Myosin II and Dynamin Control Actin Rings to Mediate Fission During Activity-Dependent Bulk Endocytosis

Total Page:16

File Type:pdf, Size:1020Kb

Myosin II and Dynamin Control Actin Rings to Mediate Fission During Activity-Dependent Bulk Endocytosis The Journal of Neuroscience, June 10, 2015 • 35(23):8687–8688 • 8687 Journal Club Editor’s Note: These short, critical reviews of recent papers in the Journal, written exclusively by graduate students or postdoctoral fellows, are intended to summarize the important findings of the paper and provide additional insight and commentary. For more information on the format and purpose of the Journal Club, please see http://www.jneurosci.org/misc/ifa_features.shtml. Myosin II and Dynamin Control Actin Rings to Mediate Fission during Activity-Dependent Bulk Endocytosis Alexandros C. Kokotos and Darryl W. Low Centre for Integrative Physiology, University of Edinburgh, EH8 9XD, Scotland, United Kingdom Review of Gormal et al. Neuronal communication relies on tein syndapin I) and its GTPase activity that bulk endosomes surrounded by an neurotransmitter-filled synaptic vesicles facilitated bulk endosome formation and actin ring recovered their fluorescence (SVs) fusing with the presynaptic scission, respectively (Clayton et al., 2009). over time, indicating a connection to the plasma membrane during neuronal ac- However, these roles have recently been plasma membrane. Endosomes lacking tivity. After exocytosis, SVs must be re- questioned in experiments with dynamin I, such a ring failed to recover, indicating trieved locally for a continual supply of III double knock-out neurons (Wu et al., that fission was complete and they could SVs and neurotransmission to be main- 2014). Actin networks and PI-3 kinase, no longer internalize new dextran mole- tained. Clathrin-mediated endocytosis which phosphorylates phosphatidylinositol cules from the extracellular medium. (CME) is the dominant mode of SV re- 4,5-bisphosphate (PIP2), have also been Colocalization of LifeAct and glycosyl- trieval during low-intensity stimulation suggested to be essential for triggering phosphatidylinositol, a plasma membrane and is the best characterized form of en- ADBE (Holt et al., 2003). marker, provided further evidence that in- docytosis in many cell types and systems. Until recently, it was unknown whether vaginating bulk endosomes were still at- During high-intensity stimulation, a clathrin- ADBE was a neuron-specific pathway. In a tached to the plasma membrane. Further independent SV retrieval pathway named recent issue of The Journal of Neuroscience, studies on the nature of the actin rings activity-dependent bulk endocytosis (ADBE) Gormal and colleagues (2015) demon- showed that cortical actin stress filaments is also triggered (Clayton et al., 2008). The strated that ADBE is observed in bovine ad- partially depolymerized before ring forma- molecular mechanisms of ADBE are not renal chromaffin cells, and they provided tion and the rings formed exhibited a con- well defined. In ADBE, large invaginations insights about the molecular mechanisms of tractile nature. A probe that recognizes PIP form from the plasma membrane and 2 ADBE triggering. In this study, the authors indicated that an array of PIP2 microdo- quickly undergo scission to form bulk endo- used the fluid phase uptake of high- mains formed before the actin rings, sug- somes. Subsequently, new SVs are gener- molecular-weight fluorescent dextrans to gesting these microdomains may function ated from these endosomes. The large specifically track ADBE. This allows specific as hotspots for actin nucleation. Although GTPase dynamin I was initially proposed to labeling of endocytosis modes that internal- clustering of PIP , which has an established be central to ADBE triggering, because its 2 ize large amounts of plasma membrane, be- role in CME, was shown to precede actin activity-dependent dephosphorylation by cause the relatively large size of these ring formation, its potential mechanistic calcineurin (which allows the required in- polysaccharides makes internalization via role was not further investigated. teraction with the membrane-bending pro- large endosomes much more favorable The contractile ability of the actin rings compared with smaller vesicles. led the authors to probe the involvement Received March 26, 2015; revised April 24, 2015; accepted April 29, 2015. A.C.K. is supported by the Marie-Curie Initial Training Network “Nplast” Using this dextran assay, Gormal et al. of molecular motors in providing the con- award (project number 289581) and D.W.L. by a CIVIS Prize Studentship (2015) demonstrated that primary chro- traction force. Pharmacological inhibi- fromtheUniversityofEdinburgh.WethankProf.M.A.Cousinforhissuper- maffin cells internalized dextran after se- tion of myosin II blocked the formation of vision and stimulating discussion on the ADBE molecular mechanism and cretion was stimulated with nicotine or both bulk endosomes and actin rings. The physiology, and Dr. J.R. Marland for his helpful discussion and critical com- 2ϩ ments on the manuscript. Ba . The bulk endosomes formed had a few rings which did form did not exhibit The authors declare no competing financial interests. diameter larger than 1 ␮m and labeling the contractile ability needed to facilitate Correspondence should be addressed to Alexandros C. Kokotos, with LifeAct, an actin-binding peptide, fission. Similarly, the few bulk endosomes Centre for Integrative Physiology, Hugh Robson Building, 15 George showed that the endosomes were sur- formed were still connected to the plasma Square, University of Edinburgh, EH8 9XD, Scotland, U.K. E-mail: rounded by actin rings. Experiments us- membrane. The same phenotype was ob- [email protected]. DOI:10.1523/JNEUROSCI.1172-15.2015 ing dextrans and fluorescence recovery served when dynamin was inhibited using Copyright © 2015 the authors 0270-6474/15/358687-02$15.00/0 after photobleaching (FRAP) revealed either pharmacological or genetic appro- 8688 • J. Neurosci., June 10, 2015 • 35(23):8687–8688 Kokotos and Low • Journal Club aches. In summary, this study suggests a the endosomes differ in size by an order of to fully understand the molecular mechanism model of an acto-myosin II ring working in magnitude. Secondly, the timescale of endo- of ADBE. The study by Gormal et al. (2015) tandem to constrict and initiate the fission some fission is much slower, which allows highlights new avenues to explore. of bulk endosomes from the plasma mem- use of FRAP in this study. Furthermore, it is brane in ADBE. These rings are induced and unlikely that these endosomes generate new References contracted by myosin II and dynamin. granules after their fission from the plasma Boucrot E, Ferreira AP, Almeida-Souza L, Debard S, This proposed model for the molecu- membrane, since secretory granules are Vallis Y, Howard G, Bertot L, Sauvonnet N, Mc- lar mechanism of the constriction ring constantly generated from the trans-Golgi Mahon HT (2015) Endophilin marks and needs further clarification. Initial experi- network in chromaffin cells, whereas neuro- controls a clathrin-independent endocytic path- way. Nature 517:460–465. CrossRef Medline ments indicated that dextran-positive nal bulk endosomes produce new func- Chandrasekar I, Goeckeler ZM, Turney SG, Wang bulk endosomes appeared before the for- tional SVs locally. P, Wysolmerski RB, Adelstein RS, Bridgman mation of actin rings, which take part in Regardless of whether the endocytosis PC (2014) Nonmuscle myosin II is a critical fission. In later experiments, myosin II mode described by Gormal et al. (2015) is regulator of clathrin-mediated endocytosis. and dynamin inhibition prevented actin identical to neuronal ADBE, the findings Traffic 15:418–432. CrossRef Medline ring formation and dextran uptake. How shed new light on endocytic mechanisms. Clayton EL, Evans GJ, Cousin MA (2008) Bulk synaptic vesicle endocytosis is rapidly trig- then does ablation of the constricting ac- With new modes of endocytosis being re- gered during strong stimulation. J Neurosci tin ring result in no formation of bulk en- cently identified (Watanabe et al., 2013; 28:6627–6632. CrossRef Medline dosomes? One possibility is that dynamin Boucrot et al., 2015), it is becoming clear Clayton EL, Anggono V, Smillie KJ, Chau N, and myosin II also act in early steps of that some common mechanisms are con- Robinson PJ, Cousin MA (2009) The phospho- endocytosis to induce the invagination of served, especially with regards to scission dependent dynamin-syndapin interaction trig- bulk endosomes and then drive the actin of large invaginations from the plasma gers activity-dependent bulk endocytosis of ring formation to facilitate fission. In sup- membrane. An example is the role of dy- synaptic vesicles. J Neurosci 29:7706–7717. CrossRef Medline port, in CME either genetic ablation or namin. This study escapes the recent de- Gormal RS, Nguyen TH, Martin S, Papadopulos A, pharmacological inhibition of myosin II bate as to whether the GTPase activity of Meunier FA (2015) An acto-myosin II con- resulted in deficient clathrin-coated pit dynamin is required for scission during stricting ring initiates the fission of activity- (CCP) invagination (Chandrasekar et al., ADBE and provides an alternative view on dependent bulk endosomes in neurosecretory 2014). Similarly, dynamin is recruited to how dynamin may facilitate this process, cells. J Neurosci 35:1380–1389. CrossRef Medline nascent CCPs and overexpression of via an additional role in the formation and Gu C, Yaddanapudi S, Weins A, Osborn T, Reiser J, Pollak M, Hartwig J, Sever S (2010) Direct dominant-negative mutants as well as function of a constricting actin ring. The dynamin-actin interactions regulate the actin
Recommended publications
  • Dynamin Functions and Ligands: Classical Mechanisms Behind
    1521-0111/91/2/123–134$25.00 http://dx.doi.org/10.1124/mol.116.105064 MOLECULAR PHARMACOLOGY Mol Pharmacol 91:123–134, February 2017 Copyright ª 2017 by The American Society for Pharmacology and Experimental Therapeutics MINIREVIEW Dynamin Functions and Ligands: Classical Mechanisms Behind Mahaveer Singh, Hemant R. Jadhav, and Tanya Bhatt Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Pilani Campus, Rajasthan, India Received May 5, 2016; accepted November 17, 2016 Downloaded from ABSTRACT Dynamin is a GTPase that plays a vital role in clathrin-dependent pathophysiology of various disorders, such as Alzheimer’s disease, endocytosis and other vesicular trafficking processes by acting Parkinson’s disease, Huntington’s disease, Charcot-Marie-Tooth as a pair of molecular scissors for newly formed vesicles originating disease, heart failure, schizophrenia, epilepsy, cancer, dominant ’ from the plasma membrane. Dynamins and related proteins are optic atrophy, osteoporosis, and Down s syndrome. This review is molpharm.aspetjournals.org important components for the cleavage of clathrin-coated vesicles, an attempt to illustrate the dynamin-related mechanisms involved phagosomes, and mitochondria. These proteins help in organelle in the above-mentioned disorders and to help medicinal chemists division, viral resistance, and mitochondrial fusion/fission. Dys- to design novel dynamin ligands, which could be useful in the function and mutations in dynamin have been implicated in the treatment of dynamin-related disorders. Introduction GTP hydrolysis–dependent conformational change of GTPase dynamin assists in membrane fission, leading to the generation Dynamins were originally discovered in the brain and identi- of endocytic vesicles (Praefcke and McMahon, 2004; Ferguson at ASPET Journals on September 23, 2021 fied as microtubule binding partners.
    [Show full text]
  • The Wiskott-Aldrich Syndrome: the Actin Cytoskeleton and Immune Cell Function
    Disease Markers 29 (2010) 157–175 157 DOI 10.3233/DMA-2010-0735 IOS Press The Wiskott-Aldrich syndrome: The actin cytoskeleton and immune cell function Michael P. Blundella, Austen Wortha,b, Gerben Boumaa and Adrian J. Thrashera,b,∗ aMolecular Immunology Unit, UCL Institute of Child Health, London, UK bDepartment of Immunology, Great Ormond Street Hospital NHS Trust, Great Ormond Street, London, UK Abstract. Wiskott-Aldrich syndrome (WAS) is a rare X-linked recessive primary immunodeficiency characterised by immune dysregulation, microthrombocytopaenia, eczema and lymphoid malignancies. Mutations in the WAS gene can lead to distinct syndrome variations which largely, although not exclusively, depend upon the mutation. Premature termination and deletions abrogate Wiskott-Aldrich syndrome protein (WASp) expression and lead to severe disease (WAS). Missense mutations usually result in reduced protein expression and the phenotypically milder X-linked thrombocytopenia (XLT) or attenuated WAS [1–3]. More recently however novel activating mutations have been described that give rise to X-linked neutropenia (XLN), a third syndrome defined by neutropenia with variable myelodysplasia [4–6]. WASP is key in transducing signals from the cell surface to the actin cytoskeleton, and a lack of WASp results in cytoskeletal defects that compromise multiple aspects of normal cellular activity including proliferation, phagocytosis, immune synapse formation, adhesion and directed migration. Keywords: Wiskott-Aldrich syndrome, actin polymerization, lymphocytes,
    [Show full text]
  • How Microtubules Control Focal Adhesion Dynamics
    JCB: Review Targeting and transport: How microtubules control focal adhesion dynamics Samantha Stehbens and Torsten Wittmann Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143 Directional cell migration requires force generation that of integrin-mediated, nascent adhesions near the cell’s leading relies on the coordinated remodeling of interactions with edge, which either rapidly turn over or connect to the actin cytoskeleton (Parsons et al., 2010). Actomyosin-mediated the extracellular matrix (ECM), which is mediated by pulling forces allow a subset of these nascent FAs to grow integrin-based focal adhesions (FAs). Normal FA turn- and mature, and provide forward traction forces. However, in over requires dynamic microtubules, and three members order for cells to productively move forward, FAs also have to of the diverse group of microtubule plus-end-tracking release and disassemble underneath the cell body and in the proteins are principally involved in mediating micro- rear of the cell. Spatial and temporal control of turnover of tubule interactions with FAs. Microtubules also alter these mature FAs is important, as they provide a counterbalance to forward traction forces, and regulated FA disassembly is the assembly state of FAs by modulating Rho GTPase required for forward translocation of the cell body. An important signaling, and recent evidence suggests that microtubule- question that we are only beginning to understand is how FA mediated clathrin-dependent and -independent endo­ turnover is spatially and temporally regulated to allow cells cytosis regulates FA dynamics. In addition, FA-associated to appropriately respond to extracellular signals, allowing for microtubules may provide a polarized microtubule track for coordinated and productive movement.
    [Show full text]
  • Appropriate Roles of Cardiac Troponins in Evaluating Patients with Chest Pain
    J Am Board Fam Pract: first published as 10.3122/jabfm.12.3.214 on 1 May 1999. Downloaded from MEDICAL PRACTICE Appropriate Roles of Cardiac Troponins in Evaluating Patients With Chest Pain Matthew S. Rice, MD, CPT, Me, USA, and David C. MacDonald, DO, Me, USA Background: Diagnosis of acute myocardial infarction relies upon the clinical history, interpretation of the electrocardiogram, and measurement of serum levels of cardiac enzymes. Newer biochemical markers of myocardial injury, such as cardiac troponin I and cardiac troponin T, are now being used instead of or along with the standard markers, the MB isoenzyme of creatine kinase (CK-MB) and lactate dehydrogenase. Methods: We performed a MEDLINE literature search (1987 to 1997) using the key words "troponin I," "troponin T," and "acute myocardial infarction." We reviewed selected articles related to the diagnostic and prognostic usefulness of these cardiac markers in evaluating patients with suspected myocardial infarction. Results: We found that (1) troponin I is a better cardiac marker than CK-MB for myocardial infarction because it is equally sensitive yet more specific for myocardial injury; (2) troponin T is a relatively poorer cardiac marker than CK-MB because it is less sensitive and less specific for myocardial injury; and (3) both troponin I and troponin T may be used as independent prognosticators of future cardiac events. Conclusions: Troponin I is a sensitive and specific marker for myocardial injury and can be used to predict the likelihood of future cardiac events. It is not much more expensive to measure than CK-MB. Over­ all, troponin I is a better cardiac marker than CK-MB and should become the preferred cardiac enzyme when evaluating patients with suspected myocardial infarction.
    [Show full text]
  • Dynamin Autonomously Regulates Podocyte Focal Adhesion Maturation
    BRIEF COMMUNICATION www.jasn.org Dynamin Autonomously Regulates Podocyte Focal Adhesion Maturation † † † Changkyu Gu,* Ha Won Lee, Garrett Garborcauskas,* Jochen Reiser, Vineet Gupta, and Sanja Sever* *Department of Medicine, Harvard Medical School, Division of Nephrology, Massachusetts General Hospital, Charlestown, Massachusetts; and †Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois ABSTRACT Rho family GTPases, the prototypical members of which are Cdc42, Rac1, and RhoA, in podocytes via a parallel signaling path- are molecular switches best known for regulating the actin cytoskeleton. In addition way to RhoA. to the canonical small GTPases, the large GTPase dynamin has been implicated in To induce actin polymerization, dy- regulating the actin cytoskeleton via direct dynamin-actin interactions. The physio- naminmustformDynOLIGO.12 The logic role of dynamin in regulating the actin cytoskeleton has been linked to the availability of Bis-T-23 (Aberjona Labo- maintenance of the kidney filtration barrier. Additionally, the small molecule Bis-T- ratories, Inc., Woburn, MA) allowed us 23, which promotes actin–dependent dynamin oligomerization and thus, increases to examine whether DynOLIGO–induced actin polymerization, improved renal health in diverse models of CKD, implicating actin polymerization affects the forma- dynamin as a potential therapeutic target for the treatment of CKD. Here, we show tion of FAs and stress fibers in podocytes. that treating cultured mouse podocytes with Bis-T-23 promoted stress fiber forma- The effect of Bis-T-23 on the actin cyto- tion and focal adhesion maturation in a dynamin-dependent manner. Furthermore, skeleton in mouse podocytes (Figure 1A) Bis-T-23 induced the formation of focal adhesions and stress fibers in cells in which was examined using a fully automated the RhoA signaling pathway was downregulated by multiple experimental ap- high–throughput assay that measures proaches.
    [Show full text]
  • Myosin-Driven Actin-Microtubule Networks Exhibit Self-Organized Contractile Dynamics Gloria Lee1, Michael J
    bioRxiv preprint doi: https://doi.org/10.1101/2020.06.11.146662; this version posted June 12, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Myosin-driven actin-microtubule networks exhibit self-organized contractile dynamics Gloria Lee1, Michael J. Rust2, Moumita Das3, Ryan J. McGorty1, Jennifer L. Ross4, Rae M. Robertson-Anderson1* 1Department of Physics and Biophysics, University of San Diego, San Diego, CA 92110, USA 2Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA 3School of Physics and Astronomy, Rochester Institute of Technology, Rochester, NY 14623, USA 4Department of Physics, Syracuse University, Syracuse, NY 13244, USA Abstract The cytoskeleton is a dynamic network of proteins, including actin, microtubules, and myosin, that enables essential cellular processes such as motility, division, mechanosensing, and growth. While actomyosin networks are extensively studied, how interactions between actin and microtubules, ubiquitous in the cytoskeleton, influence actomyosin activity remains an open question. Here, we create a network of co-entangled actin and microtubules driven by myosin II. We combine dynamic differential microscopy, particle image velocimetry and particle-tracking to show that both actin and microtubules in the network undergo ballistic contraction with surprisingly indistinguishable characteristics. This controlled contractility is distinct from the faster turbulent motion and rupturing that active actin networks exhibit. Our results suggest that microtubules can enable self-organized myosin-driven contraction by providing flexural rigidity and enhanced connectivity to actin networks.
    [Show full text]
  • Myosin 1E Interacts with Synaptojanin-1 and Dynamin and Is Involved in Endocytosis
    FEBS Letters 581 (2007) 644–650 Myosin 1E interacts with synaptojanin-1 and dynamin and is involved in endocytosis Mira Krendela,*, Emily K. Osterweila, Mark S. Moosekera,b,c a Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA b Department of Cell Biology, Yale University, New Haven, CT 06511, USA c Department of Pathology, Yale University, New Haven, CT 06511, USA Received 21 November 2006; revised 8 January 2007; accepted 11 January 2007 Available online 18 January 2007 Edited by Felix Wieland Myo1 isoforms (Myo3p and Myo5p) leads to defects in endo- Abstract Myosin 1E is one of two ‘‘long-tailed’’ human Class I myosins that contain an SH3 domain within the tail region. SH3 cytosis [3].InAcanthamoeba, various Myo1 isoforms are domains of yeast and amoeboid myosins I interact with activa- found in association with intracellular vesicles [10].InDictyos- tors of the Arp2/3 complex, an important regulator of actin poly- telium, long-tailed Myo1s (myo B, C, and D) are required for merization. No binding partners for the SH3 domains of myosins fluid-phase endocytosis [11]. I have been identified in higher eukaryotes. In the current study, Myo1e, the mouse homolog of the human long-tailed myo- we show that two proteins with prominent functions in endocyto- sin, Myo1E (formerly referred to as Myo1C under the old myo- sis, synaptojanin-1 and dynamin, bind to the SH3 domain of sin nomenclature [12]), has been previously localized to human Myo1E. Myosin 1E co-localizes with clathrin- and dyn- phagocytic structures [13]. In this study, we report that Myo1E amin-containing puncta at the plasma membrane and this co- binds to two proline-rich proteins, synaptojanin-1 and dyn- localization requires an intact SH3 domain.
    [Show full text]
  • Aldrich Syndrome Protein: Emerging Mechanisms in Immunity
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by UCL Discovery Wiskott-Aldrich syndrome protein: emerging mechanisms in immunity E Rivers1 and AJ Thrasher1 1 UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH Correspondence: [email protected] Key words Autoimmunity, immune synapse, inflammation, Wiskott Aldrich syndrome, Wiskott Aldrich syndrome protein Summary The Wiskott Aldrich syndrome protein (WASP) participates in innate and adaptive immunity through regulation of actin cytoskeleton-dependent cellular processes, including immune synapse formation, cell signaling, migration and cytokine release. There is also emerging evidence for a direct role in nuclear transcription programmes uncoupled from actin polymerization. A deeper understanding of some of the more complex features of Wiskott Aldrich syndrome (WAS) itself, such as the associated autoimmunity and inflammation, has come from identification of defects in the number and function of anti-inflammatory myeloid cells and regulatory T and B cells, as well as defects in positive and negative B-cell selection. In this review we outline the cellular defects that have been characterized in both human WAS patients and murine models of the disease. We will emphasize in particular recent discoveries that provide a mechanistic insight into disease pathology, including lymphoid and myeloid cell homeostasis, immune synapse assembly and immune cell signaling. Received: 22/03/2017; Revised: 10/07/2017; Accepted: 09/08/2017 This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record.
    [Show full text]
  • Cytoskeletal Remodeling in Cancer
    biology Review Cytoskeletal Remodeling in Cancer Jaya Aseervatham Department of Ophthalmology, University of Texas Health Science Center at Houston, Houston, TX 77054, USA; [email protected]; Tel.: +146-9767-0166 Received: 15 October 2020; Accepted: 4 November 2020; Published: 7 November 2020 Simple Summary: Cell migration is an essential process from embryogenesis to cell death. This is tightly regulated by numerous proteins that help in proper functioning of the cell. In diseases like cancer, this process is deregulated and helps in the dissemination of tumor cells from the primary site to secondary sites initiating the process of metastasis. For metastasis to be efficient, cytoskeletal components like actin, myosin, and intermediate filaments and their associated proteins should co-ordinate in an orderly fashion leading to the formation of many cellular protrusions-like lamellipodia and filopodia and invadopodia. Knowledge of this process is the key to control metastasis of cancer cells that leads to death in 90% of the patients. The focus of this review is giving an overall understanding of these process, concentrating on the changes in protein association and regulation and how the tumor cells use it to their advantage. Since the expression of cytoskeletal proteins can be directly related to the degree of malignancy, knowledge about these proteins will provide powerful tools to improve both cancer prognosis and treatment. Abstract: Successful metastasis depends on cell invasion, migration, host immune escape, extravasation, and angiogenesis. The process of cell invasion and migration relies on the dynamic changes taking place in the cytoskeletal components; actin, tubulin and intermediate filaments. This is possible due to the plasticity of the cytoskeleton and coordinated action of all the three, is crucial for the process of metastasis from the primary site.
    [Show full text]
  • The Dynein Family at a Glance Peter Höök and Richard B
    Cell Science at a Glance 4369 The dynein family at a functions. Although at least 14 classes of accessory subunits bind; and a ~380 kDa kinesin and 17 classes of myosin have motor domain. The motor domain glance been identified, the dyneins fall into contains six discernible AAA ATPase Peter Höök* and Richard B. only two major classes, axonemal and units, identifying the dynein HC as a Vallee cytoplasmic dyneins, based on both divergent member of the AAA+ family functional and structural criteria. of ATPases (Neuwald et al., 1999). Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA. Axonemal dyneins are responsible for Members of the AAA+ family are *Author for correspondence (e-mail: ciliary and flagellar beating; cytoplasmic involved in a very wide range of [email protected]) dyneins are involved in intracellular functions but have a common feature: the Journal of Cell Science 119, 4369-4371 transport, mitosis, cell polarization and formation of ring-shaped oligomeric Published by The Company of Biologists 2006 directed cell movement complexes of the AAA ATPase module. doi:10.1242/jcs.03176 Within the AAA+ proteins, dynein All dynein forms that have occupies a divergent branch along with Three families of cytoskeletal motor been identified biochemically are midasin (Iyer et al., 2004). This branch protein – the myosins, kinesins and multisubunit proteins. Each has one to is characterized by the incorporation of dyneins – have evolved to mediate three heavy chains (HCs) of >500 kDa; all six AAA modules within a single transport of cells and of structures and these correspond to the number of giant polypeptide.
    [Show full text]
  • Association of Titin and Myosin Heavy Chain in Developing Skeletal Muscle (Myogenesis/Cytoskeleton/Assembly in Vvo) W
    Proc. Natl. Acad. Sci. USA Vol. 89, pp. 74%-7500, August 1992 Cell Biology Association of titin and myosin heavy chain in developing skeletal muscle (myogenesis/cytoskeleton/assembly in vvo) W. B. ISAACS*, I. S. KIM, A. STRUVE, AND A. B. FULTONt Department of Biochemistry, University of Iowa, Iowa City, IA 52242 Communicated by Sheldon Penman, May 22, 1992 ABSTRACT To understand molecular interactions that deficient medium (10). After labeling, cultures either were organize developing myoflbrils, we examined the biosynthesis extracted immediately or were chased by adding complete and interaction of titin and myosin heavy chain in cultures of medium supplemented with 2 mM unlabeled methionine and developing muscle. Use of pulse-labeling, immunoprecipita- incubating at 370C for various times before extraction. Ex- tion, and a reversible cross-linking procedure demonstrates tractions used 0.5% Triton X-100 in extraction buffer (100 that within minutes of synthesis, titin and myosin heavy chain mM KCI/10 mM Pipes, pH 6.8/300 mM sucrose/2 mM can be chemically cross-linked into very large, detergent- MgCI2/1 mM EGTA) containing protease inhibitors (1 mM resistant complexes retaining many features of intact myo- phenylmethylsulfonyl fluoride and 100 mM leupeptin; ref. tubes. These complexes, predominantly of titin and myosin, 11). occur very early in myofibrillogenesis as well as later. These Immunoprecipitation. Titin was precipitated by using a data suggest that synthesis and assembly oftitin and myosin are mouse monoclonal antibody (mAb), AMF-1, as described temporally and spatially coordinated in nascent myofibrils and (10). Muscle-specific myosin heavy chain (hereafter myosin) support the hypothesis that titin molecules help to organize was precipitated with mAb MF-20 (12), a gift ofD.
    [Show full text]
  • Titin N2A Domain and Its Interactions at the Sarcomere
    International Journal of Molecular Sciences Review Titin N2A Domain and Its Interactions at the Sarcomere Adeleye O. Adewale and Young-Hoon Ahn * Department of Chemistry, Wayne State University, Detroit, MI 48202, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-(313)-577-1384 Abstract: Titin is a giant protein in the sarcomere that plays an essential role in muscle contraction with actin and myosin filaments. However, its utility goes beyond mechanical functions, extending to versatile and complex roles in sarcomere organization and maintenance, passive force, mechanosens- ing, and signaling. Titin’s multiple functions are in part attributed to its large size and modular structures that interact with a myriad of protein partners. Among titin’s domains, the N2A element is one of titin’s unique segments that contributes to titin’s functions in compliance, contraction, structural stability, and signaling via protein–protein interactions with actin filament, chaperones, stress-sensing proteins, and proteases. Considering the significance of N2A, this review highlights structural conformations of N2A, its predisposition for protein–protein interactions, and its multiple interacting protein partners that allow the modulation of titin’s biological effects. Lastly, the nature of N2A for interactions with chaperones and proteases is included, presenting it as an important node that impacts titin’s structural and functional integrity. Keywords: titin; N2A domain; protein–protein interaction 1. Introduction Citation: Adewale, A.O.; Ahn, Y.-H. The complexity of striated muscle is defined by the intricate organization of its com- Titin N2A Domain and Its ponents [1]. The involuntary cardiac and voluntary skeletal muscles are the primary types Interactions at the Sarcomere.
    [Show full text]