Biochemical MRI in Musculoskeletal Applications

Total Page:16

File Type:pdf, Size:1020Kb

Biochemical MRI in Musculoskeletal Applications Technology Tissue function Biochemical MRI in Musculoskeletal Applications Siegfried Trattnig; Štefan Zbýň; Vladimir Juras; Pavol Szomolanyi; Stephan Domayer; Iris-Melanie Noebauer-Huhmann; Goetz Welsch; Benjamin Schmitt MR Centre – High field MR, Department of Radiology, Medical University of Vienna/Vienna General Hospital, Vienna, Austria 1. Biochemical MRI assessment 1.1) Proteoglycan-sensitive MRI exchange-dependent saturation transfer of cartilage and cartilage techniques (CEST) [6]. Of these techniques, only repair Although no MRI sequence is really dGEMRIC has so far become clinically use- To visualize the constitution of articular 100% specific for only proteoglycans or ful in cartilage repair imaging. cartilage and cartilage repair tissue, collagens, there are MRI methods that a variety of different MRI methods are reportedly focus mainly on one compo- a) Delayed gadolinium-enhanced MRI available. Considering the composition nent of articular cartilage. The nega- of cartilage (dGEMRIC*) of healthy hyaline articular cartilage, tively-charged proteoglycan, composed GAG are important to the cartilage tissue’s these methods can depict relatively spe- of a central core protein to which GAG biochemical and biomechanical func- cifically either one component of carti- are bound, can be visualized by delayed tion. GAG are the main source of fixed lage or a combination of different com- gadolinium-enhanced MRI of cartilage charge density (FCD) in cartilage, and ponents. Although some more recent (dGEMRIC*) [3], sodium MR imaging are often decreased in the early stages techniques, in particular CEST, have not [4, 5], and, very recently, chemical of cartilage degeneration [7], or in repar- yet been validated sufficiently, studies have shown promising initial results. Articular cartilage is complex, dense, 1A 1 (1A) Shows a sagittal connective tissue that relies on the dif- 3D GRE image in a patient fusion of solutes for nutrition [1]. after microfracturing at 3T. Responsible for the biomechanical prop- In the area of microfracture erties of articular cartilage is the extra- only slight thinning of the cartilage layer can be seen. cellular matrix, mainly composed of (1B) Precontrast* T1-map water (~75%), collagen (~20%), and shows no difference in proteoglycan aggregates (~5%) [1, 2]. T1 relaxation times in the Water either freely moves throughout repair tissue; however, in the matrix or is bound to macromole- the postcontrast* image (1C) a significant drop in cules. Collagen in hyaline cartilage is T1 values in the repair largely type II, which creates a stable tissue can be seen, which network throughout the cartilage. The corresponds to a low gly- negatively-charged proteoglycans are cosaminoglycan content. composed of a central core protein to which glycosaminoglycans (GAG) are bound. 86 MAGNETOM Flash · 2/2012 · www.siemens.com/magnetom-world Tissue function Technology ative cartilage after cartilage repair [8]. requires a break in between the two b) 23Na (Sodium) imaging of cartilage Intravenously administered gadolinium MRI scans, where the contrast agent The major advantage of sodium MRI in diethylenetriamine pentaacetate anion, must be administered and a delay of at musculoskeletal applications is that it (Gd-DTPA2-) penetrates the cartilage through least 90 minutes after injection is needed is highly specific for glycosaminoglycan both the articular surface and the sub- for penetration of the contrast agent content, and, since the sodium from chondral bone. The contrast equilibrates into the cartilage. Scan time reduction, surrounding structures in the joint is low in inverse relation to the FCD, which is, compared to the standard inversion (< 50 mM), cartilage can be visualized in turn, directly related to the GAG con- recovery (IR) evaluation, has been with very high contrast without the centration. Therefore, T1, which is deter- achieved with a new approach using fast requirement for any exogenous contrast mined by the Gd-DTPA2- concentration, T1-mapping based on GRE-technique agent, such as with dGEMRIC*. becomes a specific measure of tissue [12]. Although the 90-minute delay is The recent proliferation of 7T1 whole- GAG concentration, suggesting that still required, this might increase the body MRI scanners in clinical research Gd-DTPA2- enhanced MRI has the poten- clinical applicability of the dGEMRIC* centers has had a significant impact on tial to monitor the GAG content of carti- technique. Other drawbacks of dGEMRIC* sodium MRI and its potential for clinical lage in vivo [9]. Thus, T1-mapping, are the use of i. v. contrast agent admin- use. Since signal-to-noise (SNR) scales enhanced by delayed administration of istration, the necessity of a double dose linearly with increasing field strength, 2- Gd-DTPA (T1 dGEMRIC*), can be con- of contrast agent, and the fact that and because of the lack of B1 penetration sidered the most widely used methodol- uptake and distribution of contrast agent and B0 susceptibility that pose problems ogy for detecting proteoglycan depletion is not only dominated by GAG. with proton imaging, sodium MRI can in articular cartilage (Fig. 1), and has Since GAG content is responsible for be particularly advantageous at higher shown promising results [10, 11]. cartilage function, particularly its tensile fields. The low gyromagnetic ratio of As differences in pre-contrast values strength, the monitoring of the develop- sodium also means significantly lower between cartilage repair tissue and nor- ment of GAG content in cartilage repair power deposition compared with proton mal hyaline cartilage are larger compared tissues may provide information about imaging, which thus reduces SAR prob- to early cartilage degeneration, in carti- the quality of the repair tissue. A study lems at 7T1. It is, therefore, very likely lage repair tissue, the pre-contrast T1 by our group showed that dGEMRIC* that the improved SNR sodium MRI at values must also be calculated [8]. The was able to differentiate between differ- 7T1 can provide a robust tool for quan- concentration of GAG is represented by ent cartilage repair tissues with higher titative imaging of MSK structures in delta ΔR1, i.e., the difference in relax- delta ΔR1 values, and thus, lower GAG particular cartilage. Although sodium ation rate (R1=1/T1) between T1precontrast content, in cartilage repair tissue after MRI has high specificity and does not and T1postcontrast. Thus, the sequence must MFX, compared to MACT [13]. The appli- require any exogenous contrast agent, be performed twice, for pre-contrast cability of this technique has also been it does require special hardware capa- and delayed post-contrast T1-mapping. shown in regions other than the knee bilities (multinuclear) and specialized This increases the total scan time, and joint [14–16]. RF coils [5]. 1B 1C MAGNETOM Flash · 2/2012 · www.siemens.com/magnetom-world 87 Technology Tissue function 2A 2B With the application of a 7T whole-body MACT (p = .002) repair tissue, compared is transplanted, and in patients after system and a modified 3D GRE opti- to reference cartilage. These differences patella dislocation, have demonstrated mized for sodium imaging and dedicated were influenced by surgery type, but not the potential of sodium imaging in the multi-element sodium coils, we per- by age and follow-up interval. Although detection of early stages of cartilage formed a series of clinical studies. sodium SNR was not different between degeneration [19]. In a small group of 12 patients after the reference cartilage in the MACT and matrix-associated autologous chondro- BMS patients (p = .528), it was signifi- c) Chemical Exchange Saturation cyte transplantation (MACT), sodium cantly higher in MACT than in BMS repair Transfer (CEST) imaging enabled the differentiation tissue (p = .002). There was no differ- Chemical exchange between bulk water between sodium content, and thus GAG ence between the magnetic resonance protons and protons bound to solutes in the transplants, compared to native, observation of cartilage repair tissue can be visualized with MR imaging [20] healthy cartilage. In all patients, the (MOCART) scores for MACT and BMS by using the saturation transfer (ST) sodium SNR was lower in the repair tis- patients (p = .889). No correlation was technique, a common approach in sue compared to healthy cartilage. observed between the MOCART score nuclear magnetic resonance (NMR) [21]. A good correlation between sodium and repair tissue SNR with sodium imag- Consequently, the corresponding MR imaging and dGEMRIC* in the quantifi- ing (R = .111). Our results suggest that imaging scheme is referred to as CEST cation of GAG content was found in MACT provides higher GAG content and, MRI [22, 23]. In principle, CEST MRI patients after MACT [17]. therefore, higher-quality repair tissue relies on a reduction of bulk water MR In another study, 18 patients who had compared to the BMS techniques. Sodium signal as a consequence of selective sat- different cartilage repair surgeries (nine MR imaging at 7T1 (Fig. 2) might be uration of off-resonant (solute) spins bone marrow stimulation (BMS) and beneficial in the non-invasive evaluation and subsequent chemical transfer of the nine MACT patients), age-matched, with of cartilage repair procedure efficacy in saturation to spins of bulk water [24]. similar postoperative intervals and the knee [18]. A prerequisite for observation of CEST defect locations, were examined with Similar studies in patients after long-term phenomena within a chemical environ- sodium imaging. Sodium SNR was signif- autologous osteochondral transplanta- ment is the abundance of sufficiently icantly lower in BMS (p < .001) and tion (AOT) in which hyaline cartilage labile solute protons that are in contact 88 MAGNETOM Flash · 2/2012 · www.siemens.com/magnetom-world Tissue function Technology 2C 2 Sagittal images of the knee of a 43-year-old woman obtained 42 months after 400 MFX cartilage repair proce- dure. The proton-density- weighted 2D-TSE image with fat suppression (2A), sodium 3D-GRE image (2B), and color- 300 coded sodium 3D-GRE image (2C). The cartilage repair tis- sue is situated between the two arrows. Color scale repre- sents the sodium signal inten- sity values.
Recommended publications
  • X-Nuclei MRI on a 7T MAGNETOM Terra: Initial Experiences
    MAGNETOM Flash (76) 1/2020 Neurology · Research X-Nuclei MRI on a 7T MAGNETOM Terra: Initial Experiences Tobias Wilferth1; Lena V. Gast1,2; Sebastian Lachner1; Nicolas G. R. Behl3; Manuel Schmidt4; Arnd Dörfler4; Michael Uder1; Armin M. Nagel1,2,5 1 Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany 2Institute of Medical Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany 3Siemens Healthcare GmbH, Erlangen, Germany 4Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany 5Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany Introduction However, X-nuclei imaging is challenging for several rea- sons. First of all, the signal-to-noise ratio (SNR) is several Ions such as sodium (Na+), potassium (K+) and chlorine (Cl-) orders of magnitude lower compared to proton (1H) MRI. play a vital role in many cellular processes. Healthy tissue In most situations relevant for human imaging, noise is contains very little extracellular K+ ([K+] = 2.5–3.5 mM) e dominated by the sample. And for low frequencies, which but a large amount of intracellular K+ ([K+] = 140 mM). i is usually the case for X-nuclei MRI, a linear noise model The Na+ gradient is reversed and a little less pronounced can be assumed. In this case, the SNR depends on the ([Na+] = 10–15 mM; [Na+] = 145 mM). Cl- is the most i e concentration c, the magnetic spin moment I and the gyro- abundant anion in the human body. magnetic ratio γ of the nucleus as given in Equation 1 [17]: Cellular exchange processes, such as the Na+/K+-ATPase pump [1] maintain chemical and electrical gradients across the cell membrane – essential for regulating cell volume, Equation 1 energy production and consumption, as well as excitation SNR ∝ c ∙ I ( I + 1 ) ∙ γ2 of muscle or neuronal cells.
    [Show full text]
  • Distribution of Brain Sodium Long and Short Relaxation Times And
    Distribution of brain sodium long and short relaxation times and concentrations: a multi-echo ultra-high field 23Na MRI study Ben Ridley, Armin Nagel, Mark Bydder, Adil Maarouf, Jan-Patrick Stellmann, Soraya Gherib, Jérémy Verneuil, Patrick Viout, Maxime Guye, Jean-Philippe Ranjeva, et al. To cite this version: Ben Ridley, Armin Nagel, Mark Bydder, Adil Maarouf, Jan-Patrick Stellmann, et al.. Distribution of brain sodium long and short relaxation times and concentrations: a multi-echo ultra-high field 23Na MRI study. Scientific Reports, Nature Publishing Group, 2018, 8 (1), 10.1038/s41598-018-22711-0. hal-02065574 HAL Id: hal-02065574 https://hal-amu.archives-ouvertes.fr/hal-02065574 Submitted on 12 Mar 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License www.nature.com/scientificreports OPEN Distribution of brain sodium long and short relaxation times and concentrations: a multi-echo ultra- Received: 22 November 2017 23 Accepted: 23 February 2018 high feld Na MRI study Published: xx xx xxxx Ben Ridley1,2, Armin M. Nagel3,4, Mark Bydder1,2, Adil Maarouf1,2, Jan-Patrick Stellmann1,2, Soraya Gherib1,2, Jeremy Verneuil1,2, Patrick Viout1,2, Maxime Guye1,2, Jean-Philippe Ranjeva 1,2 & Wafaa Zaaraoui1,2 Sodium (23Na) MRI profers the possibility of novel information for neurological research but also particular challenges.
    [Show full text]
  • Compressed Sensing Reconstruction of 7 Tesla 23Na Multi-Channel Breast
    Magnetic Resonance Imaging 60 (2019) 145–156 Contents lists available at ScienceDirect Magnetic Resonance Imaging journal homepage: www.elsevier.com/locate/mri Original contribution Compressed sensing reconstruction of 7 Tesla 23Na multi-channel breast T data using 1H MRI constraint ⁎ Sebastian Lachnera, , Olgica Zaricb, Matthias Utzschneidera, Lenka Minarikovab, Štefan Zbýňb,c, Bernhard Henseld, Siegfried Trattnigb, Michael Udera, Armin M. Nagela,e,f a Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany b High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria c Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA d Center for Medical Physics and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany e Division of Medical Physics in Radiology, German Cancer Research Centre (DKFZ), Heidelberg, Germany f Institute of Medical Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany ARTICLE INFO ABSTRACT Keywords: Purpose: To reduce acquisition time and to improve image quality in sodium magnetic resonance imaging (23Na 23 Sodium ( Na) breast MRI MRI) using an iterative reconstruction algorithm for multi-channel data sets based on compressed sensing (CS) 7 Tesla with anatomical 1H prior knowledge. Iterative reconstruction Methods: An iterative reconstruction for 23Na MRI with
    [Show full text]
  • Sodium Homeostasis in the Tumour Microenvironment T Theresa K
    BBA - Reviews on Cancer 1872 (2019) 188304 Contents lists available at ScienceDirect BBA - Reviews on Cancer journal homepage: www.elsevier.com/locate/bbacan Review Sodium homeostasis in the tumour microenvironment T Theresa K. Lesliea,b, Andrew D. Jamesa,b, Fulvio Zaccagnac, James T. Gristc, Surrin Deenc, Aneurin Kennerleyb,d, Frank Riemerc, Joshua D. Kaggiec, Ferdia A. Gallagherc, Fiona J. Gilbertc, ⁎ William J. Brackenburya,b, a Department of Biology, University of York, Heslington, York YO10 5DD, UK b York Biomedical Research Institute, University of York, Heslington, York YO10 5DD, UK c Department of Radiology, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK d Department of Chemistry, University of York, Heslington, York YO10 5DD, UK ARTICLE INFO ABSTRACT Keywords: The concentration of sodium ions (Na+) is raised in solid tumours and can be measured at the cellular, tissue and Channels patient levels. At the cellular level, the Na+ gradient across the membrane powers the transport of H+ ions and Microenvironment essential nutrients for normal activity. The maintenance of the Na+ gradient requires a large proportion of the MRI cell’s ATP. Na+ is a major contributor to the osmolarity of the tumour microenvironment, which affects cell Sodium volume and metabolism as well as immune function. Here, we review evidence indicating that Na+ handling is Transporters altered in tumours, explore our current understanding of the mechanisms that may underlie these alterations and Tumours consider the potential consequences for cancer progression. Dysregulated Na+ balance in tumours may open opportunities for new imaging biomarkers and re-purposing of drugs for treatment. 1. Introduction underlie these alterations and consider the potential consequences for cancer progression.
    [Show full text]
  • Atrophy of Calf Muscles by Unloading Results in an Increase of Tissue Sodium Concentration and Fat Fraction Decrease: a 23Na MRI Physiology Study
    Atrophy of calf muscles by unloading results in an increase of tissue sodium concentration and fat fraction decrease: a 23Na MRI physiology study D. A. Gerlach, K. Schopen, P. Linz, B. Johannes, J. Titze, J. Zange & J. Rittweger European Journal of Applied Physiology ISSN 1439-6319 Eur J Appl Physiol DOI 10.1007/s00421-017-3647-4 1 23 Your article is protected by copyright and all rights are held exclusively by Springer- Verlag Berlin Heidelberg. This e-offprint is for personal use only and shall not be self- archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com”. 1 23 Author's personal copy Eur J Appl Physiol DOI 10.1007/s00421-017-3647-4 ORIGINAL ARTICLE Atrophy of calf muscles by unloading results in an increase of tissue sodium concentration and fat fraction decrease: a 23Na MRI physiology study D. A. Gerlach1 · K. Schopen1,2 · P. Linz3,4 · B. Johannes1 · J. Titze4,5 · J. Zange1 · J. Rittweger1,6 Received: 3 March 2017 / Accepted: 17 May 2017 © Springer-Verlag Berlin Heidelberg 2017 Abstract scanner. For quantifcation, a sodium reference phantom Purpose 23Na MRI demonstrated increased tissue sodium was used with 10, 20, 30, and 40 mmol/L NaCl solution.
    [Show full text]
  • A Method for Estimating Intracellular Sodium Concentration And
    OPEN A method for estimating intracellular SUBJECT AREAS: sodium concentration and extracellular BRAIN IMAGING DIAGNOSTIC MARKERS volume fraction in brain in vivo using MAGNETIC RESONANCE IMAGING sodium magnetic resonance imaging PROGNOSTIC MARKERS Guillaume Madelin1, Richard Kline2, Ronn Walvick1 & Ravinder R. Regatte1 Received 1 16 December 2013 Center for Biomedical Imaging, Department of Radiology, New York University Langone Medical Center, New York, NY10016, USA, 2Department of Anesthesiology, New York University Langone Medical Center, New York, NY10016, USA. Accepted 7 April 2014 In this feasibility study we propose a method based on sodium magnetic resonance imaging (MRI) for Published estimating simultaneously the intracellular sodium concentration (C1, in mM) and the extracellular volume 23 April 2014 fraction (a) in grey and white matters (GM, WM) in brain in vivo. Mean C1 over five healthy volunteers was measured ,11 mM in both GM and WM, mean a was measured ,0.22 in GM and ,0.18 in WM, which are in close agreement with standard values for healthy brain tissue (C1 , 10–15 mM, a , 0.2). Simulation of ‘fluid’ and ‘solid’ inclusions were accurately detected on both the C and a 3D maps and in the C and a Correspondence and 1 1 distributions over whole GM and WM. This non-invasive and quantitative method could provide new requests for materials biochemical information for assessing ion homeostasis and cell integrity in brain and help the diagnosis of should be addressed to early signs of neuropathologies such as multiple sclerosis, Alzheimer’s disease, brain tumors or stroke. G.M. (guillaume. [email protected]) agnetic resonance imaging (MRI) is a powerful tool for imaging the body in vivo and diagnosing a large range of diseases in practically all parts of the human body.
    [Show full text]
  • Sodium (23Na)-Imaging As Therapy Monitoring in Oncology – Future
    Clinical Oncology Sodium (23Na)-Imaging as Therapy Monitoring in Oncology – Future Prospects Stefan Haneder, M.D.1; Stefan O. Schoenberg, M.D.1; Simon Konstandin, Ph.D.2; Lothar R. Schad, Ph.D.2 1 Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany 2 Computer-Assisted Clinical Medicine, Heidelberg University, Mannheim, Germany Introduction “Form follows function” – tumor regression. Consequently, the ology benchmark of functional MR Louis Sullivan, 1896 RECIST Working Group addressed this sequences seems to be nuclear medicine Whilst this concept was originally applied point in the context of the new approaches, already fixed in guidelines to modern architecture, it could well RECIST1.1 criteria [1]: as PERCIST 1.0 [2]. Second, further multi- become a highly appropriate maxim for „A key question considered by the center, international studies are required future imaging and therapy concepts. RECIST Working Group in developing to obtain reliable data for (functional) Magnetic resonance imaging (MRI) has RECIST 1.1 was whether it was appropri- MR approaches. Third – not explicitly, but continually developed into a powerful, ate to move from anatomic unidimen- indirectly – the radiology community widely used diagnostic tool and offers sional assessment of tumour burden to should not abandon the assessment of the opportunity to expand traditional either volumetric anatomical assessment new functional approaches and should imaging concepts based on morphologi- or to functional assessment with PET try to implement them in clinical set- cal information. In the future, the pure or MRI. It was concluded that, at present, tings. The arsenal of current functional morphology will remain a central com- there is not sufficient standardisation or MR imaging approaches includes diffu- ponent of multimodal imaging, but will evidence to abandon anatomical assess- sion-weighted imaging (DWI), diffusion be flanked increasingly by functional ment of tumour burden.
    [Show full text]
  • Sodium MRI of the Human Heart at 7.0 T: Preliminary Results
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by MDC Repository Repository of the Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association http://edoc.mdc-berlin.de/14868 Sodium MRI of the human heart at 7.0 T: preliminary results Graessl, A., Ruehle, A., Waiczies, H., Resetar, A., Hoffmann, S.H., Rieger, J., Wetterling, F., Winter, L., Nagel, A.M., Niendorf, T. This is the peer reviewed version of the following article: Graessl, A., Ruehle, A., Waiczies, H., Resetar, A., Hoffmann, S. H., Rieger, J., Wetterling, F., Winter, L., Nagel, A. M., and Niendorf, T. (2015) Sodium MRI of the human heart at 7.0 T: preliminary results. NMR Biomed., 28: 967–975. doi: 10.1002/nbm.3338 which has been published in final form in: NMR in Biomedicine 2015 AUG; 28(8): 967-975 Version of record online: 2015 JUN 17 doi: 10.1002/nbm.3338 Publisher: Wiley-Blackwell This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. page 1 Sodium Magnetic Resonance Imaging of the Human Heart at 7.0 T: Preliminary Results Andreas Graessl 1, Anjuli Ruehle 1, Helmar Waiczies 3, Ana Resetar2, Stefan H. Hoffmann 2, Jan Rieger 3, Friedrich Wetterling 4, Lukas Winter 1, Armin M. Nagel 2 and Thoralf Niendorf 1,5 1 Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany 2 Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany 3 MRI.TOOLS GmbH, Berlin, Germany 4 Trinity College, Institute of Neuroscience, The University of Dublin, Ireland 5 Experimental and Clinical Research Center, A joint cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany Corresponding Author: Prof.
    [Show full text]
  • Magnetic Resonance Imaging on Sodium Nuclei. Potential Medical Applications of 23Na MRI E.G
    Magnetic resonance imaging on sodium nuclei. Potential medical applications of 23Na MRI E.G. Sadykhov1, Yu.A. Pirogov2, N.V. Anisimov2, M.V. Gulyaev2, G.E. Pavlovskaya3,4, T. Meersmann3,4, V.N. Belyaev1, D.V. Fomina2 1National Research Nuclear University “MEPhI”, Moscow, Russia 2Lomonosov Moscow State University, Moscow, Russia 3Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, NG7 2RD, United Kingdom 4NIHR Nottingham Biomedical Centre, NG7 2RD, United Kingdom Yu.A. Pirogov, e-mail: [email protected] N.V. Anisimov, e-mail: [email protected] M.V. Gulyaev, e-mail: [email protected] G.E. Pavlovskaya, e-mail: [email protected] T. Meersmann, e-mail: [email protected] V.N. Belyaev, e-mail: [email protected] D.V. Fomina, e-mail: [email protected] Corresponding author: E.G. Sadykhov; e-mail: [email protected]; ORCID: 0000-0001-8612-4765 Abstract Sodium is a key element in a living organism. The increase of its concentration is an indicator of many pathological conditions. 23Na MRI is a quantitative method that allows to determine the sodium content in tissues and organs in vivo. This method has not yet entered clinical practice widely, but it has already been used as a clinical research tool to investigate diseases such as brain tumors, breast cancer, stroke, multiple sclerosis, hypertension, diabetes, ischemic heart disease, osteoarthritis. The active development of the 23Na MRI is promoted by the growth of available magnetic fields, the expansion of hardware capabilities, and the development of pulse sequences with ultra-short echo time.
    [Show full text]
  • Sodium Magnetic Resonance Imaging of Chemotherapeutic Response in a Rat Glioma
    Magnetic Resonance in Medicine 53:85–92 (2005) Sodium Magnetic Resonance Imaging of Chemotherapeutic Response in a Rat Glioma Victor D. Schepkin,* Brian D. Ross, Thomas L. Chenevert, Alnawaz Rehemtulla, Surabhi Sharma, Mahesh Kumar, and Jadranka Stojanovska This study investigates the comparative changes in the sodium mobility. Given the normal trans-membrane cellular so- MRI signal and proton diffusion following treatment using a 9L dium gradient it would be expected that the tumor sodium rat glioma model to develop markers of earliest response to signal would also exhibit a temporal change following cancer therapy. Sodium MRI and proton diffusion mapping effective therapy. ؍ were performed on untreated (n 5) and chemotherapy 1,3- Intracellular Na concentration is ϳ15 mM, while extra- Animals .(5 ؍ bis(2-chloroethyl)-1-nitrosourea-treated rats (n cellular Na concentration is ϳ140 mM. Consequently, dur- were scanned serially at 2- to 3-day intervals for up to 30 days following therapy. The time course of Na concentration in a ing complete cell destruction a large increase in Na tumor tumor showed a dramatic increase in the treated brain tumor content may take place. Based on the above values along compared to the untreated tumor, which correlates in time with with the fact that the extracellular space is ϳ0.15 of the an increase in tumor water diffusion. The largest posttreatment total water space in brain, there can be theoretically an increase in sodium signal occurred 7–9 days following treat- increase in Na level up to 4 times. An increase of up to ment and correlated to the period of the greatest chemothera- approximately 1.5 times relative to normal brain was de- py-induced cellular necrosis based on diffusion and histopa- tected in study of human brain tumors (14).
    [Show full text]
  • Potential of Sodium MRI As a Biomarker for Neurodegeneration and Neuroinflammation in Multiple Sclerosis
    REVIEW published: 11 February 2019 doi: 10.3389/fneur.2019.00084 Potential of Sodium MRI as a Biomarker for Neurodegeneration and Neuroinflammation in Multiple Sclerosis Konstantin Huhn 1*, Tobias Engelhorn 2, Ralf A. Linker 3 and Armin M. Nagel 4,5 1 Department of Neurology, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany, 2 Department of Neuroradiology, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany, 3 Department of Neurology, University of Regensburg, Regensburg, Germany, 4 Department of Radiology, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany, 5 Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany In multiple sclerosis (MS), experimental and ex vivo studies indicate that pathologic intra- and extracellular sodium accumulation may play a pivotal role in inflammatory as well as neurodegenerative processes. Yet, in vivo assessment of sodium in the Edited by: Tobias Ruck, microenvironment is hard to achieve. Here, sodium magnetic resonance imaging 23 University of Münster, Germany ( NaMRI) with its non-invasive properties offers a unique opportunity to further elucidate Reviewed by: the effects of sodium disequilibrium in MS pathology in vivo in addition to regular proton Aiden Haghikia, based MRI. However, unfavorable physical properties and low in vivo concentrations of University Hospitals of the Ruhr-University of Bochum, Germany sodium ions resulting in low signal-to-noise-ratio (SNR) as well as low spatial resolution Julia Krämer, resulting in partial volume effects limited the application of 23NaMRI. With the recent University of Münster, Germany Wafaa Zaaraoui, advent of high-field MRI scanners and more sophisticated sodium MRI acquisition 23 UMR7339 Centre de Résonance techniques enabling better resolution and higher SNR, NaMRI revived.
    [Show full text]
  • Intracellular Sodium Changes in Cancer Cells Using a Microcavity Array-Based Bioreactor System and Sodium Triple-Quantum MR Signal
    processes Article Intracellular Sodium Changes in Cancer Cells Using a Microcavity Array-Based Bioreactor System and Sodium Triple-Quantum MR Signal Dennis Kleimaier 1,* , Victor Schepkin 2 , Cordula Nies 3, Eric Gottwald 3 and Lothar R. Schad 1 1 Computer Assisted Clinical Medicine, Heidelberg University, 68167 Mannheim, Germany; [email protected] 2 National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32306, USA; [email protected] 3 Institute of Functional Interfaces, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany; [email protected] (C.N.); [email protected] (E.G.) * Correspondence: [email protected]; Tel.: +49-621-383-5126 Received: 6 September 2020; Accepted: 5 October 2020; Published: 9 October 2020 Abstract: The sodium triple-quantum (TQ) magnetic resonance (MR) signal created by interactions of sodium ions with macromolecules has been demonstrated to be a valuable biomarker for cell viability. The aim of this study was to monitor a cellular response using the sodium TQ signal during inhibition of Na/K-ATPase in living cancer cells (HepG2). The cells were dynamically investigated after exposure to 1 mM ouabain or K+-free medium for 60 min using an MR-compatible bioreactor system. An improved TQ time proportional phase incrementation (TQTPPI) pulse sequence with almost four times TQ signal-to-noise ratio (SNR) gain allowed for conducting experiments with 12–14 106 cells × using a 9.4 T MR scanner. During cell intervention experiments, the sodium TQ signal increased to 138.9 4.1% and 183.4 8.9% for 1 mM ouabain (n = 3) and K+-free medium (n = 3), respectively.
    [Show full text]