Investigation of the Coral Disease Outbreak Affecting Scleractinian Coral Species Along the Florida Reef Tract

Total Page:16

File Type:pdf, Size:1020Kb

Investigation of the Coral Disease Outbreak Affecting Scleractinian Coral Species Along the Florida Reef Tract Investigation of the Coral Disease Outbreak Affecting Scleractinian Coral Species along the Florida Reef Tract Florida Department of Environmental Protection Coral Reef Conservation Program Reef Resilience Project #4 Final FWC: FWRI File Code: F4327_17-17_F Investigation of the Coral Disease Outbreak Affecting Scleractinian Coral Species along the Florida Reef Tract Final Report Prepared By: Kathleen Lunz Jan Landsberg Yasu Kiryu Vanessa Brinkhuis Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission June 30, 2017 Completed in Fulfillment of BOA35A for Florida Department of Environmental Protection Coral Reef Conservation Program 1277 N.E. 79th Street Causeway Miami, FL 33138 This report should be cited as follows: Lunz, K, Landsberg, J., Kiryu, Y., Brinkhuis, V. 2017. Investigation of the Coral Disease Outbreak Affecting Scleractinian Corals of the Florida Reef Tract. Florida DEP. Miami, FL Pp. 19 This report was prepared for the Florida Department of Environmental Protection, Coral Reef Conservation Program by Florida Fish and Wildlife Conservation Commission’s Fish and Wildlife Research Institute. Funding was provided in part by the Coastal Zone Management Program from the U.S. Department of Commerce National Oceanic and Atmospheric Administration (NOAA) National Ocean Service Aware No. NA14NOS4190053, by NOAA’s Coral Reef Conservation Program Award No. NA15NOS4820036, and by the Department, through its Florida Coastal Office. The total cost of the project was $34,066. The views, statements, findings, conclusions and recommendations expressed herein are those of the authors and do not necessarily reflect the views of the State of Florida, NOAA or any of its sub-agencies. Cover Photo: FWC Executive Summary From spring 2014 to present, coral disease outbreaks in more than 20 scleractinian (stony coral) species have been reported offshore of the southeast Florida region, within the Upper Florida Keys, and within the Dry Tortugas National Park. Coral disease outbreaks began in late 2014 offshore the Miami-Dade area near Virginia Key. Since those initial reports, further disease outbreaks have been reported in areas north and south of the initial outbreak area. The Florida Fish and Wildlife Conservation Commission (FWC)-Fish and Wildlife Research Institute (FWRI) has been investigating this disease outbreak using a combination of field observations and tissue collections for histological and Transmission Electron Microscopy (TEM) evaluation, archiving tissues for later analyses, and supplying samples to collaborators for diagnostics. This report summarizes the collection of reference (visually healthy) tissue from locations in the southeast Florida region and the Florida Keys, analytical progress to date based on limited evaluation of diseased and reference specimens through histological and TEM examination. The continued evaluation of the histological, pathological and molecular response of the species affected as well as an assessment of normal associated and pathogenic organisms may shed additional light on etiology, as well as differential host response. Much of the data gathered thus far is very preliminary and continued efforts are needed to reappraise priority directions and confirmatory experimental and field plans should be developed to constantly appraise and refocus the ongoing disease investigation as necessary. As analyses progress, FWRI will be able to recommend specific collection and analytical efforts to address the ongoing disease outbreak. Coral Reef Conservation Program i June 2017 Acknowledgements We wish to thank Lindsay Huebner, Ananda Ellis, Katy Cummings, Jeff Beal, and Kristi Kerrigan for intellectual and logistical assistance during field collections. Patrick Wilson, Clark Gray, Noretta Perry, Michelle Franco, and Yvonne Walters assisted with histological and TEM sample preparation. Coral Reef Conservation Program ii June 2017 Table of Contents 1. INTRODUCTION ...................................................................................................... 1 1.1. Background .......................................................................................................... 1 1.2. Goals and Objectives ............................................................................................ 2 2. METHODS ................................................................................................................. 2 2.1. Field and Laboratory Protocol Development ....................................................... 2 2.2. Sample Collection ................................................................................................ 3 2.3. Data Management ................................................................................................ 3 2.4. QAQC Considerations.......................................................................................... 4 2.5. Histology and TEM Processing............................................................................ 4 2.6. Preservation for Molecular Analysis .................................................................... 7 3. SUMMARY OF FIELD RESPONSE EFFORTS ...................................................... 7 4. PRELIMINARY HISTOLOGY AND TEM RESULTS ............................................ 8 4.1. Outreach Contributions ...................................................................................... 12 4.2. Future Recommendations ................................................................................... 12 5. LITERATURE CITED ............................................................................................. 12 List of Figures Figure 1: An Orbicella faveolata colony, pre and post-biopsy. Figure 2. Macrophotography series of MCAV specimen example #104 showing unaffected (HU) sample bottom (a) and top (b) views, specimen container with label (c), diseased (HD) sample bottom (d) and top (e) views and sample container (f), and higher magnification photos of diseased bottom (g) and top views (h) and a close up of a Halofolliculina infection on skeletal surface (i). Figure 3: Photographs of putative organisms as seen in histology (a, b) and TEM (c, d). a) endolithic fungi in skeleton of MCAV, stain GMS b) endolithic algae in skeleton of DLAB, stain GMS, c) TEM of putative CLOs in SSID, d) putative stramenopile in CNAT. List of Tables Table 1: Summary of Field Collection Efforts of Reference Samples from Martin County Table 2: Summary of Field Collection Efforts of Reference Samples from West Turtle Table 3: Summary of Field Collection Efforts of Reference Samples from Dustan Rocks Table 4: List of coral samples collected in November 2016 from Broward County shown by the species, specimen number, and health status. Coral Reef Conservation Program iii June 2017 List of Acronyms CLO: chlamydia-like organisms CNAT: Colpophyllia natans CREMP: Coral Reef Evaluation and Monitoring Program DLAB: Diploria labyrinthiformis DNA: deoxyribonucleic acid EDTA: ethylenediaminetetraacetic acid DEP: Florida Department of Environmental Protection FKNMS: Florida Keys National Marine Sanctuary FWC: Florida Fish and Wildlife Conservation Commission FWRI: Fish and Wildlife Research Institute GMU: George Mason University GMS: Grocott’s methenamine silver H&E: hematoxylin & eosin HD: histology sample from diseased colony HH: histology sample from healthy coral colony HU: unaffected histology sample from diseased coral colony MCAV: Montastraea cavernosa MC3: Martin County 3, a SECREMP site MDC: Miami-Dade County MGP: methyl green pyronin, for microbes NOAA: National Oceanographic and Atmospheric Administration OFAV: Orbicella faveolata PAS: periodic-acid-Schiff PAST: Porites astreoides PCLI: Pseudodiploria clivosa QAQC: Quality Assurance Quality Control RLO: rickettsia-like organisms RTL: rapid tissue loss SECREMP: Southeast Florida Coral Reef Evaluation and Monitoring Program SEFCRI TAC: Southeast Florida Coral Reef Initiative’s Technical Advisory Committee SOW: scope of work SSID: Siderastrea siderea TEM: transmission electron microscopy Coral Reef Conservation Program iv June 2017 1. INTRODUCTION 1.1. Background Disease is recognized as a major cause of reef-building coral mortality and reef degradation. The first reports of coral disease in the Florida Keys and Caribbean emerged in the 1970’s (reviewed by Richardson 1998). Since that time, worldwide reports have been increasing in frequency and many coral reefs are being decimated (Bruno et al. 2007). The Florida Reef Tract is currently experiencing one of the largest disease outbreaks on record. Multiple diseases have been reported affecting at least 20 species of scleractinian (stony) coral, including primary reef builders and species listed as Threatened under the Endangered Species Act. Coral disease outbreaks began in late 2014 offshore the Miami- Dade area, with increased reports peaking in spring 2015 and the outbreak area expanding to the north and south (DEP disease call reporting). Disease prevalence values as high as 80% of all colonies present at a given site were reported offshore of southeast Florida (Miami-Dade, Broward, and Palm Beach Counties) during this time (DEP reporting). By winter 2015, reports of similar outbreaks were affecting reefs within the Florida Keys National Marine Sanctuary in the northern area of the Upper Keys. Throughout 2016 and into 2017, the affected areas spread north through Martin County and south through the Upper Keys. The coral diseases reported include white plague, several uncharacterized
Recommended publications
  • A Quick Guide to Southeast Florida's Coral Reefs
    A Quick Guide to Southeast Florida’s Coral Reefs DAVID GILLIAM NATIONAL CORAL REEF INSTITUTE NOVA SOUTHEASTERN UNIVERSITY Spring 2013 Prepared by the Land-based Sources of Pollution Technical Advisory Committee (TAC) of the Southeast Florida Coral Reef Initiative (SEFCRI) BRIAN WALKER NATIONAL CORAL REEF INSTITUTE, NOVA SOUTHEASTERN Southeast Florida’s coral-rich communities are more valuable than UNIVERSITY the Spanish treasures that sank nearby. Like the lost treasures, these amazing reefs lie just a few hundred yards off the shores of Martin, Palm Beach, Broward and Miami-Dade Counties where more than one-third of Florida’s 19 million residents live. Fishing, diving, and boating help attract millions of visitors to southeast Florida each year (30 million in 2008/2009). Reef-related expen- ditures generate $5.7 billion annually in income and sales, and support more than 61,000 local jobs. Such immense recreational activity, coupled with the pressures of coastal development, inland agriculture, and robust cruise and commercial shipping industries, threaten the very survival of our reefs. With your help, reefs will be protected from local stresses and future generations will be able to enjoy their beauty and economic benefits. Coral reefs are highly diverse and productive, yet surprisingly fragile, ecosystems. They are built by living creatures that require clean, clear seawater to settle, mature and reproduce. Reefs provide safe havens for spectacular forms of marine life. Unfortunately, reefs are vulnerable to impacts on scales ranging from local and regional to global. Global threats to reefs have increased along with expanding ART SEITZ human populations and industrialization. Now, warming seawater temperatures and changing ocean chemistry from carbon dioxide emitted by the burning of fossil fuels and deforestation are also starting to imperil corals.
    [Show full text]
  • The Mouthpiece
    Our Web Page The Mouthpiece www.activedivers. org/ May 2003 THE ACTIVE DIVERS ASSOCIATION NEWSLETTER April-May Dive Schedule Sat. 4-26 PM North Key Largo Sites may include: The Christ of the Abyss, the Elbow, N. Dry Rocks, N. N. Dry Rocks, Grecian Rocks, Carysfort, Shark Reef. Average depth 30’, usually no current. Average visibility is 30-50’ with many tropi- cals, morays, cudas. Sun. 5-4 PM Islamorada Just 4 miles past Tavernier, sites may include: Hammerhead, The Canyon, El I nfante, Crocker, No Name, The Valley Aquarium, Alligator. Average depth 30-40’, visibility 40-50’. Some current, many fish, shallow wrecks Sat. 5-10 PM Tavernier Sites may include: Conch Reef, Davis Ledge, Hens & Chickens, Little Conch, Capt. Tom’s Ledge, 40’ Ledge, Fish Trap, Horseshoe. Average depth 30’, average visibility 40-60’, many morays, schooling tropicals, un- usual pillar corals. Sat. 5-17 AM Biscayne Park (inc tanks) Sites may include: Rocky Reef, Elkhorn Forest, Ball Buoy, Far Out Reef, Cuda Ledge. Usually no currents, massive corals, small caves. The Keys “Best Kept Secret”, only one commercial boat allowed in area. Depth 20-30’, vis 30-60’. Sat. 5-24 PM Tenneco Towers (Advanced) Choice of more than 40 wrecks. Some unlike anywhere else: Jet airliner, M-60 Tanks, Tankers, Freighters, Tugs, Barges. Most are intact with penetration possible. Average depth 90’, visibility 40-50’. Expect cur- rents and dramatic profiles, many fish. See advanced criterion this issue. All Dives $35.00 New for 2003! Members may now take advantage of NEW DIVE PACS and freeze 2002 prices for this year! Look at these savings 10 packs—10 dives for only $290 Save up To $60 5 packs—5 dives for only $150 Save up to $25 You may use these pacs for any local dive except Biscayne National Park.
    [Show full text]
  • Microbiomes of Gall-Inducing Copepod Crustaceans from the Corals Stylophora Pistillata (Scleractinia) and Gorgonia Ventalina
    www.nature.com/scientificreports OPEN Microbiomes of gall-inducing copepod crustaceans from the corals Stylophora pistillata Received: 26 February 2018 Accepted: 18 July 2018 (Scleractinia) and Gorgonia Published: xx xx xxxx ventalina (Alcyonacea) Pavel V. Shelyakin1,2, Sofya K. Garushyants1,3, Mikhail A. Nikitin4, Sofya V. Mudrova5, Michael Berumen 5, Arjen G. C. L. Speksnijder6, Bert W. Hoeksema6, Diego Fontaneto7, Mikhail S. Gelfand1,3,4,8 & Viatcheslav N. Ivanenko 6,9 Corals harbor complex and diverse microbial communities that strongly impact host ftness and resistance to diseases, but these microbes themselves can be infuenced by stresses, like those caused by the presence of macroscopic symbionts. In addition to directly infuencing the host, symbionts may transmit pathogenic microbial communities. We analyzed two coral gall-forming copepod systems by using 16S rRNA gene metagenomic sequencing: (1) the sea fan Gorgonia ventalina with copepods of the genus Sphaerippe from the Caribbean and (2) the scleractinian coral Stylophora pistillata with copepods of the genus Spaniomolgus from the Saudi Arabian part of the Red Sea. We show that bacterial communities in these two systems were substantially diferent with Actinobacteria, Alphaproteobacteria, and Betaproteobacteria more prevalent in samples from Gorgonia ventalina, and Gammaproteobacteria in Stylophora pistillata. In Stylophora pistillata, normal coral microbiomes were enriched with the common coral symbiont Endozoicomonas and some unclassifed bacteria, while copepod and gall-tissue microbiomes were highly enriched with the family ME2 (Oceanospirillales) or Rhodobacteraceae. In Gorgonia ventalina, no bacterial group had signifcantly diferent prevalence in the normal coral tissues, copepods, and injured tissues. The total microbiome composition of polyps injured by copepods was diferent.
    [Show full text]
  • Florida Keys…
    What Do We Know? • Florida Keys… − Stony coral benthic cover declined by 40% from 1996 – 2009 (Ruzicka et al. 2013). − Potential Driving Factor? Stress due to extreme cold & warm water temperatures − Stony coral communities in patch reefs remained relatively constant after the 1998 El Niño (Ruzicka et al. 2013). − Patch reefs exposed to moderate SST Carysfort Reef - Images from Gene Shinn - USGS Photo Gallery variability exhibited the highest % live coral cover (Soto et al. 2011). Objective To test if the differences in stony coral diversity on Florida Keys reefs were correlated with habitats or SST variability from 1996 - 2010. Methods: Coral Reef Evaluation & Monitoring Program (CREMP) % coral cover 43 species DRY TORTUGAS UPPER KEYS MIDDLE KEYS LOWER KEYS 36 CREMP STATIONS (Patch Reefs (11), Offshore Shallow (12), Offshore Deep (13)) Methods: Sea Surface Temperature (SST) • Annual SST variance were derived from weekly means. • Categories for SST variability (variance): • Low (<7.0°C2) • Intermediate (7.0 - 10.9°C2) • High (≥11.0°C2) Advanced Very High Resolution Radiometer (AVHRR) SST data Vega-Rodriguez M et al. (2015) Results 1 I 0.5 Acropora palmata I s i Millepora complanata x Multivariate Statistics A l a Acropora c i Agaricia agaricites n o Pseudodiploriarevealed clivosa cervicornisthat stonycomplex n a C 0 Porites astreoides Madracis auretenra h t i coral diversity varied w Diploria labyrinthiformis Agaricia lamarcki n o Siderastrea radians i t Porites porites a l e significantly with r r Orbicella annularis o C -0.5 Pseudodiploriahabitats strigosa Colpophyllia natansStephanocoenia intercepta Montastraea cavernosa Siderastrea siderea Canonical Analysis of Principal Coordinates (CAP) -1 0.6 -1 -0.5 0 0.5 1 Correlation with Canonical Axis I ) % 0.4 7 6 .
    [Show full text]
  • Coral Disease Fact Sheet
    Florida Department of Environmental Protection Coral Reef Conservation Program SEAFAN BleachWatch Program Coral Disease Fact Sheet About Coral Disease Like all other animals, corals can be affected by disease. Coral disease was first recognized in the Florida Keys and the Caribbean in the 1970s, and since that time disease reports have emerged from reefs worldwide. Naturally, there are background levels of coral disease but reports of elevated disease levels – often called disease outbreaks – have been increasing in both frequency and severity over the past few decades. Today, coral disease is recognized as a major driver of coral mortality and reef degradation. Coral disease can result from infection by microscopic organisms (such as bacteria or fungi) or can be caused by abnormal growth (akin to tumors). The origins or causes of most coral diseases are not known and difficult to determine. There is increasing evidence that environmental stressors, including increasing water temperatures, elevated nutrient levels, sewage input, sedimentation, overfishing, plastic pollution, and even recreational diving, are increasing the prevalence and Disease affecting Great Star Coral (Montastraea severity of coral diseases. There is also strong evidence cavernosa). Photo credit: Nikole Ordway-Heath (Broward County; 2016). that a combination of coral bleaching and disease can be particularly devastating to coral populations. This is likely due to corals losing a major source of energy during a bleaching event, reducing their ability to fight off or control disease agents. Coral disease is often identifiable by a change in tissue color or skeletal structure as well as progressive tissue loss. Tissue loss may originate from a single discrete spot, multiple discrete areas, or appear scattered throughout the colony.
    [Show full text]
  • Atoll Research Bulletin No. 481 First Protozoan Coral
    ATOLL RESEARCH BULLETIN NO. 481 FIRST PROTOZOAN CORAL-KILLER IDENTIFIED IN THE INDO-PACIFIC BY ARNFRIED A. ANTONIUS AND DIANA LIPSCOMB ISSUED BY NATIONAL MUSEUM OF NATURAL HISTORY SMITHSONIAN INSTITUTION WASHINGTON, D.C., U.S.A. JUNE 2000 Great Barrier Reef 0 M Mauritius 6 0 120 Figure 1. Chart of Indo-Pacific region showing the three SEB observation sites where corals infected with Halofollict~lina corallcuia were investigated: the coral reefs along the coast of Sinai, Red Sea; around the island of Mauritius, Indian Ocean; and in the area of Lizard Island, Great Barrier Reef, Pacific. Motupore Island on the SE coast of Papua New Guinea is not marked on the chart. Sites that were investigated with negative result (no SEB found) are: B: Bali; W: Wakatobi Islands; G: Guam; and M: Moorea. FIRST PROTOZOAN CORAL-KILLER IDENTIFIED IN THE INDO-PACIFIC ARNFRIED ANTONIUS' and DIANA LIPS COMB^ ABSTRACT A unique coral disease has appeared on several Indo-Pacific reefs. Unlike most known coral diseases, this one is caused by an eukaryote, specifically Halofolliculina covallasia, a heterotrich, folliculinid ciliate. This protist is sessile inside of a secreted black test or lorica. It kills the coral and damages the skeleton when it settles on the living coral tissue and secretes the lorica. Thus, the disease was termed Skeleton Eroding Band (SEB). The ciliate population forms an advancing black line on the coral leaving behind it the denuded white coral skeleton, often sprinkled with a multitude of empty black loricae. This disease was first noted in 1988 and since has been observed infecting both branching and massive corals at several locations in the Indo-Pacific.
    [Show full text]
  • The Pennsylvania State University the Graduate School Eberly College of Science
    The Pennsylvania State University The Graduate School Eberly College of Science COMPLEMENTARITY IN THE CORAL HOLOBIONT: A GENOMIC ANALYSIS OF BACTERIAL ISOLATES OF ORBICELLA FAVEOLATA AND SYMBIODINIUM SPP. A Thesis in Biology by Styles M. Smith ©2018 Styles M. Smith Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science August 2018 The thesis of Styles M. Smith was reviewed and approved* by the following: Mónica Medina Associate Professor of Biology Thesis Advisor Steven W. Schaeffer Professor of Biology Head of Graduate Program Kevin L. Hockett Assistant Professor of Microbial Ecology *Signatures are on file in the Graduate School ii Abstract All holobionts, defined as a multicellular host and all of its associated microorganisms, rely on interactions between its members. Corals, which demonstrate a strong symbiosis with an algal partner, have a diverse holobiont that can be sequenced and analyzed that could reveal important roles of microbes that benefit its health. This microbial community has been predicted to be composed of nitrogen fixers, phototrophs, sulfur and phosphorus cyclers. However, the identity of these microbes responsible for these roles remain uncertain. In addition, there may be complementary roles that are unknown. Predicting these roles is challenging because…. A suggested method to overcome this problem is sequencing the genomes of the microbes found in the coral holobiont. I hypothesize that bacterial members of the holobiont play an important role in coral biology via complementary metabolisms in nutrient cycling and aiding the coral in stress response. The complete metabolic capabilities of ten bacteria isolated from the coral holobiont were examined via the sequencing and annotation of the whole genome, followed by pangenomic analysis with 31 whole genomes of closely related strains of bacteria previously sequenced.
    [Show full text]
  • Florida Keys National Marine Sanctuary
    Florida Keys National Marine Sanctuary Review and Discussion February 19, 2020 IJ Florida Fish and Wildlife Conservation Commission This is a review and discussion of the Florida Keys National Marine Sanctuary’s (FKNMS) Restoration Blueprint, the FWC’s role in managing the fisheries resources within the FKNMS, proposed regulatory actions, and next steps. Division: Marine Fisheries Management Authors: Jessica McCawley, John Hunt, Martha Guyas, and CJ Sweetman Contact Phone Number: 850-487-0554 Report date: February 17, 2020 Unless otherwise noted, images throughout the presentation are by FWC or Florida Keys National Marine Sanctuary. FKNMS Process Reminder • Oct. and Dec. - FKNMS discussions • Jan. - FWC staff meetings with diverse stakeholder organizations • Today - Look at all relevant aspects of plan and consider FWC's proposed response • April - FWC comments due • Summer 2020 - FWC begin rulemaking process for state waters As a management partner in the Florida Keys National Marine Sanctuary (FKNMS), FWC has been engaged in review of the Restoration Blueprint (Draft Environmental Impact Statement, DEIS) over the past several months. In October and December, the Commission discussed the FKNMS Restoration Blueprint. In January, FWC staff met with a variety of stakeholders to better understand their comments on particular issues addressed within the DEIS. Today, the presentation will cover all relevant aspects of the plan and staff recommendations based on a review of the science and stakeholder comments, which will be outlined in the next two slides. FWC requested and has been granted an extension for submitting agency comments to the FKNMS until April. Following the Commission’s response to the FKNMS, FWC will consider rulemaking for fisheries management items state waters.
    [Show full text]
  • Assessing the Effectiveness of Two Intervention Methods for Stony Coral
    www.nature.com/scientificreports OPEN Assessing the efectiveness of two intervention methods for stony coral tissue loss disease on Montastraea cavernosa Erin N. Shilling 1*, Ian R. Combs 1,2 & Joshua D. Voss 1* Stony coral tissue loss disease (SCTLD) was frst observed in Florida in 2014 and has since spread to multiple coral reefs across the wider Caribbean. The northern section of Florida’s Coral Reef has been heavily impacted by this outbreak, with some reefs experiencing as much as a 60% loss of living coral tissue area. We experimentally assessed the efectiveness of two intervention treatments on SCTLD-afected Montastraea cavernosa colonies in situ. Colonies were tagged and divided into three treatment groups: (1) chlorinated epoxy, (2) amoxicillin combined with CoreRx/Ocean Alchemists Base 2B, and (3) untreated controls. The experimental colonies were monitored periodically over 11 months to assess treatment efectiveness by tracking lesion development and overall disease status. The Base 2B plus amoxicillin treatment had a 95% success rate at healing individual disease lesions but did not necessarily prevent treated colonies from developing new lesions over time. Chlorinated epoxy treatments were not signifcantly diferent from untreated control colonies, suggesting that chlorinated epoxy treatments are an inefective intervention technique for SCTLD. The results of this experiment expand management options during coral disease outbreaks and contribute to overall knowledge regarding coral health and disease. Coral reefs face many threats, including, but not limited to, warming ocean temperatures, overfshing, increased nutrient and plastic pollution, hurricanes, ocean acidifcation, and disease outbreaks 1–6. Coral diseases are com- plex, involving both pathogenic agents and coral immune responses.
    [Show full text]
  • RML Algol 60 Compiler Accepts the Full ASCII Character Set Described in the Manual
    I I I · lL' I I 1UU, Alsol 60 CP/M 5yst.. I I , I I '/ I I , ALGOL 60 VERSION 4.8C REI.!AS!- NOTE I I I I CP/M Vers1on·2 I I When used with CP/M version 2 the Algol Ifste. will accept disk drive Dames extending from A: to P: I I I ASSEMBLY CODE ROUTINES I I .'n1~ program CODE.ALG and CODE.ASe 1s an aid to users who wish ·to add I their own code routines to the runtime system. The program' produc:es an I output file which contains a reconstruction of the INPUT, OUTPUT, IOC and I ERROR tables described in the manual. 1111s file forms the basis of an I assembly code program to which users may edit in their routines... Pat:ts I not required may be removed as desired. The resulting program should I then be assembled and overlaid onto the runtime system" using DDT, the I resulti;lg code being SAVEd as a new runtime system. It 1s important that. I the CODE program be run using the version of the runtimesY$tem to. which I the code routines are to be linked else the tables produced DUly, be·\, I incompatible. - I I I I Another example program supplied. 1. QSORT. the sortiDI pro~edure~, I described in the manual. I I I I I I I I I I , I I I -. I I 'It I I I I I I I I I I I ttKL Aleol 60 C'/M Systea I LONG INTEGER ALGOL Arun-L 1s a version of the RML zao Algol system 1nwh1c:h real variables are represented, DOt in the normal mantissalexponent form but rather as 32 .bit 2 s complement integers.
    [Show full text]
  • Cnidarian Immunity and the Repertoire of Defense Mechanisms in Anthozoans
    biology Review Cnidarian Immunity and the Repertoire of Defense Mechanisms in Anthozoans Maria Giovanna Parisi 1,* , Daniela Parrinello 1, Loredana Stabili 2 and Matteo Cammarata 1,* 1 Department of Earth and Marine Sciences, University of Palermo, 90128 Palermo, Italy; [email protected] 2 Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; [email protected] * Correspondence: [email protected] (M.G.P.); [email protected] (M.C.) Received: 10 August 2020; Accepted: 4 September 2020; Published: 11 September 2020 Abstract: Anthozoa is the most specious class of the phylum Cnidaria that is phylogenetically basal within the Metazoa. It is an interesting group for studying the evolution of mutualisms and immunity, for despite their morphological simplicity, Anthozoans are unexpectedly immunologically complex, with large genomes and gene families similar to those of the Bilateria. Evidence indicates that the Anthozoan innate immune system is not only involved in the disruption of harmful microorganisms, but is also crucial in structuring tissue-associated microbial communities that are essential components of the cnidarian holobiont and useful to the animal’s health for several functions including metabolism, immune defense, development, and behavior. Here, we report on the current state of the art of Anthozoan immunity. Like other invertebrates, Anthozoans possess immune mechanisms based on self/non-self-recognition. Although lacking adaptive immunity, they use a diverse repertoire of immune receptor signaling pathways (PRRs) to recognize a broad array of conserved microorganism-associated molecular patterns (MAMP). The intracellular signaling cascades lead to gene transcription up to endpoints of release of molecules that kill the pathogens, defend the self by maintaining homeostasis, and modulate the wound repair process.
    [Show full text]
  • UC Merced UC Merced Electronic Theses and Dissertations
    UC Merced UC Merced Electronic Theses and Dissertations Title Deep Amplicon Sequencing Quantitatively Detected Mixed Community Assemblages of Symbiodinium in Orbicella faveolata and Orbicella franksi Permalink https://escholarship.org/uc/item/31n4975j Author Green, Elizabeth Publication Date 2014 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, MERCED Deep Amplicon Sequencing Quantitatively Detected Mixed Community Assemblages of Symbiodinium in Orbicella faveolata and Orbicella franksi THESIS submitted in partial satisfaction of the requirements for the degree of MASTER OF SCIENCE in Quantitative and Systems Biology by Elizabeth A. Green Committee in charge: David Ardell, chair Miriam Barlow Mónica Medina Michele Weber 2014 © Elizabeth A. Green, 2014 All rights reserved The thesis of Elizabeth A. Green is approved, and it is acceptable in quality and form for publication on microfilm and electronically: Miriam Barlow Mónica Medina Michele Weber David Ardell Chair University of California, Merced 2014 iii Dedication This thesis is dedicated to my loving and supportive husband, Colten Green. iv Table of Contents Page SIGNATURE PAGE ……………………….…………………………………… iii LIST OF FIGURES ……………………………………………………………... vi LIST OF TABLES ………………………………………………………………. vii ACKNOWLEDGEMENTS ……………………………………………………… viii ABSTRACT ……………………………………………………………………… ix INTRODUCTION ………………………………………………………………… 1 METHODS ………………………………………………………………………… 6 RESULTS ………………………………………………………………………….
    [Show full text]