Perceiving Invisible Light Through a Somatosensory Cortical Prosthesis
ARTICLE Received 24 Aug 2012 | Accepted 15 Jan 2013 | Published 12 Feb 2013 DOI: 10.1038/ncomms2497 Perceiving invisible light through a somatosensory cortical prosthesis Eric E. Thomson1,2, Rafael Carra1,w & Miguel A.L. Nicolelis1,2,3,4,5 Sensory neuroprostheses show great potential for alleviating major sensory deficits. It is not known, however, whether such devices can augment the subject’s normal perceptual range. Here we show that adult rats can learn to perceive otherwise invisible infrared light through a neuroprosthesis that couples the output of a head-mounted infrared sensor to their soma- tosensory cortex (S1) via intracortical microstimulation. Rats readily learn to use this new information source, and generate active exploratory strategies to discriminate among infrared signals in their environment. S1 neurons in these infrared-perceiving rats respond to both whisker deflection and intracortical microstimulation, suggesting that the infrared repre- sentation does not displace the original tactile representation. Hence, sensory cortical prostheses, in addition to restoring normal neurological functions, may serve to expand natural perceptual capabilities in mammals. 1 Department of Neurobiology, Duke University, Box 3209, 311 Research Drive, Bryan Research, Durham, North Carolina 27710, USA. 2 Edmond and Lily Safra International Institute for Neuroscience of Natal (ELS-IINN), Natal 01257050, Brazil. 3 Department of Biomedical Engineering, Duke University, Durham, North Carolina 27710, USA. 4 Department of Psychology and Neuroscience, Duke University, Durham, North Carolina 27710, USA. 5 Center for Neuroengineering, Duke University, Durham, North Carolina 27710, USA. w Present address: University of Sao Paulo School of Medicine, Sao Paulo 01246-000, Brazil. Correspondence and requests for materials should be addressed to M.A.L.N.
[Show full text]