Shielded Coaxial Optrode Arrays for Neurophysiology
ORIGINAL RESEARCH published: 09 June 2016 doi: 10.3389/fnins.2016.00252 Shielded Coaxial Optrode Arrays for Neurophysiology Jeffrey R. Naughton 1, Timothy Connolly 2, Juan A. Varela 3, Jaclyn Lundberg 3, Michael J. Burns 1, Thomas C. Chiles 2, John P. Christianson 3 and Michael J. Naughton 1* 1 Department of Physics, Boston College, Chestnut Hill, MA, USA, 2 Department of Biology, Boston College, Chestnut Hill, MA, USA, 3 Department of Psychology, Boston College, Chestnut Hill, MA, USA Recent progress in the study of the brain has been greatly facilitated by the development of new tools capable of minimally-invasive, robust coupling to neuronal assemblies. Two prominent examples are the microelectrode array (MEA), which enables electrical signals from large numbers of neurons to be detected and spatiotemporally correlated, and optogenetics, which enables the electrical activity of cells to be controlled with light. In the former case, high spatial density is desirable but, as electrode arrays evolve toward higher density and thus smaller pitch, electrical crosstalk increases. In the latter, finer control over light input is desirable, to enable improved studies of neuroelectronic Edited by: pathways emanating from specific cell stimulation. Here, we introduce a coaxial electrode Ramona Samba, architecture that is uniquely suited to address these issues, as it can simultaneously Natural and Medical Sciences Institute, Germany be utilized as an optical waveguide and a shielded electrode in dense arrays. Using Reviewed by: optogenetically-transfected cells on a coaxial MEA, we demonstrate the utility of the Joost Le Feber, architecture by recording cellular currents evoked from optical stimulation. We also show University of Twente, Netherlands Marco Canepari, the capability for network recording by radiating an area of seven individually-addressed Institut National de la Santé et de la coaxial electrode regions with cultured cells covering a section of the extent.
[Show full text]