Sociality of Spiders of the Genus Anelosimus (Araneae: Theridiidae), with Focus on Species in Southeast and East Asia

Total Page:16

File Type:pdf, Size:1020Kb

Sociality of Spiders of the Genus Anelosimus (Araneae: Theridiidae), with Focus on Species in Southeast and East Asia SOCIALITY OF SPIDERS OF THE GENUS ANELOSIMUS (ARANEAE: THERIDIIDAE), WITH FOCUS ON SPECIES IN SOUTHEAST AND EAST ASIA GOH SEOK PING A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY NATIONAL UNIVERSITY OF SINGAPORE 2014 SOCIALITY OF SPIDERS OF THE GENUS ANELOSIMUS (ARANEAE: THERIDIIDAE), WITH FOCUS ON SPECIES IN SOUTHEAST AND EAST ASIA GOH SEOK PING B.Sc. (Hons.), NUS A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF BIOLOGICAL SCIENCES NATIONAL UNIVERSITY OF SINGAPORE 2014 DECLARATION I hereby declare that this thesis is my original work and it has been written by me in its entirety except the phylogenetic tree in Chapter 1 which was analyzed by Dr. Ingi Agnarsson from the University of Vermont, USA. I have duly acknowledged all the sources of information which have been used in the thesis. This thesis has also not been submitted for any degree in any university previously. Goh Seok Ping 31 May 2014 i ACKNOWLEDGEMENTS To God, the Creator of all things. To my parents, for giving me the freedom and support I needed to follow my interest. To Matthew, thank you for your patience, support, encouragement and ‘naggings’, which I needed. To my family and friends, Thank you for standing by me and believing in me. Your prayers and encouragement have carried me this far. I would like to thank many who have helped me in this dissertation: Special thanks to my supervisor Assoc. Prof. Li Daiqin, for allowing me to pursue my topic of interest and supporting me in the completion of this dissertation. Thanks to fellow lab mates (past and present): Shiyu, Junhao, Diego, Zhanqi, Shichang, Jeremy, Laura, Stanley, Mindy, Joelyn, Jiafen, Ganison and Yuan Ting for making lab a fun filled place and for the company through lunches, tea breaks and late nights. Special thanks to Junhao, Laura, Shiyu, Wendy, Xu Xin and Yingying for enduring the hot sun, downpours, mosquitoes and leeches with me during field trips. Thanks to Mr. Chong and Mdm. Loy, for their help in usage of the S.E.M. I would also like to thank the National Parks Board and Agri-Food & Veterinary Authority of Singapore for the issuing of research and import permits. For those who taught and inspired me, Dr. Ingi Agnarsson and lab members, for an opportunity to work and learn in the lab and for providing me with invaluable advice and specimens from Borneo and Indonesia. David Court, for his help and enthusiasm and in providing specimens from Singapore. Dr. Matjaž Kuntner and members of EZ lab, for the opportunity to participate in 27th European Congress of Arachnology and for inspiring me with his passion for research and his encouragement. Prof. Rudolf Meier and Dr. Kwong Shiyang, for guiding me and getting me started on the daunting task of molecular genetics. ii TABLE OF CONTENTS SUMMARY vi LIST OF TABLES x LIST OF FIGURES xii INTRODUCTION Sociality in the animal kingdom 1 Evolution of sociality in spiders 3 The genus Anelosimus 8 Research objectives 10 References 13 CHAPTER 1: SYSTEMATICS AND PHYLOGENY OF SOUTHEAST AND EAST ASIAN SPIDERS OF THE GENUS ANELOSIMUS (ARANEAE: THERIDIIDAE), WITH THE DESCRIPTIONS OF TEN NEW SPECIES Abstract 28 Introduction 29 Materials and Methods 31 Spiders collection 31 Taxonomy 31 Phylogenetics 32 Results 36 Morphology 36 Phylogeny 36 Natural History 37 Discussion 40 Taxonomy 43 References 123 CHAPTER 2: NATURAL HISTORY AND BEHAVIOURAL OBSERVATIONS OF ANELOSIMUS SPECIES WITH FOCUS ON SOCIAL AND REPRODUCTIVE TRAITS Abstract 129 Introduction 131 Materials and Methods 137 Colony survey in the field 137 Spider collection and maintenance in laboratory 137 Behavioural observations in laboratory 142 Reproductive traits 145 Data analyses 145 Results 148 Colony survey in the field 148 Colony structure 152 Life cycle 153 Maternal care 155 Cooperative prey capture and food sharing 156 Natal dispersal 160 Reproductive traits 161 iii Discussion 171 References 183 CHAPTER 3: SENSORY RECEPTORS AND SOCIALITY IN SPIDERS OF THE GENUS ANELOSIMUS (ARANEAE: THERIDIIDAE) Abstract 192 Introduction 193 Materials and Methods 198 Study subjects 198 Sample preparation 198 Data analyses 199 Results 201 Tactile hair 201 Chemoreceptor 204 Slit sensillum 205 Trichobothrium 207 Discussion 216 References 224 CHAPTER 4: ENVIRONMENTAL FACTORS AFFECTING THE GEOGRAPHICAL DISTRIBUTION OF ANELOSIMUS SPECIES Abstract 233 Introduction 234 Materials and Methods 238 Species and spatial data 238 Environmental data 240 Data processing and analyses 241 Results 244 Species distribution 244 Variation partitioning 245 Environmental variables 246 Discussion 252 References 257 CHAPTER 5: PARASITES AND SOCIALITY OF ANELOSIMUS SPIDERS Abstract 266 Introduction 267 Materials and Methods 272 Nest collection and examination 272 DNA extraction and detection of Wolbachia 276 Data analyses 277 Results 278 Nest contents 278 Wolbachia detection 279 Discussion 284 References 290 iv OVERALL DISCUSSION Overall Discussion 301 Future directions 305 References 307 APPENDIX Table 1 310 Table 2 312 v SUMMARY The formation of groups is pervasive in the animal kingdom. Groups formed may be temporal or permanent and are sometimes made up of related individuals or unrelated ones. The purpose of group formation can also vary from predator defense and brood fostering to increased foraging efficiency. While group formation is generally rare in spiders, the occurrence of closely related social spider groups is exceptionally unusual. Out of 44,000 spider species, less than 25 species have been documented as social. Social behaviour is believed to have evolved 12 times in spiders, of which three derivations have occurred in the family Theridiidae. To date, the genus Anelosimus (Araneae: Theridiidae) consists of 64 nominal species, of which six are social, 14 subsocial and five solitary living, while the sociality of the remaining species are unknown. Whilst intensive work has been conducted on spiders of this genus in North and South America, little is known about Anelosimus in Asia. A comprehensive study of spiders of this genus is important due to its cosmopolitan distribution as well as its composition of spiders with a spectrum of social behaviour. Therefore, the goal of this thesis is to supplement the knowledge of spiders of the genus Anelosimus, with concentration on species found in Southeast and East Asia. While 13 species of Anelosimus has been described in Southeast and East Asia to date, the natural history of many remains undetermined. Moreover, almost half of these species were described before the year 2000. With the advancement of technology, I thus re- described 11 of these species, supplementing past taxonomic descriptions with photographs, updates of missing male/female descriptions and information on natural history. Furthermore, I also included description of nine new species collected from Malaysia and Indonesia. vi In order to gain a better understanding of the evolution of sociality within this genus of spiders, I further examined the natural history of ten species of Anelosimus collected from China, Malaysia and Singapore, with special focus on traits such as habitat and colony structure, maternal care, cooperative behaviour, dispersal and a number of reproductive traits. I determined that seven of these species are solitary living, while the remaining three species are subsocial. Solitary species dispersed from the natal nest by 3rd instar but exhibited prey sharing amongst siblings before dispersal. In contrast, subsocial species disperse from the natal nest before reaching maturity, between 4th to 6th instars. Females of all species studied displayed maternal care through guarding of egg sacs and provision of prey for 2nd instar spiderlings. Interestingly, I found that even solitary Anelosimus possessed traits such as reduced dispersal distance and maternal care that suggest that this group of spiders may be predisposed to the development of social behaviour. In Chapter 3, I looked at the sensory receptors of eight Anelosimus species (six solitary and two subsocial) to determine if a reduced sensitivity to external signals corresponds with the evolution of social behaviour. I found that subsocial species possessed lower mechanoreceptor densities as compared to solitary species although there is no significant difference in total mechanoreceptor densities between solitary and subsocial spiders. Besides morphological and behavioural disposition to the evolution of sociality, abiotic factors in the habitat may also affect the evolution of social behaviour in Anelosimus. Social spiders tend to occur in lowland tropical rainforests, while subsocial species occur at higher latitudes and altitudes. A number of environmental factors similarly vary according to changes in latitudes and altitudes. Therefore, in Chapter 4, I analyzed the worldwide distribution of 35 Anelosimus vii species and determined that solitary species tend to occur in habitats with high rainfall and temperature, subsocial species occur in areas with low rainfall and temperatures while social species are commonly found in areas with high rainfall and intermediate temperatures. Possible explanations for this observation are associated with ability of web structure to withstand rain damage, prey abundance and effects of temperatures on metabolism and growth of spiders. Finally, parasitism has been closely associated with social groups across different animal taxa. The rate of parasitism is therefore examined in Chapter 5. In this chapter, I investigated the prevalence of parasites in nests of eight Anelosimus
Recommended publications
  • A Checklist of the Non -Acarine Arachnids
    Original Research A CHECKLIST OF THE NON -A C A RINE A R A CHNIDS (CHELICER A T A : AR A CHNID A ) OF THE DE HOOP NA TURE RESERVE , WESTERN CA PE PROVINCE , SOUTH AFRIC A Authors: ABSTRACT Charles R. Haddad1 As part of the South African National Survey of Arachnida (SANSA) in conserved areas, arachnids Ansie S. Dippenaar- were collected in the De Hoop Nature Reserve in the Western Cape Province, South Africa. The Schoeman2 survey was carried out between 1999 and 2007, and consisted of five intensive surveys between Affiliations: two and 12 days in duration. Arachnids were sampled in five broad habitat types, namely fynbos, 1Department of Zoology & wetlands, i.e. De Hoop Vlei, Eucalyptus plantations at Potberg and Cupido’s Kraal, coastal dunes Entomology University of near Koppie Alleen and the intertidal zone at Koppie Alleen. A total of 274 species representing the Free State, five orders, 65 families and 191 determined genera were collected, of which spiders (Araneae) South Africa were the dominant taxon (252 spp., 174 genera, 53 families). The most species rich families collected were the Salticidae (32 spp.), Thomisidae (26 spp.), Gnaphosidae (21 spp.), Araneidae (18 2 Biosystematics: spp.), Theridiidae (16 spp.) and Corinnidae (15 spp.). Notes are provided on the most commonly Arachnology collected arachnids in each habitat. ARC - Plant Protection Research Institute Conservation implications: This study provides valuable baseline data on arachnids conserved South Africa in De Hoop Nature Reserve, which can be used for future assessments of habitat transformation, 2Department of Zoology & alien invasive species and climate change on arachnid biodiversity.
    [Show full text]
  • Biogeography of the Caribbean Cyrtognatha Spiders Klemen Čandek1,6,7, Ingi Agnarsson2,4, Greta J
    www.nature.com/scientificreports OPEN Biogeography of the Caribbean Cyrtognatha spiders Klemen Čandek1,6,7, Ingi Agnarsson2,4, Greta J. Binford3 & Matjaž Kuntner 1,4,5,6 Island systems provide excellent arenas to test evolutionary hypotheses pertaining to gene fow and Received: 23 July 2018 diversifcation of dispersal-limited organisms. Here we focus on an orbweaver spider genus Cyrtognatha Accepted: 1 November 2018 (Tetragnathidae) from the Caribbean, with the aims to reconstruct its evolutionary history, examine Published: xx xx xxxx its biogeographic history in the archipelago, and to estimate the timing and route of Caribbean colonization. Specifcally, we test if Cyrtognatha biogeographic history is consistent with an ancient vicariant scenario (the GAARlandia landbridge hypothesis) or overwater dispersal. We reconstructed a species level phylogeny based on one mitochondrial (COI) and one nuclear (28S) marker. We then used this topology to constrain a time-calibrated mtDNA phylogeny, for subsequent biogeographical analyses in BioGeoBEARS of over 100 originally sampled Cyrtognatha individuals, using models with and without a founder event parameter. Our results suggest a radiation of Caribbean Cyrtognatha, containing 11 to 14 species that are exclusively single island endemics. Although biogeographic reconstructions cannot refute a vicariant origin of the Caribbean clade, possibly an artifact of sparse outgroup availability, they indicate timing of colonization that is much too recent for GAARlandia to have played a role. Instead, an overwater colonization to the Caribbean in mid-Miocene better explains the data. From Hispaniola, Cyrtognatha subsequently dispersed to, and diversifed on, the other islands of the Greater, and Lesser Antilles. Within the constraints of our island system and data, a model that omits the founder event parameter from biogeographic analysis is less suitable than the equivalent model with a founder event.
    [Show full text]
  • Vol. 16, No. 2 Summer 1983 the GREAT LAKES ENTOMOLOGIST
    MARK F. O'BRIEN Vol. 16, No. 2 Summer 1983 THE GREAT LAKES ENTOMOLOGIST PUBLISHED BY THE MICHIGAN EN1"OMOLOGICAL SOCIErry THE GREAT LAKES ENTOMOLOGIST Published by the Michigan Entomological Society Volume 16 No.2 ISSN 0090-0222 TABLE OF CONTENTS Seasonal Flight Patterns of Hemiptera in a North Carolina Black Walnut Plantation. 7. Miridae. J. E. McPherson, B. C. Weber, and T. J. Henry ............................ 35 Effects of Various Split Developmental Photophases and Constant Light During Each 24 Hour Period on Adult Morphology in Thyanta calceata (Hemiptera: Pentatomidae) J. E. McPherson, T. E. Vogt, and S. M. Paskewitz .......................... 43 Buprestidae, Cerambycidae, and Scolytidae Associated with Successive Stages of Agrilus bilineatus (Coleoptera: Buprestidae) Infestation of Oaks in Wisconsin R. A. Haack, D. M. Benjamin, and K. D. Haack ............................ 47 A Pyralid Moth (Lepidoptera) as Pollinator of Blunt-leaf Orchid Edward G. Voss and Richard E. Riefner, Jr. ............................... 57 Checklist of American Uloboridae (Arachnida: Araneae) Brent D. Ope II ........................................................... 61 COVER ILLUSTRATION Blister beetles (Meloidae) feeding on Siberian pea-tree (Caragana arborescens). Photo­ graph by Louis F. Wilson, North Central Forest Experiment Station, USDA Forest Ser....ice. East Lansing, Michigan. THE MICHIGAN ENTOMOLOGICAL SOCIETY 1982-83 OFFICERS President Ronald J. Priest President-Elect Gary A. Dunn Executive Secretary M. C. Nielsen Journal Editor D. C. L. Gosling Newsletter Editor Louis F. Wilson The Michigan Entomological Society traces its origins to the old Detroit Entomological Society and was organized on 4 November 1954 to " ... promote the science ofentomology in all its branches and by all feasible means, and to advance cooperation and good fellowship among persons interested in entomology." The Society attempts to facilitate the exchange of ideas and information in both amateur and professional circles, and encourages the study of insects by youth.
    [Show full text]
  • How Non-Nestmates Affect the Cohesion of Swarming Groups in Social Spiders
    Insect. Soc. 55 (2008) 355 – 359 0020-1812/08/040355-5 Insectes Sociaux DOI 10.1007/s00040-008-1011-8 Birkhäuser Verlag, Basel, 2008 Research article How non-nestmates affect the cohesion of swarming groups in social spiders A.-C. Mailleux1, R. Furey2, F. Saffre1, B. Krafft4 and J.-L. Deneubourg1 1 Service dÉcologie Sociale, Campus de la Plaine, CP 231, UniversitØ Libre de Bruxelles, 1050 Brussels, Belgium, e-mail: [email protected], [email protected], [email protected] 2 Harrisburg University of Science and Technology 866, HBG.UNIV 215, Market Street, Harrisburg, Pennsylvania 17101 USA, e-mail: [email protected] 3 UniversitØ Nancy 2, Rue Baron Louis, BP 454 Code postal 54001 Ville Nancy Cedex, France, e-mail: [email protected] Received 30 October 2007; revised 3 April and 19 May 2008; accepted 22 May 2008. Published Online First 17 June 2008 Abstract. In social biology, it is often considered that an Fletcher and Michener, 1987). Unlike most vertebrate organized society cannot exist without exclusion behav- and invertebrate societies (Hepper, 1986; Fletcher and iour towards newcomers from another nest. Unlike most Michener, 1987), social spiders accept artificially intro- vertebrate and invertebrate social species, social spiders duced immigrants without apparent discrimination or such as Anelosimus eximius accept unrelated migrants agonistic behaviour (Evans, 1999). This absence of group without agonistic behaviour. Does it imply that spiders closure prompts some authors to suggest that spiders cannot recognize non-nestmates from nestmates or is cannot identify newcomers (Buskirk, 1981; Howard, there any evidence of recognition without aggression ? In 1982; Darchen and Delage-Darchen, 1986; Pasquet et order to answer this question, we studied behavioural al., 1997).
    [Show full text]
  • Three New Coelotes Spiders (Araneae
    Zoological Studies 40(2): 127-133 (2001) Three New Coelotes Spiders (Araneae: Amaurobiidae) from Taiwan Xinping Wang1,*, I-Min Tso2 and Hai-Yin Wu3 1Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, NY 10024, USA 2Department of Biology, Tunghai University, Taichung, Taiwan 407, R.O.C. 3Institute of Natural Resource Management, Tunghwa University, Hwalian, Taiwan 974, R.O.C. (Accepted January 4, 2001) Xinping Wang, I-Min Tso and Hai-Yin Wu (2001) Three new Coelotes spiders (Araneae: Amaurobiidae) from Taiwan. Zoological Studies 40(2): 127-133. Five species of the spider genus Coelotes were collected from pitfall traps in the Hui-Sun Experimental Forest Station in the central mountains of Taiwan. These include Coelotes xinhuiensis Chen, 1984, Paracoelotes taiwanensis Wang and Ono, 1998; and 3 new species: Coelotes bifida sp. n., C. latus sp. n., and C. longus sp. n. The new species are described and illustrated, and the spinneret morphology and natural history of the new species C. bifida and C. latus are reported. The current number of coelotine spider species in Taiwan is increased to 12. The species, Wadotes primus Fox, 1937, which was described from Hong Kong, is newly transferred to the genus Coelotes (new combination). Key words: Coelotes bifida, Coelotes latus, Coelotes longus, Spinnerets, Hui-Sun Forest Area. Coelotes spiders are widespread and spe- wanese arachnofaunal surveys, many unrecorded cious in East Asia (Yaginuma 1986, Wang et al. species were found in these collections. Among the 1990, Wang and Ono 1998), with currently more than specimens obtained, coelotine spiders were quite 100 described species.
    [Show full text]
  • Arachnida, Solifugae) with Special Focus on Functional Analyses and Phylogenetic Interpretations
    HISTOLOGY AND ULTRASTRUCTURE OF SOLIFUGES Comparative studies of organ systems of solifuges (Arachnida, Solifugae) with special focus on functional analyses and phylogenetic interpretations HISTOLOGIE UND ULTRASTRUKTUR DER SOLIFUGEN Vergleichende Studien an Organsystemen der Solifugen (Arachnida, Solifugae) mit Schwerpunkt auf funktionellen Analysen und phylogenetischen Interpretationen I N A U G U R A L D I S S E R T A T I O N zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) an der Mathematisch-Naturwissenschaftlichen Fakultät der Ernst-Moritz-Arndt-Universität Greifswald vorgelegt von Anja Elisabeth Klann geboren am 28.November 1976 in Bremen Greifswald, den 04.06.2009 Dekan ........................................................................................................Prof. Dr. Klaus Fesser Prof. Dr. Dr. h.c. Gerd Alberti Erster Gutachter .......................................................................................... Zweiter Gutachter ........................................................................................Prof. Dr. Romano Dallai Tag der Promotion ........................................................................................15.09.2009 Content Summary ..........................................................................................1 Zusammenfassung ..........................................................................5 Acknowledgments ..........................................................................9 1. Introduction ............................................................................
    [Show full text]
  • Theridiidae): a Web That Is Not a Snare* B' William G
    ARG YRODES A TTENUA TUS (THERIDIIDAE): A WEB THAT IS NOT A SNARE* B' WILLIAM G. EBERIaARr) Smithsonian Tropical Research Institute and Escuela de Biologia, Universidad de Costa Rica, Ciudad Universitaria, Costa Rica INTRODUCTION Spiders of the large theridiid genus Argyrodes, whose natural history was reviewed by Exline and Levi (1962), seem to have generally abandoned the usual theridiid habit of spinning webs to capture insect prey. A few spin their own webs, but more often they live in the webs of other, larger web-building spiders where they remove prey from the host's web (e.g. Kullmann 1959, Vollrath 1978). The apparently kleptoparasitic species A. trigonum .(trigon- um species group) actually preys on its hosts on occasion. Argyrodes species in the Rhomphaea group have also been found feeding on web spiders, but some in circumstances which suggest a strict predator-prey relationship rather than kleptoparasitism. Exline and Levi (1962) note two observations of A. (R.)fictilium preying on web weavers although fictilium "often make small theridiid webs of their own". I have found an A. (R.)projiciens (O.P. Camb.) feeding on a Metazygia sp. which leaves its web up only during the night, thus making kleptoparasitism unlikely; the state of the prey's web indicated that it was attacked as it was building its web early in the evening. I have also seen an unidentified species feeding on an Araneus (?) sp., a species which leaves its web up only two to three hours in the early evening and then removes it completely. Clyne (1979) showed that a species from the Ariamnes group, Argyrodes colubrinus, uses still another tactic.
    [Show full text]
  • Spiders of the Hawaiian Islands: Catalog and Bibliography1
    Pacific Insects 6 (4) : 665-687 December 30, 1964 SPIDERS OF THE HAWAIIAN ISLANDS: CATALOG AND BIBLIOGRAPHY1 By Theodore W. Suman BISHOP MUSEUM, HONOLULU, HAWAII Abstract: This paper contains a systematic list of species, and the literature references, of the spiders occurring in the Hawaiian Islands. The species total 149 of which 17 are record­ ed here for the first time. This paper lists the records and literature of the spiders in the Hawaiian Islands. The islands included are Kure, Midway, Laysan, French Frigate Shoal, Kauai, Oahu, Molokai, Lanai, Maui and Hawaii. The only major work dealing with the spiders in the Hawaiian Is. was published 60 years ago in " Fauna Hawaiiensis " by Simon (1900 & 1904). All of the endemic spiders known today, except Pseudanapis aloha Forster, are described in that work which also in­ cludes a listing of several introduced species. The spider collection available to Simon re­ presented only a small part of the entire Hawaiian fauna. In all probability, the endemic species are only partly known. Since the appearance of Simon's work, there have been many new records and lists of introduced spiders. The known Hawaiian spider fauna now totals 149 species and 4 subspecies belonging to 21 families and 66 genera. Of this total, 82 species (5596) are believed to be endemic and belong to 10 families and 27 genera including 7 endemic genera. The introduced spe­ cies total 65 (44^). Two unidentified species placed in indigenous genera comprise the remaining \%. Seventeen species are recorded here for the first time. In the catalog section of this paper, families, genera and species are listed alphabetical­ ly for convenience.
    [Show full text]
  • A Review of the Anti-Predator Devices of Spiders* Invaders Away Or Kill and Eat Them
    Bull. Br. arachnol. Soc. (1995) 10 (3), 81-96 81 A review of the anti-predator devices of spiders* invaders away or kill and eat them. The pirate spiders (Mimetidae) that have been studied feed almost J. L. Cloudsley-Thompson exclusively on other spiders, whilst certain Salticidae 10 Battishill Street, (Portia spp.) feed not only upon insects, but sometimes London Nl 1TE also on other jumping spiders, and even tackle large orb-weavers in their webs (see below). Several other Summary families and genera, including Archaeidae, Palpimanus (Palpimanidae), Argyrodes and Theridion (Theridiidae), The predators of spiders are mostly either about the and Chorizopes (Araneidae) contain species that include same size as their prey (arthropods) or much larger (vertebrates), against each of which different types of de- other spiders in their diet. Sexual cannibalism has been fence have evolved. Primary defences include anachoresis, reviewed by Elgar (1992). Other books in which the phenology, crypsis, protective resemblance and disguise, enemies of spiders are discussed include: Berland (1932), spines and warning coloration, mimicry (especially of ants), Bristowe (1958), Cloudsley-Thompson (1958, 1980), cocoons and retreats, barrier webs, web stabilimenta and Edmunds (1974), Gertsch (1949), Main (1976), Millot detritus, and communal webs. Secondary defences are flight, dropping to the ground, colour change and thanatosis, (1949), Preston-Mafham, R. & K. (1984), Savory (1928), web vibration, whirling and bouncing, autotomy, venoms Thomas (1953) and Wise (1993). (For earlier references, and defensive fluids, urticating setae, warning sounds and see Warburton, 1909). deimatic displays. The anti-predator adaptations of spiders The major predators of spiders fall into two cate- are extremely complex, and combinations of the devices gories: (a) those about the same size as their prey (mainly listed frequently occur.
    [Show full text]
  • Spiders in Africa - Hisham K
    ANIMAL RESOURCES AND DIVERSITY IN AFRICA - Spiders In Africa - Hisham K. El-Hennawy SPIDERS IN AFRICA Hisham K. El-Hennawy Arachnid Collection of Egypt, Cairo, Egypt Keywords: Spiders, Africa, habitats, behavior, predation, mating habits, spiders enemies, venomous spiders, biological control, language, folklore, spider studies. Contents 1. Introduction 1.1. Africa, the continent of the largest web spinning spider known 1.2. Africa, the continent of the largest orb-web ever known 2. Spiders in African languages and folklore 2.1. The names for “spider” in Africa 2.2. Spiders in African folklore 2.3. Scientific names of spider taxa derived from African languages 3. How many spider species are recorded from Africa? 3.1. Spider families represented in Africa by 75-100% of world species 3.2. Spider families represented in Africa by more than 400 species 4. Where do spiders live in Africa? 4.1. Agricultural lands 4.2. Deserts 4.3. Mountainous areas 4.4. Wetlands 4.5. Water spiders 4.6. Spider dispersal 4.7. Living with others – Commensalism 5. The behavior of spiders 5.1. Spiders are predatory animals 5.2. Mating habits of spiders 6. Enemies of spiders 6.1. The first case of the species Pseudopompilus humboldti: 6.2. The second case of the species Paracyphononyx ruficrus: 7. Development of spider studies in Africa 8. Venomous spiders of Africa 9. BeneficialUNESCO role of spiders in Africa – EOLSS 10. Conclusion AcknowledgmentsSAMPLE CHAPTERS Glossary Bibliography Biographical Sketch Summary There are 7935 species, 1116 genera, and 79 families of spiders recorded from Africa. This means that more than 72% of the known spider families of the world are represented in the continent, while only 19% of the described spider species are ©Encyclopedia of Life Support Systems (EOLSS) ANIMAL RESOURCES AND DIVERSITY IN AFRICA - Spiders In Africa - Hisham K.
    [Show full text]
  • Araneae, Theridiidae)
    Phelsuma 14; 49-89 Theridiid or cobweb spiders of the granitic Seychelles islands (Araneae, Theridiidae) MICHAEL I. SAARISTO Zoological Museum, Centre for Biodiversity University of Turku,FIN-20014 Turku FINLAND [micsaa@utu.fi ] Abstract. - This paper describes 8 new genera, namely Argyrodella (type species Argyrodes pusillus Saaristo, 1978), Bardala (type species Achearanea labarda Roberts, 1982), Nanume (type species Theridion naneum Roberts, 1983), Robertia (type species Theridion braueri (Simon, 1898), Selimus (type species Theridion placens Blackwall, 1877), Sesato (type species Sesato setosa n. sp.), Spinembolia (type species Theridion clabnum Roberts, 1978), and Stoda (type species Theridion libudum Roberts, 1978) and one new species (Sesato setosa n. sp.). The following new combinations are also presented: Phycosoma spundana (Roberts, 1978) n. comb., Argyrodella pusillus (Saaristo, 1978) n. comb., Rhomphaea recurvatus (Saaristo, 1978) n. comb., Rhomphaea barycephalus (Roberts, 1983) n. comb., Bardala labarda (Roberts, 1982) n. comb., Moneta coercervus (Roberts, 1978) n. comb., Nanume naneum (Roberts, 1983) n. comb., Parasteatoda mundula (L. Koch, 1872) n. comb., Robertia braueri (Simon, 1898). n. comb., Selimus placens (Blackwall, 1877) n. comb., Sesato setosa n. gen, n. sp., Spinembolia clabnum (Roberts, 1978) n. comb., and Stoda libudum (Roberts, 1978) n. comb.. Also the opposite sex of four species are described for the fi rst time, namely females of Phycosoma spundana (Roberts, 1978) and P. menustya (Roberts, 1983) and males of Spinembolia clabnum (Roberts, 1978) and Stoda libudum (Roberts, 1978). Finally the morphology and terminology of the male and female secondary genital organs are discussed. Key words. - copulatory organs, morphology, Seychelles, spiders, Theridiidae. INTRODUCTION Theridiids or comb-footed spiders are very variable in general apperance often with considerable sexual dimorphism.
    [Show full text]
  • EFFECTS of COLONY SIZE on WEB STRUCTURE and BEHAVIOR of the SOCIAL SPIDE R MALLOS GREGALIS (ARANEAE, DICTYNIDAE)1 William James
    Tietjen, W. J. 1986 . Effects of colony size on web structure and behavior of the social spider Mallos gregalis (Araneae, Dictynidae) . J. Arachnol ., 14 :145-157 . EFFECTS OF COLONY SIZE ON WEB STRUCTURE AND BEHAVIOR OF THE SOCIAL SPIDE R MALLOS GREGALIS (ARANEAE, DICTYNIDAE) 1 William James Tietjen Department of Biolog y Lindenwood College Saint Charles, Missouri 63301 U .S.A . ABSTRACT Groups of size 1, 2, 5, 10 and 20 Mallos gregalis were monitored under laboratory conditions wit h the aid of a computer-controlled digital camera . Data collected included a measure of the density an d complexity of the silk comprising the nest, as well as activity levels and occupation of space withi n experimental arenas . Average web density and complexity was related to colony size, with the larger colonies building more complex nests . I suggest that the greater web complexity would allow larger colonies greate r opportunities for the exploitation of marginal habitats . The webs built by the two smaller groupings were similar to those built by solitary dictynids and indicated that M. gregalis may be a facultatively - social spider . An estimate of mean silk deposition per spider indicated that members of the large r colonies exerted less effort in web construction than spiders in the two smaller groupings . Colony activity was related to group size and exhibited evidence for a group effect in the patternin g of activity bouts . It is possible that this would aid in coordinating colony behavior . Measures of both web structure and colony activity indicated that the changes in colony behavior were not due to a simple arithmetic effect (e .g., size 20 colonies were neither twice as active nor were their webs twic e as complex as colonies of size 10) .
    [Show full text]