11-Keto-Α-Boswellic Acid, a Novel Triterpenoid from Boswellia Spp

Total Page:16

File Type:pdf, Size:1020Kb

11-Keto-Α-Boswellic Acid, a Novel Triterpenoid from Boswellia Spp molecules Article 11-Keto-α-Boswellic Acid, a Novel Triterpenoid from Boswellia spp. with Chemotaxonomic Potential and Antitumor Activity against Triple-Negative Breast Cancer Cells Michael Schmiech 1 , Judith Ulrich 1, Sophia Johanna Lang 1, Berthold Büchele 1, Christian Paetz 2 , Alexis St-Gelais 3 , Tatiana Syrovets 1,*,† and Thomas Simmet 1,*,† 1 Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, 89081 Ulm, Germany; [email protected] (M.S.); [email protected] (J.U.); [email protected] (S.J.L.); [email protected] (B.B.) 2 Max Planck Institute for Chemical Ecology, 07745 Jena, Germany; [email protected] 3 Laboratoire PhytoChemia, Chicoutimi, QC G7J 1H4, Canada; [email protected] * Correspondence: [email protected] (T.S.); [email protected] (T.S.); Tel.: +49-731-500-65604 (T.S.); +49-731-500-65600 (T.S.) † These authors contributed equally to this work. Abstract: Boswellic acids, and particularly 11-keto-boswellic acids, triterpenoids derived from the genus Boswellia (Burseraceae), are known for their anti-inflammatory and potential antitumor efficacy. Although boswellic acids generally occur as α-isomers (oleanane type) and β-isomers (ursane type), 11-keto-boswellic acid (KBA) was found only as the β-isomer, β-KBA. Here, the existence and natural occurrence of the respective α-isomer, 11-keto-α-boswellic acid (α-KBA), is demonstrated for the first time. Initially, α-KBA was synthesized and characterized by high-resolution mass spectrometry Citation: Schmiech, M.; Ulrich, J.; (HR-MS) and nuclear magnetic resonance (NMR) spectroscopy, and a highly selective, sensitive, Lang, S.J.; Büchele, B.; Paetz, C.; and accurate high-performance liquid chromatography coupled with tandem mass spectrometry St-Gelais, A.; Syrovets, T.; Simmet, T. (HPLC-MS/MS) method was developed by Design of Experiments (DoE) using a pentafluorophenyl 11-Keto-α-Boswellic Acid, a Novel stationary phase. This method allowed the selective quantification of individual 11-keto-boswellic Triterpenoid from Boswellia spp. with acids and provided evidence for α-KBA in Boswellia spp. oleogum resins. The contents of α-KBA as Chemotaxonomic Potential and well as further boswellic acids and the composition of essential oils were used to chemotaxonomically Antitumor Activity against classify 41 Boswellia oleogum resins from 9 different species. Moreover, α-KBA exhibited cytotoxicity Triple-Negative Breast Cancer Cells. against three treatment-resistant triple-negative breast cancer (TNBC) cell lines in vitro and also Molecules 2021, 26, 366. https://doi. β org/10.3390/molecules26020366 induced apoptosis in MDA-MB-231 xenografts in vivo. The respective -isomer and the acetylated form demonstrate higher cytotoxic efficacies against TNBC cells. This provides further insights Academic Editor: Lillian Barros into the structure-activity relationship of boswellic acids and could support future developments of Received: 22 November 2020 potential anti-inflammatory and antitumor drugs. Accepted: 5 January 2021 Published: 12 January 2021 Keywords: Boswellia; frankincense; boswellic acid; KBA; AKBA; triterpenoids; breast cancer; TNBC Publisher’s Note: MDPI stays neu- tral with regard to jurisdictional clai- ms in published maps and institutio- 1. Introduction nal affiliations. Trees of the genus Boswellia Roxb. ex Colebr. (Burseraceae) secrete oleogum resins (frankincense), which have been known for centuries for their anti-inflammatory, antibiotic, analgesic, and antitumor activities (Figure1a–c) [ 1]. Meanwhile, more than 25 different Copyright: © 2021 by the authors. Li- Boswellia species have been described, distributed from India throughout the Arabian censee MDPI, Basel, Switzerland. Peninsula and the Horn of Africa to West Africa (Figure1d) [2,3]. This article is an open access article Frankincense, the oleogum resin of Boswellia spp., is a multicomponent mixture distributed under the terms and con- containing 5–15% essential oil, 25–30% ether-insoluble compounds such as polysaccha- ditions of the Creative Commons At- rides, and 55–66% ether-soluble pure resin, containing therapeutically interesting triter- tribution (CC BY) license (https:// penoids [1,4]. Of particular interest are boswellic acids, which belong to the class of creativecommons.org/licenses/by/ pentacyclic triterpenic acids and are exclusively occurring in the genus Boswellia with con- 4.0/). Molecules 2021, 26, 366. https://doi.org/10.3390/molecules26020366 https://www.mdpi.com/journal/molecules Molecules 2021, 26, x FOR PEER REVIEW 2 of 25 Molecules 2021, 26, 366 2 of 25 triterpenic acids and are exclusively occurring in the genus Boswellia with contents up to tents25% [5]. up toBoswellic 25% [5]. acids Boswellic are also acids highly are alsoabun highlydant in abundant cambium in and cambium epidermis, and epidermis,where they whereare assumed they are to assumed be synthesized to be synthesized from amyrins from [6]. amyrins [6]. BoswelliaBoswelliaextracts extracts andand boswellicboswellicacids acidshave havebeen beeninvestigated investigatedintensively intensivelyby by modern modern medicine.medicine. TheirTheir potentialpotential therapeutictherapeutic efficacyefficacy againstagainst severalseveral chronicchronic inflammatoryinflammatory dis-dis- easeseases suchsuch asas bronchialbronchial asthma,asthma, rheumatoidrheumatoid arthritis,arthritis, Crohn’sCrohn’s disease,disease, collagenouscollagenous colitis,colitis, psoriasis,psoriasis, andand osteoarthritisosteoarthritis waswas addressedaddressed inin promisingpromising clinicalclinical pilotpilot studiesstudies [[3].3]. Further-Further- more,more,Boswellia Boswellia extractsextracts andand boswellicboswellic acidsacids induceinduce apoptosisapoptosis inin severalseveral cancercancer cellcell lines,lines, e.g.,e.g., fromfrom brainbrain cancer,cancer, coloncolon cancer,cancer, leukemia, leukemia, and and prostate prostate cancer cancer [ 7[7].]. Here, Here, boswellic boswellic acidsacids interactinteract withwith humanhuman topoisomerases topoisomerases (TOP-I/II (TOP-I/IIαα)) andand thethe proinflammatoryproinflammatory enzyme enzyme 5-lipoxygenase5-lipoxygenase (5-LOX),(5-LOX), molecularmolecular targetstargets forfor cancercancer therapytherapy [8[8,9].,9]. Moreover,Moreover, boswellic boswellic acidsacids inhibit inhibit the the expression expression of of proinflammatory proinflammatory and and prosurvival prosurvival proteins proteins and tumor-relatedand tumor-re- κ growthlated growth factors factors by suppressing by suppressing the activation the activation of the of transcription the transcription factor factor NF- NF-B (nuclearκB (nu- factorclear factor kappa-light-chain-enhancer kappa-light-chain-enhance of activatedr of activated B cells) B [cells)10–12 [10–12].]. FigureFigure 1.1.Boswellia Boswellia treestrees andand theirtheir areasareas ofof distribution.distribution. ( (a)) B. sacra sacra treetree growing growing in in the the dry dry regions regions of Oman. (b) Trees of the species B. frereana prefer rocky terrains of Somalia. (c) Production of of Oman. (b) Trees of the species B. frereana prefer rocky terrains of Somalia. (c) Production of frankincense, the oleogum resin of Boswellia trees. (d) The growth regions of Boswellia spp. extend frankincense, the oleogum resin of Boswellia trees. (d) The growth regions of Boswellia spp. extend from West Africa to India. A particular biodiversity prevails at the Horn of Africa, in and near fromSomalia. West Pictures Africa to reproduced India. A particular with permission biodiversity of prevailsGeorg Huber at the [13]. Horn Map of Africa, data ©2020 in and Google, near Somalia. PicturesORION-ME. reproduced with permission of Georg Huber [13]. Map data ©2020 Google, ORION-ME. Boswellic acids exist in two different structural types: α-boswellic acids, based on the Boswellic acids exist in two different structural types: α-boswellic acids, based on the oleanane structure, and β-boswellic acids, derived from the ursane structure (Figure2)[ 14]. oleanane structure, and β-boswellic acids, derived from the ursane structure (Figure 2) Hence, the corresponding boswellic acids represent constitutional isomers. It was assumed [14]. Hence, the corresponding boswellic acids represent constitutional isomers. It was that the pharmacologically interesting keto-boswellic acids, 11-keto-β-boswellic acid (β- assumed that the pharmacologically interesting keto-boswellic acids, 11-keto-β-boswellic KBA, or commonly abbreviated as KBA) and acetyl-11-keto-β-boswellic acid (β-AKBA, acid (β-KBA, or commonly abbreviated as KBA) and acetyl-11-keto-β-boswellic acid (β- commonly abbreviated as AKBA), only occur as β-isomers [3,7,15,16]. However, in 2005, 70 AKBA, commonly abbreviated as AKBA), only occur as β-isomers [3,7,15,16]. However, years after the discovery of the first boswellic acids, we could demonstrate that in addition in 2005, 70 years after the discovery of the first boswellic acids, we could demonstrate that to β-AKBA, the α-isomer acetyl-11-keto-α-boswellic acid (α-AKBA) naturally occurs in in addition to β-AKBA, the α-isomer acetyl-11-keto-α-boswellic acid (α-AKBA) naturally Boswellia oleogum resins [17,18]. As a result, it was hypothesized that also the deacetylated occurs in Boswellia oleogum resins [17,18]. As a result, it was hypothesized that also the form, 11-keto-α-boswellic acid (α-KBA), might exist, because biosynthesis of α-AKBA deacetylated form, 11-keto-α-boswellic acid (α-KBA), might exist, because
Recommended publications
  • Cop18 Doc. 66
    Original language: English CoP18 Doc. 66 CONVENTION ON INTERNATIONAL TRADE IN ENDANGERED SPECIES OF WILD FAUNA AND FLORA ____________________ Eighteenth meeting of the Conference of the Parties Colombo (Sri Lanka), 23 May – 3 June 2019 Species specific matters TRADE IN BOSWELLIA SPP. (BURSERACEAE) 1. This document has been submitted by Sri Lanka and the United States of America.* Overview 2. The genus Boswellia is the source of the aromatic resin known as frankincense, a semi-solid, yellow-brown substance derived from the gummy sap of the tree. Also known as olibanum, this resin and resin-derived essential oils and alcohol extracts are widely traded internationally and are incorporated into a variety of healthcare, home care, aromatherapy, cosmetics and toiletries, and dietary supplement products. Bark, extracts of bark, wood products, and live plants of these species may also be traded internationally. Boswellia species provide economic and ecological benefits across their range. However, there is growing concern that increasing demand and unregulated international trade of this high value commodity might threaten the survival of these species. This document provides background information to serve as a background and seek input from Parties and insights from the Plants Committee for further information gathering, review, and discussion to better understand the impact of international trade on these species. The species and their status 3. Boswellia species are the sole source of frankincense, also known as olibanum (Coppen 1995; Hassan Alaamri 2012). The genus includes includes about 18 small to medium tree species that are native to the arid tropical regions of Africa, the Middle East, and South Asia.
    [Show full text]
  • TAXON:Boswellia Sacra Flueck. SCORE:-3.0 RATING
    TAXON: Boswellia sacra Flueck. SCORE: -3.0 RATING: Low Risk Taxon: Boswellia sacra Flueck. Family: Burseraceae Common Name(s): frankincense Synonym(s): Boswellia carteri Birdw. Assessor: Chuck Chimera Status: Assessor Approved End Date: 14 Jan 2021 WRA Score: -3.0 Designation: L Rating: Low Risk Keywords: Tree, Unarmed, Palatable, Self-Fertile, Wind-Dispersed Qsn # Question Answer Option Answer 101 Is the species highly domesticated? y=-3, n=0 n 102 Has the species become naturalized where grown? 103 Does the species have weedy races? Species suited to tropical or subtropical climate(s) - If 201 island is primarily wet habitat, then substitute "wet (0-low; 1-intermediate; 2-high) (See Appendix 2) High tropical" for "tropical or subtropical" 202 Quality of climate match data (0-low; 1-intermediate; 2-high) (See Appendix 2) High 203 Broad climate suitability (environmental versatility) y=1, n=0 y Native or naturalized in regions with tropical or 204 y=1, n=0 y subtropical climates Does the species have a history of repeated introductions 205 y=-2, ?=-1, n=0 ? outside its natural range? 301 Naturalized beyond native range y = 1*multiplier (see Appendix 2), n= question 205 n 302 Garden/amenity/disturbance weed n=0, y = 1*multiplier (see Appendix 2) n 303 Agricultural/forestry/horticultural weed n=0, y = 2*multiplier (see Appendix 2) n 304 Environmental weed n=0, y = 2*multiplier (see Appendix 2) n 305 Congeneric weed n=0, y = 1*multiplier (see Appendix 2) n 401 Produces spines, thorns or burrs y=1, n=0 n 402 Allelopathic 403 Parasitic y=1, n=0 n 404 Unpalatable to grazing animals y=1, n=-1 n 405 Toxic to animals y=1, n=0 n 406 Host for recognized pests and pathogens 407 Causes allergies or is otherwise toxic to humans y=1, n=0 n 408 Creates a fire hazard in natural ecosystems y=1, n=0 n 409 Is a shade tolerant plant at some stage of its life cycle y=1, n=0 n Tolerates a wide range of soil conditions (or limestone 410 y=1, n=0 n conditions if not a volcanic island) Creation Date: 14 Jan 2021 (Boswellia sacra Flueck.) Page 1 of 16 TAXON: Boswellia sacra Flueck.
    [Show full text]
  • Research Opinions in Animal & Veterinary Sciences
    www.roavs.com EISSN: 2223-0343 ReseaRch OpiniOns in animal & VeteRinaRy sciences Research article DOI: 10.20490/ROAVS/16-023 Effect of Olibanum (Boswellia thurifera) as a feed additive on performance, some blood biochemical and intestinal morphology in broiler chicks Sayeed Nouraldin Tabatabaei Department of Animal Sciences, Khorasgan (Isfahan) Branch, Islamic Azad University, Isfahan, Iran Article history Abstract Received: 7 Mar, 2016 To determine the effect of Olibanum on performance, some blood biochemical and Revised: 20 May, 2016 intestinal morphology of broiler chicks, a total 360 one day Ross 308 broiler chicks Accepted: 27 May, 2016 were divided into 6 dietary treatments. The chicks were fed a basal diet as control; basal diet with 0.01% (T1), 0.015% (T2), 0.02% (T3), 0.03% (T4) and 0.05% (T5) of Olibanum. No significant difference was found in feed intake, weight gain and feed conversion ratio between the control and treated groups. Serum triglyceride level decreased significantly (P<0.05) in T1, T2 and T3 compared to the control. Villus length of ilium increased significantly (P<0.05) in T2. In conclusion, it seems that inclusion of Olibanum as feed additive may have significantly enhanced effects on performance and some blood biochemical in broiler chicks. Keywords: Performance; broilers; blood parameters; Olibanum; intestinal morphology To cite this article: Tabatabaie SN, 2016. Effect of Olibanum (Boswellia thurifera) as a feed additive on performance, some blood biochemical and intestinal morphology in broiler chicks. Res. Opin. Anim. Vet. Sci., 6(4): 130-134. Introduction possess anti diarrheal effect, which may be related to anti cholinergic mechanisms (Etuk et al., 2006).
    [Show full text]
  • The First Chloroplast Genome Sequence of Boswellia Sacra, a Resin-Producing Plant in Oman
    RESEARCH ARTICLE The First Chloroplast Genome Sequence of Boswellia sacra, a Resin-Producing Plant in Oman Abdul Latif Khan1, Ahmed Al-Harrasi1*, Sajjad Asaf2, Chang Eon Park2, Gun-Seok Park2, Abdur Rahim Khan2, In-Jung Lee2, Ahmed Al-Rawahi1, Jae-Ho Shin2* 1 UoN Chair of Oman's Medicinal Plants & Marine Natural Products, University of Nizwa, Nizwa, Oman, 2 School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea a1111111111 * [email protected] (AAH); [email protected] (JHS) a1111111111 a1111111111 a1111111111 Abstract a1111111111 Boswellia sacra (Burseraceae), a keystone endemic species, is famous for the production of fragrant oleo-gum resin. However, the genetic make-up especially the genomic informa- tion about chloroplast is still unknown. Here, we described for the first time the chloroplast OPEN ACCESS (cp) genome of B. sacra. The complete cp sequence revealed a circular genome of 160,543 Citation: Khan AL, Al-Harrasi A, Asaf S, Park CE, bp size with 37.61% GC content. The cp genome is a typical quadripartite chloroplast struc- Park G-S, Khan AR, et al. (2017) The First ture with inverted repeats (IRs 26,763 bp) separated by small single copy (SSC; 18,962 bp) Chloroplast Genome Sequence of Boswellia sacra, and large single copy (LSC; 88,055 bp) regions. De novo assembly and annotation showed a Resin-Producing Plant in Oman. PLoS ONE 12 the presence of 114 unique genes with 83 protein-coding regions. The phylogenetic analysis (1): e0169794. doi:10.1371/journal.pone.0169794 revealed that the B. sacra cp genome is closely related to the cp genome of Azadirachta Editor: Xiu-Qing Li, Agriculture and Agri-Food indica and Citrus sinensis, while most of the syntenic differences were found in the non-cod- Canada, CANADA ing regions.
    [Show full text]
  • A Case Study of the Frankincense (Boswellia Spp.) Resin Harvesting in Somaliland (Somalia)
    sustainability Article Ecological and Economic Sustainability of Non-Timber Forest Products in Post-Conflict Recovery: A Case Study of the Frankincense (Boswellia spp.) Resin Harvesting in Somaliland (Somalia) Anjanette DeCarlo 1,*, Saleem Ali 2,3 and Marta Ceroni 4 1 The Aromatic Plant Research Center, 230 N 1200 E Suite 100, Lehi, UT 84043, USA 2 Department of Geography and Spatial Science, University of Delaware, 125 Academy St., Newark, DE 19711, USA; [email protected] 3 Scientific and Technical Advisory Panel, Global Environment Facility, United Nations Environment Programme, Nairobi 00100, Kenya 4 Academy for Systems Change, 29 Evenchance Road, Enfield, NH 03748, USA; [email protected] * Correspondence: [email protected] Received: 1 April 2020; Accepted: 22 April 2020; Published: 28 April 2020 Abstract: Non-timber forest products have often been held out as potential tools for conservation and sustainable development, but sustainability assessments are frequently difficult and time-consuming, especially in conflict areas. Thus, rapid assessments can be useful in providing a broad overview of the harvesting system in order to generate meaningful conservation or development recommendations. Here, we use rapid assessment methodology, including semi-structured interviews and direct observations, to examine the frankincense harvesting system in Somaliland in 2010 and again in 2016 and 2017. We identified significant levels of overharvesting, driven by a breakdown of the traditional management system. Demand for resin and resin prices increased dramatically from 2010 to 2017, at the same time as the tree populations were declining, resource tenure security was weakening, drug use was increasing, and the supply chain was becoming more complex.
    [Show full text]
  • Boswellic Acids in Chronic Inflammatory Diseases Review
    H. P. T. Ammon Boswellic Acids in Chronic Inflammatory Diseases Review Abstract CHE: Cholinesterase Con A: Concanavalin A Oleogum resins from Boswellia species are usedin traditional COX1: Cyclooxygenase 1 medicine in India and African countries for the treatment of a COX2: Cyclooxygenase 2 variety of diseases. Animal experiments showed anti-inflamma- cPLA: Phospholipase A tory activity of the extract. The mechanism of this action is due to CRP: C-reactive protein some boswellic acids. It is different from that of NSAID and is EC50: Effective concentration 50 relatedto components of the immune system. The most evident ESR: Erythrocyte sedimentation rate action is the inhibition of 5-lipoxygenase. However, other factors FEV1: Forcedexpiratory volume in 1 sec (liters) such as cytokines (interleukins andTNF- a) andthe complement FLAP: 5-Lipoxygenase activating protein system are also candidates. Moreover, leukocyte elastase and fMLP: n-Formyl-methionyl-leucyl-phenylalanin oxygen radicals are targets. Clinical studies, so far with pilot FVC: Forcedvital capacity (liters) character, suggest efficacy in some autoimmune diseases includ- HAB: Homöopathisches Arzneibuch ing rheumatoidarthritis, Crohn's disease,ulcerative colitis and (German homeopathic pharmacopoeia) bronchial asthma. Side effects are not severe when compared to 5-HETE: 5-Hydroxyeicosatetraenoic acid modern drugs used for the treatment of these diseases. 12-HETE: 12-Hydroxyeicosatetraenoic acid 12-HHT: 12-Hydroxyheptadecatrienoic acid Key words HLE: Human leucocyte elastase Boswellic
    [Show full text]
  • Population Status and Resin Quality of Frankincense Boswellia Neglecta (Burseraceae) Growing in South Omo, Southwestern Ethiopia
    Journal of Sustainable Forestry ISSN: 1054-9811 (Print) 1540-756X (Online) Journal homepage: https://www.tandfonline.com/loi/wjsf20 Population Status and Resin Quality of Frankincense Boswellia neglecta (Burseraceae) Growing in South Omo, Southwestern Ethiopia Alemayehu Hido, Motuma Tolera, Bekele Lemma & Paul H. Evangelista To cite this article: Alemayehu Hido, Motuma Tolera, Bekele Lemma & Paul H. Evangelista (2020): Population Status and Resin Quality of Frankincense Boswellianeglecta (Burseraceae) Growing in South Omo, Southwestern Ethiopia, Journal of Sustainable Forestry, DOI: 10.1080/10549811.2020.1721302 To link to this article: https://doi.org/10.1080/10549811.2020.1721302 Published online: 31 Jan 2020. Submit your article to this journal View related articles View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=wjsf20 JOURNAL OF SUSTAINABLE FORESTRY https://doi.org/10.1080/10549811.2020.1721302 Population Status and Resin Quality of Frankincense Boswellia neglecta (Burseraceae) Growing in South Omo, Southwestern Ethiopia Alemayehu Hidoa, Motuma Tolerab, Bekele Lemmac,d, and Paul H. Evangelistad aDepartment of Forest Research, Southern Agricultural Research Institute, Jinka Agricultural Research Center, Jinka, Ethiopia; bWondo Genet College of Forestry and Natural Resources, Hawassa University, Shashamane, Ethiopia; cDepartment of Chemistry, Hawassa University, Hawassa, Ethiopia; dNatural Resource Ecology Laboratory, Colorado State University, Fort Collins, Colorado, USA ABSTRACT KEYWORDS A study was conducted in South Omo Zone, Ethiopia with the aim of Abundance; essential oil; assessing the population status of the frankincense tree Boswellia frankincense tree; neglecta and investigating its resin essential oil chemical composi- importance value index; tion. The status of populations of B.
    [Show full text]
  • The Monophyly of Bursera and Its Impact for Divergence Times of Burseraceae
    TAXON 61 (2) • April 2012: 333–343 Becerra & al. • Monophyly of Bursera The monophyly of Bursera and its impact for divergence times of Burseraceae Judith X. Becerra,1 Kogi Noge,2 Sarai Olivier1 & D. Lawrence Venable3 1 Department of Biosphere 2, University of Arizona, Tucson, Arizona 85721, U.S.A. 2 Department of Biological Production, Akita Prefectural University, Akita 010-0195, Japan 3 Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, U.S.A. Author for correspondence: Judith X. Becerra, [email protected] Abstract Bursera is one of the most diverse and abundant groups of trees and shrubs of the Mexican tropical dry forests. Its interaction with its specialist herbivores in the chrysomelid genus Blepharida, is one of the best-studied coevolutionary systems. Prior studies based on molecular phylogenies concluded that Bursera is a monophyletic genus. Recently, however, other molecular analyses have suggested that the genus might be paraphyletic, with the closely related Commiphora, nested within Bursera. If this is correct, then interpretations of coevolution results would have to be revised. Whether Bursera is or is not monophyletic also has implications for the age of Burseraceae, since previous dates were based on calibrations using Bursera fossils assuming that Bursera was paraphyletic. We performed a phylogenetic analysis of 76 species and varieties of Bursera, 51 species of Commiphora, and 13 outgroups using nuclear DNA data. We also reconstructed a phylogeny of the Burseraceae using 59 members of the family, 9 outgroups and nuclear and chloroplast sequence data. These analyses strongly confirm previous conclusions that this genus is monophyletic.
    [Show full text]
  • Antibacterial Effect of Thymus Sp. and Boswellia Sp. Extracts on Streptococcus Pneumoniae and Klebsiella Pneumoniae Isolates
    Vol. 17(5), pp. 133-138, 31 January, 2018 DOI: 10.5897/AJB2017.16051 Article Number: 0CCB56455822 ISSN 1684-5315 African Journal of Biotechnology Copyright © 2018 Author(s) retain the copyright of this article http://www.academicjournals.org/AJB Full Length Research Paper Antibacterial effect of Thymus sp. and Boswellia sp. extracts on Streptococcus pneumoniae and Klebsiella pneumoniae isolates Sahar K. Al-Dosary Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, P. O. Box 2233 – Dammam 31311, Kingdom of Saudi Arabia (KSA). Received 30 April, 2017; Accepted 18 October, 2017 The antimicrobial activity of essential oils of Boswellia and thyme (Boswellia sp., and Thyme sp.) was evaluated against 20 clinical isolates of Streptococcus pneumoniae and 5 isolates of Klebsiella pneumoniae. Essential oils were prepared using methanol and water (1:1) with HPLC technique. Antimicrobial activity and minimum inhibitory concentration (MIC) were measured using disk diffusion method against 20 isolates of S. pneumoniae and 5 isolates of K. pneumoniae isolated from different patients. Flavonoids and phenolic compounds are the main constituents of Boswellia and thyme which may have the antimicrobial activity. Boswellia extract was more efficient than thyme extracts; 60% of S. pneumoniae isolates and one K. pneumoniae isolate were sensitive to Boswellia extract, 30% of S. pneumoniae isolates were sensitive to thyme extract, and no effect on K. pneumoniae clinical isolates was observed. Inhibition zones ranged from 1-12 mm with thyme extract, while Boswellia extracts showed 2 to 30 mm diameters of inhibition zone. This study is significant due to the widespread problem of microbial drug resistance and the need for natural antibiotic to fight diseases.
    [Show full text]
  • Trees of Somalia
    Trees of Somalia A Field Guide for Development Workers Desmond Mahony Oxfam Research Paper 3 Oxfam (UK and Ireland) © Oxfam (UK and Ireland) 1990 First published 1990 Revised 1991 Reprinted 1994 A catalogue record for this publication is available from the British Library ISBN 0 85598 109 1 Published by Oxfam (UK and Ireland), 274 Banbury Road, Oxford 0X2 7DZ, UK, in conjunction with the Henry Doubleday Research Association, Ryton-on-Dunsmore, Coventry CV8 3LG, UK Typeset by DTP Solutions, Bullingdon Road, Oxford Printed on environment-friendly paper by Oxfam Print Unit This book converted to digital file in 2010 Contents Acknowledgements IV Introduction Chapter 1. Names, Climatic zones and uses 3 Chapter 2. Tree descriptions 11 Chapter 3. References 189 Chapter 4. Appendix 191 Tables Table 1. Botanical tree names 3 Table 2. Somali tree names 4 Table 3. Somali tree names with regional v< 5 Table 4. Climatic zones 7 Table 5. Trees in order of drought tolerance 8 Table 6. Tree uses 9 Figures Figure 1. Climatic zones (based on altitude a Figure 2. Somali road and settlement map Vll IV Acknowledgements The author would like to acknowledge the assistance provided by the following organisations and individuals: Oxfam UK for funding me to compile these notes; the Henry Doubleday Research Association (UK) for funding the publication costs; the UK ODA forestry personnel for their encouragement and advice; Peter Kuchar and Richard Holt of NRA CRDP of Somalia for encouragement and essential information; Dr Wickens and staff of SEPESAL at Kew Gardens for information, advice and assistance; staff at Kew Herbarium, especially Gwilym Lewis, for practical advice on drawing, and Jan Gillet for his knowledge of Kew*s Botanical Collections and Somalian flora.
    [Show full text]
  • Aromatherapy Journal
    The National Association for Holistic Aromatherapy Aromatherapy Journal The Resin and Balsam Issue • Balsam Essential Oils for Aromatherapy • The Ancient Gift of Myrrh • Frankincense Hydrosol • Honey, Honey, Honey! • Combating the Common Cold with Aromatherapy and Herbs Aromatherapy E-Journal Winter 2019.4 © Copyright 2019 NAHA Aromatherapy Journal Winter 2019.4 2 Aromatherapy Journal A Quarterly Publication of NAHA Winter 2019.4 AJ575 Table of Contents The National Association for Holistic Aromatherapy, Inc. (NAHA) A non-profit educational organization Boulder, CO 80309 Adminstrative Offices 6000 S 5th Ave Pocatello, ID 83204 Phone: 208-232-4911, 877.232.5255 Fax: 919.894.0271 PAGE NAVIGATION: Click on the relevant page number to take you Email: [email protected] a specific article. To go back to the Table of Contents, click on the Websites: www.NAHA.org arrow in the bottom outside corner of the page. www.conference.naha.org Executive Board of Directors Editor’s Note ..........................................................................5 President: Annette Davis Vice President: Balsam Essential Oils for Aromatherapy ..............................9 Jennifer Hochell Pressimone By Cheryl Murphy Public Relations/Past President: Kelly Holland Azzaro Secretary: Rose Chard Combating the Common Cold with Treasurer: Eric Davis Aromatherapy and Herbs ....................................................15 Director Coordinator: Sharon Falsetto By Jaime Vinson Journal Committee The Difference between Resins and Gums for Chief Editor: Sharon Falsetto
    [Show full text]
  • Price List Is Updated Daily
    Disclaimer: This price list is updated daily. Eden Botanicals, LLC Please see our website for the most current information. 3820 Cypress Dr. #12 Petaluma, CA 94954 USA Distilled Essential Oils · Expresed Citrus Oils www.edenbotanicals.com Absolutes - CO2 Extracts · Organic Extracts (Extraits) [email protected] Wildcrafted Essential Oils & Extracts · Rare & Precious Oils Organic Essential Oils · Organic CO2 Extracts · Dilutions Toll Free 1-855-EDENOIL Antioxidants · Carrier Oils · Essence Blends Tel 1-707-509-0041 Containers · Accessories Fax 1-707-949-2526 Eden Botanicals Catalog - Page 1 Updated Sep 24, 2021 COMMON NAME ITEM SAMPLE 5 10 15 ML 30 ML 2 4 8 16 1 (Scientific Name) CODE VIAL ML ML (1/2 OZ) (1 OZ) OZ OZ OZ OZ KG NEWLY ADDED HAS ORIFICE REDUCER IS TINY AGARWOOD 57 $12 $169 / $404 $711 $1,265 $2,299 / / / (Aquilaria crassna) Steam Distilled Essential Oil Use: Aromatherapy/Natural Perfumery/Incense. Rich and complex, sweet, warm, deep, precious woody aroma, shades of smoky, amber-y Origin: Vietnam incense and honeyed tobacco, and animalic notes of musk/castoreum - in a word, amazing! AGARWOOD - 5% 58 $3 $14 / $33 $57 $100 $178 $320 $580 $1,167 (Aquilaria crassna) Steam Distilled Essential Oil Use: Aromatherapy/Natural Perfumery/Incense. Rich and complex, sweet, warm, deep, precious woody aroma, shades of smoky, amber-y Origin: Vietnam incense and honeyed tobacco, and animalic notes of musk/castoreum - in a word, amazing! ALMOND, BITTER 59 $3 $20 / $46 $80 $142 $253 $455 / / (Prunus armeniaca L.) Steam Distilled Essential Oil Use: Natural Perfumery. Prussic acid has been removed, making this oil non-toxic for use in perfumery.
    [Show full text]