Drebrin Restricts Rotavirus Entry by Inhibiting Dynamin-Mediated Endocytosis
Drebrin restricts rotavirus entry by inhibiting dynamin-mediated endocytosis Bin Lia,b,c,d,1, Siyuan Dinga,b,c,1,2, Ningguo Fenga,b,c, Nancie Mooneya,e, Yaw Shin Ooia, Lili Renf, Jonathan Diepa, Marcus R. Kellya,e, Linda L. Yasukawaa,b,c, John T. Pattong, Hiroyuki Yamazakih, Tomoaki Shiraoh, Peter K. Jacksona,e, and Harry B. Greenberga,b,c,2 aDepartment of Microbiology and Immunology, Stanford University, Stanford, CA 94305; bDepartment of Medicine, Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA 94305; cPalo Alto Veterans Institute of Research, VA Palo Alto Health Care System, Palo Alto, CA 94304; dInstitute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; eBaxter Laboratory for Stem Cell Biology, Stanford University, Stanford, CA 94305; fSchool of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China; gDepartment of Veterinary Medicine, University of Maryland, College Park, MD 20740; and hDepartment of Neurobiology and Behavior, Gunma University, Maebashi, Gunma 371-8511, Japan Edited by Peter Palese, Icahn School of Medicine at Mount Sinai, New York, New York, and approved March 28, 2017 (received for review November 22, 2016) Despite the wide administration of several effective vaccines, cells relies primarily on the viral outer capsid spike protein VP4 (8, rotavirus (RV) remains the single most important etiological agent 9). After VP4 binds to its cognate receptors on cellular surfaces, it of severe diarrhea in infants and young children worldwide, with undergoes a marked conformational change that allows the RV an annual mortality of over 200,000 people. RV attachment and particles to be taken up by the host cells via endocytosis.
[Show full text]