Flood Warning Manual
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Backwash Sediment Record of the 2009 South
Backwash sediment record of the 2009 South Pacific Tsunami and 1960 Great Chilean Earthquake Tsunami Brieuc Riou, Eric Chaumillon, Catherine Chagué, Pierre Sabatier, Jean-Luc Schneider, John-Patrick Walsh, Atun Zawadzki, Daniela Fierro To cite this version: Brieuc Riou, Eric Chaumillon, Catherine Chagué, Pierre Sabatier, Jean-Luc Schneider, et al.. Back- wash sediment record of the 2009 South Pacific Tsunami and 1960 Great Chilean Earthquake Tsunami. Scientific Reports, Nature Publishing Group, 2020, 10, pp.4149. 10.1038/s41598-020-60746-4. hal- 02544141 HAL Id: hal-02544141 https://hal.archives-ouvertes.fr/hal-02544141 Submitted on 12 Mar 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NoDerivatives| 4.0 International License www.nature.com/scientificreports OPEN Backwash sediment record of the 2009 South Pacifc Tsunami and 1960 Great Chilean Earthquake Tsunami Brieuc Riou1,2*, Eric Chaumillon1, Catherine Chagué3, Pierre Sabatier4, Jean-Luc Schneider2, John-Patrick Walsh5, Atun Zawadzki6 & Daniela Fierro6 Following recent tsunamis, most studies have focused on the onshore deposits, while the ofshore backwash deposits, crucial for a better understanding of the hydrodynamic processes during such events and ofering an opportunity for sedimentary archives of past tsunamis, have mostly been omitted. -
Pacific Study (Focusing on Fiji, Tonga and Vanuatu
1 EXECUTIVE SUMMARY 1.1 Hazard exposure 1.1. Pacific island countries (PICs) are vulnerable to a broad range of natural disasters stemming from hydro-meteorological (such as cyclones, droughts, landslide and floods) and geo-physical hazards (volcanic eruptions, earthquakes and tsunamis). In any given year, it is likely that Fiji, Tonga and Vanuatu are either hit by, or recovering from, a major natural disaster. 1.2. The impact of natural disasters is estimated by the Pacific Catastrophe Risk Assessment and Financing Initiative as equivalent to an annualized loss of 6.6% of GDP in Vanuatu, and 4.3% in Tonga. For Fiji, the average asset losses due to tropical cyclones and floods are estimated at more than 5%. 1.3. In 2014, Tropical Cyclone (TC) Ian caused damage equivalent to 11% to Tonga's GDP. It was followed in 2018 by damage close to 38% of GDP from TC Gita. In 2015, category five TC Pam displaced 25% of Vanuatu's population and provoked damage estimated at 64% of GDP. In Fiji, Tropical Cyclone Winston affected 62% of the population and wrought damage amounting to 31% of GDP, only some three and a half years after the passage of Tropical Cyclone Evan. 1.4. Vanuatu and Tonga rank number one and two in global indices of natural disaster risk. Seismic hazard is an ever-present danger for both, together with secondary risks arising from tsunamis and landslides. Some 240 earthquakes, ranging in magnitude between 3.3 and 7.1 on the Richter Scale, struck Vanuatu and its surrounding region in the first ten months of 2018. -
Our Freshwater
State of the Environment report 2012 | Our freshwater Surface water quality OUR Northland has an extensive network of rivers flowing and muddy because the land is FRESHWATER and streams. None of them are considered dominated by deeply weathered geology and major on a national scale as Northland's fine clay soils. narrow land mass means most rivers are relatively short with small catchments. Most of Northland also has a large number of small, the major rivers flow into harbours, rather than shallow lakes and associated wetlands. Most discharging directly to the open coast which of these have been formed between stabilised means contaminants tend to take longer to sand dunes on the west coast. These dune disperse from these sheltered environments. lakes are grouped on the Aupōuri, Karikari and Poutō peninsulas. Most are between five and The Northern Wairoa River is Northland's 35 hectares in area and are generally less than largest river, draining a catchment area of 15 metres deep. However, Lake Taharoa of the 3650 square kilometres, or 29 percent of Kai Iwi group near Dargaville is one of the Northland's land area. largest and deepest dune lakes in New Zealand. It covers an area of 237ha and is 37m Flows in rivers vary considerably with rainfall deep. There are also a few volcanic and man- and high intensity storms causing flash floods, made lakes. Northland’s largest lake is Lake while prolonged dry spells lead to very low Ōmāpere, which is 1160ha in area and located flows in many smaller catchments. Northland’s to the north of Kaikohe. -
Title Layout
Disaster Risk Assessment and Recovery Utilizing Unmanned Aerial Vehicles in the Pacific Islands. The World Bank UAV4Resilience Project - Update Malcolm Archbold Consultant, World Bank 27 November 2019 Pacific Islands GIS & RS Conference 2019 Introduction Pacific Island nations are some of the most vulnerable to natural disasters • Cyclone Waka – 2001 – Tonga • Cyclone Heta – 2003 – Tonga, Niue, American Samoa • Cyclone Lin – 2008 – Fiji • Cyclone Wilma – 2010 – Solomon Islands, Tonga • Cyclone Ian – 2013 – Fiji, Tonga • Cyclone Pam – 2014 – Vanuatu • Cyclone Winston – 2016 – Fiji • Cyclone Gita – 2018 - Tonga Cyclone Ian, Vanuatu, Jan 2014 The World Bank UAV4Resilence Project • Assess the utility of UAVs in Disaster Management for the SW Pacific • Identify the potential cost-benefits of UAVs for disaster assessment • Develop Standard Operating Procedures for in country operations UAV4Resilence Project UAV Challenge Project – October 2017 Cyclone Gita – Feb 2018 – Tonga Cyclone Gita – 2018 – Tonga Cyclone Gita – 2018 – Tonga Cyclone Gita – 2018 – Tonga Cyclone Gita – 2018 – Tonga OpenAerialMap.org UAV Training and Capacity Building • Commence in May 2019 • Objectives: • Assist in procurement, training and capacity building • Involve Govt Disaster Management organisations and associated Govt Depts/Ministries • Facilitate cooperation and communication between Govt Depts and local Civil Aviation and Air Traffic Control authorities. DroneFlyer Course (2 days) Day 1 Day 2 • Civil Aviation PRAS/drone rules • Review of Day 1 • Airspace • Semi -
The Pacific Experience in Developing Policy and Legislation on Disaster Risk Reduction and Climate Change Adaptation
THE PACIFIC EXPERIENCE IN DEVELOPING POLICY AND LEGISLATION ON DISASTER RISK REDUCTION AND CLIMATE CHANGE ADAPTATION The Pacific Experience in Developing Policy and Legislation on Disaster Risk Reduction and Climate Change Adaptation 1 The Pacific Experience in Developing Policy and Legislation on Disaster Risk Reduction and Climate Change Adaptation THE PACIFIC EXPERIENCE IN DEVELOPING POLICY AND LEGISLATION ON DISASTER RISK REDUCTION AND CLIMATE CHANGE ADAPTATION Contents Glossary iv Chapter 1. Introduction 1 1.1 Scope of the study and acknowledgements 1 1.2 Background 1 1.3 Findings of the institutional and policy analysis on DRR and CCA in the Pacific 3 Chapter 2. Joint National Action Plans on Disaster Risk Management and Climate Change (JNAPs) – Regional Perspective 4 2.1 Background of the JNAPs 4 2.2 Intent to develop the JNAPs 5 2.3 Process to develop the JNAPs 6 2.4 Implementation of the JNAPs 7 Chapter 3. Country Studies – Tonga 10 3.1 Introduction 10 3.2 Joint National Action Plan on Climate Change Adaptation and Disaster Risk Management 2010-2015 10 3.3 Emergency Management Act (2007) 16 Chapter 4. Country Studies – Cook Islands 19 4.1. Introduction 19 4.2 Te Kaveinga Nui – National Sustainable Development Plan 2011-2015 19 4.3 Disaster Risk Management Act (2007) 23 Chapter 5. Country Studies – Solomon Islands 26 5.1 Introduction 26 5.2 Joint framework for resilient development 26 5.3 Process towards the joint framework for resilient development 27 Chapter 6. Conclusions 29 References 32 Annex 1: Interviewees 34 Annex 2: Interview -
Wharekawa Coast 2120 Coastal Processes and Hazards
Wharekawa Coast 2120 Coastal Processes and Hazards Draft report prepared for Waikato Regional Council 26 June 2020 Dr Terry M. Hume Note: This draft report has yet to undergo external peer review. It has been provided as a background paper to inform Wharekawa Coast 2120 Community Workshops, Technical Advisory Group, Joint Working Party and Community Advisory Panel activities. 1 Contents Executive summary 3 1. Introduction 7 2. Background 11 3. Coastal setting and hazard drivers 13 3.1 Geomorphology 3.2 Water levels Astronomical tide Storm surge Storm tides Wave runup and setup Rivers 3.3 Long term sea levels 3.4 Currents and circulation 3.5 Winds 3.6 Waves 3.7 Sediment sources and transport 3.8 Shoreline change 3.9 Vertical land movement 3.10 Human influences on coastal processes 3.11 Climate change and sea level rise 4. Coastal hazards 40 4.1 Coastal inundation Historical coastal inundation events Future potential for coastal inundation events Effects of climate change and sea level rise 4.2 Coastal erosion Shoreline change Coastal erosion processes Effects of climate change and sea level rise 4.3 Tsunami Modelling the tsunami threat Effects of climate change and sea level rise 5. Strategies to mitigate coastal hazards and inform adaptive planning 59 5.1 Predicting hazard events 5.2 Coastal inundation 5.3 Coastal erosion 5.4 Tsunami 5.5 Multi-hazard assessment 5.6 Mangroves – a potential means of hazard mitigation? 5.7 Monitoring and predicting forcing processes 5.8 Documenting coastal hazard events 5.9 Input from citizen science 6. -
MASARYK UNIVERSITY BRNO Diploma Thesis
MASARYK UNIVERSITY BRNO FACULTY OF EDUCATION Diploma thesis Brno 2018 Supervisor: Author: doc. Mgr. Martin Adam, Ph.D. Bc. Lukáš Opavský MASARYK UNIVERSITY BRNO FACULTY OF EDUCATION DEPARTMENT OF ENGLISH LANGUAGE AND LITERATURE Presentation Sentences in Wikipedia: FSP Analysis Diploma thesis Brno 2018 Supervisor: Author: doc. Mgr. Martin Adam, Ph.D. Bc. Lukáš Opavský Declaration I declare that I have worked on this thesis independently, using only the primary and secondary sources listed in the bibliography. I agree with the placing of this thesis in the library of the Faculty of Education at the Masaryk University and with the access for academic purposes. Brno, 30th March 2018 …………………………………………. Bc. Lukáš Opavský Acknowledgements I would like to thank my supervisor, doc. Mgr. Martin Adam, Ph.D. for his kind help and constant guidance throughout my work. Bc. Lukáš Opavský OPAVSKÝ, Lukáš. Presentation Sentences in Wikipedia: FSP Analysis; Diploma Thesis. Brno: Masaryk University, Faculty of Education, English Language and Literature Department, 2018. XX p. Supervisor: doc. Mgr. Martin Adam, Ph.D. Annotation The purpose of this thesis is an analysis of a corpus comprising of opening sentences of articles collected from the online encyclopaedia Wikipedia. Four different quality categories from Wikipedia were chosen, from the total amount of eight, to ensure gathering of a representative sample, for each category there are fifty sentences, the total amount of the sentences altogether is, therefore, two hundred. The sentences will be analysed according to the Firabsian theory of functional sentence perspective in order to discriminate differences both between the quality categories and also within the categories. -
PHT Meeting Booklet
7th Pacific Humanitarian Team Regional Meeting 28-30 October 2014 Holiday Inn Suva, Fiji Contact UN Office for the Coordination of Humanitarian Affairs (OCHA) Regional Office for the Pacific Level 5, Kadavu House Victoria Parade, Suva, Fiji Email: [email protected] or [email protected] Phone: (679) 331 6760 Table of Contents Acronyms ......................................................................................................................................................................................... 4 Agenda at a glance .......................................................................................................................................................................... 5 Tuesday 28 October 2014............................................................................................................................................................. 5 Wednesday 29 October 2014 ....................................................................................................................................................... 6 Thursday 30 October 2014 ........................................................................................................................................................... 7 Introduction ..................................................................................................................................................................................... 8 About the Pacific Humanitarian Team Regional Meeting............................................................................................................. -
Coastal Hazards of the Bay of Plenty
FIELDTRIP 5 COASTAL HAZARDS OF THE BAY OF PLENTY Willem de Lange University of Waikato [email protected] 37 INTRODUCTION This field trip will examine the advances in our understanding of coastal processes and hazards in the context of coastal development in the Bay of Plenty. If time permits, we will visit Bryans Beach, Ohiwa Spit, Ohope Spit, Thornton, Matata, Maketu, Papamoa, Omanu and Mount Maunganui. COASTAL HAZARD ZONES Bruun (1964) defined a development setback line as “an established survey line indicating the limits for certain types of developments” for the purposes of dealing with coastal erosion in Florida. This setback was determined by combining technical, developmental and administrative aspects relating to specific sites. Gibb (1981) subsequently introduced the concept of a coastal hazard zone (CHZ), where a CHZ was defined as “an adequate width of land between any development and the beach”. In practice, the first Coastal Hazard Zones (CHZs) in New Zealand corresponded to the 1 chain (~20 m) zone of riparian rights (Queen's Chain) that extended landward of the mean high water mark. However, it became clear that this distance was insufficient to provide adequate protection from large storms. After examining the maximum shoreline retreat caused by individual storms, in 1972 the Ministry of Works and Development recommended a standard CHZ of 60 m for the whole New Zealand coast (Stuart, 1984). For some problem areas the application of a standard 60 m CHZ did not provide sufficient protection. Instead, it was necessary to develop CHZs that were site specific and involved greater widths of the coastal land. -
LCA Solomon Islands 2011.Pdf
LCA – Solomon Islands Version 1.07,5 Logistics Capacity Assessment Solomon Islands Country Name Solomon Islands Official Name Solomon Islands Assessment Assessment Dates: From February 2011 To March 2011 Name of Assessor Anna Young Title & Position Logistics Officer Email contact [email protected] 1/66 LCA – Solomon Islands Version 1.07,5 1. Table of Contents 1. Table of Contents ................................................................................................................................................................................ 2 2. Country Profile ..................................................................................................................................................................................... 3 2.1. Introduction & Background ........................................................................................................................................................ 3 2.2. Humanitarian Background ......................................................................................................................................................... 4 2.3. National Regulatory Departments/Bureau and Quality Control/Relevant Laboratories ......................................................... 9 2.4. Customs Information ................................................................................................................................................................ 11 3. Logistics Infrastructure ..................................................................................................................................................................... -
11900396 01.Pdf
目 次 目 次 地 図 略語一覧 第1章 調査団派遣の概要 ··················································································································· 1 1-1 調査の背景・経緯 ··············································································································· 1 1-2 調査目的······························································································································· 1 1-3 調査方法······························································································································· 1 1-4 調査対象国··························································································································· 2 1-5 調査期間······························································································································· 2 1-6 調査団構成··························································································································· 2 1-7 調査行程······························································································································· 2 第2章 調査結果の概要 ······················································································································· 7 2-1 大洋州の災害の現状 ··········································································································· 7 2-1-1 フィジーにおける災害の現状 ················································································ 9 2-1-2 バヌアツにおける災害の現状 ················································································ 13 -
Insuring Public Infrastructure Assets Against Damage Caused by Natural Disaster Events
Insuring Public Infrastructure Assets Against Damage Caused by Natural Disaster Events This guideline has been Sponsored by © IPWEA NZ 2014. All rights reserved Acknowledgements IPWEA NZ thanks: NAMS for producing this guideline. NAMS is part of IPWEA NZ, established for the purpose of developing and promoting asset management practice in New Zealand. MWH for writing this guideline. Aon for contributing funding to enable this guideline to be produced. Contact Address IPWEA NZ PO Box 25415 Featherston Street Wellington, 6146 Cover Picture : Hurricane Sandy (2012). Damage caused by record storm surge, flooding and fire to a development on a narrow spit of land, barely above sea level near the John F New Zealand Kennedy Airport in New York. Total damage caused US $68 billion. http://www.ipwea.org/NZ http://www.nams.org.nz Telephone: + 64 496 3253 2 FOREWORD Many local authorities have traditionally insured their assets based on their depreciated replacement value. That’s the cost of reproducing or replacing the asset less deductions for physical deterioration and relevant forms of obsolescence. For example, it might cost $10m to replace a 100-year-old building with one of similar size and quality. But, because the destroyed building has a depreciated replacement value of $2m, the owner will receive only $2m and have to fund the $8m balance themselves. After the 2010/2011 earthquakes, Canterbury local authorities found that while indemnity insurance might be enough for a building or network infrastructure damaged or destroyed in a fire or storm, it may be nowhere near enough for a widespread natural disaster such as a major earthquake, tsunami or volcanic eruption.