show full text]