Macedonian pharmaceutical bulletin, 61 (1) 19 - 26 (2015) ISSN 1409 - 8695 UDC: 582.929.4-113.55(496.5) 582.929.4-113.55(495) Original scientific paper

Essential oil composition of fruticosa Mill. populations from Balkan Peninsula

Ivana Cvetkovikj*, Gjoshe Stefkov, Marija Karapandzova and Svetlana Kulevanova

1Institute of Pharmacognosy, Faculty of Pharmacy, Ss. Cyril and Methodius University, Majka Tereza 47, 1000 Skopje, R. Macedonia

Received: January 2015; Accepted: April 2015

Abstract

The aim of this study was to investigate the yield and chemical composition of the essential oil (EO) isolated from 19 different populations of Salvia fruticosa Mill. (Greek sage, ) from nine different regions of Albania and Greece. The EO yield ranged from 0.25% to 4.00%. Eighteen of the total analyzed populations met the Ph.Eur.8.0 minimal requirements concerning the essential oil yield. Performing GC/FID/MS analyses, a total of 75 components were detected, representing 79.15-97.83% of the oils. Thirteen components (α-pinene, camphene, β-pinene, myrcene, 1,8-cineole, γ-terpinene, cis-thujone, trans-thujone, camphor, terpinene-4-ol, trans-(E)-caryophyllene, aromadendrene and α-humulene) were identified in all samples, with 1,8-cineole as a predominant constituent. Statistical analysis showed that the geographical origin of did not have significant influence on the variation in chemical composition of the Greek sage essential oil.

Key words: Greek sage, yield, GC/FID/MS, essential oil composition, Greece, Albania

Introduction ta, Spain and Portugal. S. fruticosa is the most widespread sage species in Greece, forming extended populations in The genus Salvia L. from Lamiaceae is one of the larg- littoral areas of the mainland, as well as the Ionian and Ae- est genera in this family and includes around 1000 spe- gean islands (Kintzios, 2000). cies that have almost cosmopolitan distribution (Kintzios, The leaves of this herb have been used for treatment of 2000). It is an important aromatic genus which is frequent- various skin, blood, and infectious ailments as well as ail- ly used as herbal tea and as a source of essential oils and ments of the digestive, circulatory and respiratory systems aroma chemicals (Karamanos, 2008). With significant eco- (Ali-Shtayeh et al., 2000; Carmona et al., 2005). Greek nomic importance are the pharmacopoeial herbs: S. fruti- sage posses hypoglycemic effect and can be used against cosa Mill. (Syn. S. triloba L. or Greek sage) and S. offici- inflammations, hepatitis, and tuberculosis (Pitarokili et al., nalis L. (Dalmatian, common or garden sage) (Kosar et al., 2003). On the other hand the essential oil (EO) showed 2005). good antimicrobial activity against food borne bacteria S. fruticosa is an endemic species of the Eastern Med- (Longaray Delamare et al., 2007) and has antifungal activ- iterranean basin (Ali-Shtayeh et al., 2000; Carmona et ity (Pitarokili et al., 2003). Numerous investigations have al., 2005; Elmann et al., 2009). Naturalized can be found been reported dealing with the essential oil composition in parts of the Western Mediterranean regions like Mal- and their biological activity, often referring to the S. offi- cinalis species (Pierozan et al., 2009; Giweli et al., 2013). However, to the best of our knowledge, there is limit- * [email protected], [email protected] ed information on the chemical composition of the essen- 20 Ivana Cvetkovikj, Gjoshe Stefkov, Marija Karapandzova and Svetlana Kulevanova tial oil isolated from S. fruticosa from Balkan Peninsula. Analysis of essential oils’ chemical composition Therefore the aim of the present work was to assess and EO samples in hexane (1:1000) were analyzed on Ag- compare the oil yield and composition from Greece and ilent 7890А Gas Chromatography system equipped with Albania as native area of distribution of this herb. FID detector and Agilent 5975C mass spectrometer. For that purpose, HP-5ms capillary column (30 m x 0.25 mm, Experimental film thickness 0.25 μm) was used. Analytical conditions were as follows: oven temperature at 60 °C (0 min), 3 °C/ collection min to 240 °C (1 min) and at the end increased to 280 °C at a rate of 10 °C/min (1 min); helium as carrier gas at a flow Plant samples were collected from 19 different (18 rate of 1 ml/min; injector temperature 220 °C and that of indigenous and one non-indigenous) populations of Sal- the FID detector 270 °C. One ml of each sample was inject- via fruticosa Mill., Lamiaceae, from nine different loca- ed at a split ratio of 1:1. The mass spectrometry conditions tions from Greece and Albania. The leaves were air dried, were: ionization voltage 70 eV, ion source temperature 230 packed in paper bags and kept in a dark and cold place un- °C, transfer line temperature 280 °C and mass range from til analysis. Plant identity was verified and voucher spec- 50 - 550 Da. The MS was operated in scan mode. imens were deposited at the Institute of Pharmacognosy, Faculty of Pharmacy, Skopje, R. Macedonia (Table 1). Identification of the components

Essential oil isolation The compounds were identified on the basis of litera- ture (Adams, 2007) and estimated Kovat′s (retention) indi- The EOs were isolated from dried, cut leaves, by hydro- ces that were determined using a mixture of homologous distillation in all-glass Clevenger apparatus for 2 hours ac- series of normal alkanes (C9-C25) analyzed under Auto- cording to pharmacopoeial method (Ph. Eur. 8.0., 2014). mated Mass Spectral Deconvolution and Identification The oil yield was measured and presented in Table 1. System (AMDIS)’ conditions. Confirmation was made by

Table 1. Sampling localities and essential oil (EO) yields of 19 Salvia fruticosa Mill. populations from Bal- kan Peninsula

Latitude Longitude Vouchers EO Yield Population Country (Code) Locality 1) (N) (E) specimens [%] ALB 1 Albania (ALB) Porto Palermo-Qeparo 1 42°03’09” 19°49’45” ALBStPQ1/11 2.80 ALB 2 Albania (ALB) Porto Palermo-Qeparo 2 42°03’09” 19°49’45” ALBStPQ2/11 2.60 ALB 3 Albania (ALB) Porto Palermo-Qeparo 3 42°03’09” 19°49’45” ALBStPQ3/11 2.75 ALB 4 Albania (ALB) Porto Palermo-Qeparo 4 42°03’09” 19°49’45” ALBStPQ4/11 3.40 ALB 5 Albania (ALB) Llogora 40°11’55” 19°34’21” ALBStL1/11 0.25 ALB 6 Albania (ALB) Palase 40°09’54” 19°37’29” ALBStP2/11 2.45 ALB 7 Albania (ALB) Dhermi 40°09’00” 19°38’00” ALBStD3/11 2.10 ALB 8 Albania (ALB) Borsh 40°03’45” 19°51’24” ALBStB4/11 1.70 ALB 9 Albania (ALB) Ilias-Vuno 40°08’23” 19°41’37” ALBStIv5/11 2.05 ALB 10 Albania (ALB) / / / ALBStK11/13 1.80 ALB 11 Albania (ALB) Dhermi 40°09’00” 19°38’00” ALBStD1ju/13 2.50 ALB 12 Albania (ALB) Dhermi 40°09’00” 19°38’00” ALBStD1m/14 1.60 ALB 13 Albania (ALB) Dhermi 40°09’00” 19°38’00” ALBStD2ju/14 4.00 GR 14 Greece (GR) Kavoussi 1 35°07’00” 25°51’00” GRStK1/11 1.60 GR 15 Greece (GR) Kavoussi 3 35°07’00” 25°51’00” GRStK3/11 1.60 GR 16 Greece (GR) Rhizoscaro 1 / / GRStR1/11 3.60 GR 17 Greece (GR) Rhizoscaro 2 / / GRStR2/11 3.85 GR 18 Greece (GR) Vrysses 2 35°21’45” 24°15’11” GRStV2/11 1.20 GR 19 Greece (GR) Vrysses 3 35°21’45” 24°15’11” GRStV3/11 2.40

Maced. pharm. bull., 61 (1) 19 - 26 (2015) Essential oil composition of Salvia fruticosa Mill. populations from Balkan Peninsula 21 comparing the mass spectra of the components present in EO composition the EOs with the reference spectra obtained from Nist, Wi- Data analysis of the EO chemical composition re- ley and Adams mass spectra libraries. Quantification of the vealed six different classes of components: monoterpene EOs components was performed using the normalization hydrocarbons (MH), oxygen-containing monoterpenes method of the GC/FID peak areas without any correction (OMT), sesquiterpene hydrocarbons (SH), oxygen-con- factors. taining sesquiterpenes (OST), diterpenes (D) and non-ter- pene components (NT). Generally, OMT was dominant Statistical analysis fractions, present with more than 45% in all tested sam- ples, followed by smaller amounts of MT or ST (Table 2). The significance of differences between oil samples On the other hand, the diterpene chemical class was absent was tested by analysis of variance (ANOVA) using the from two Greek populations (GR 14 and GR 17). package Excel for Windows 7 and represented by critical GC/FID/MS analyses of the isolated EOs revealed a value of an F-test (F) and statistical significance (p). ANO- total of 75 compounds representing 79.15-97.83% of the VA was performed on the geographical origin of plants as oils (Table 2). Thirteen components were detected in all grouping factor. analyzed EOs (Figure 1) with 1,8-cineole as predominant constituent. Eight components: α-pinene (0.36-6.03%), Results and discussion camphene (tr.-6.04%), β-pinene (tr.-6.14%), 1,8-cineole (23.71-58.95%), cis-thujone (1.17-10.37%), trans-thujone Essential oil yield (0.95-4.07%), camphor (tr.-19.19%) and trans-(E)-caryo- phyllene (0.57-15.96%) that were found in amounts high- The EO yield of 18 indigenous and one non-indige- er than 3.00% were considered as principal components of nous (commercial) population of Greek sage from nine Greek sage essential oils. different locations from Greece and Albania ranged from Our results are in full agreement with Giweli et al. 2.50 ml/kg to 40.00 ml/kg (0.25-4.00 %) (Table 1). The (2013) who reported high amounts of 1,8-cineole, followed highest yield was recorded in two S. fruticosa populations, by camphor, β-pinene, myrcene and α-pinene in their sam- one from Dhermi, Albania (ALB 13) and the other popula- ples of S. triloba provided from Libya. Additionally, Kosar tion from Vrysses, Greece (GR 17), while the lowest was et al. (2005), confirmed 1,8-cineole and camphor as pre- found in the Albanian population (ALB 5) from Llogora. dominant constituents in their Turkish sage samples and Eighteen of the analyzed 19 populations met the Ph.Eur.8.0 the same applies for S. fruticosa from Greece (Pitarokili et minimal requirements concerning the essential oil yield. al., 2003; Pavlidou et al., 2004). On the other hand, Longa-

100.00 -Humulene 90.00 Aromadendrene 80.00 trans-E-Caryophyllene Terpinene-4-ol 70.00 Camphor 60.00 trans-Thujone

50.00 cis-Thujone -Terpinene 40.00 1,8-Cineole 30.00 Myrcene -Pinene Content of components (%) 20.00 Camphene 10.00 -Pinene 0.00 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 B B B B B B B B B GR GR GR GR GR GR AL AL AL AL AL AL AL AL AL ALB ALB ALB ALB Populations of Salvia fruticosa Mill.

Fig. 1. Thirteen predominant EO constituents identified in all 19 populations ofS. fruticosa Mill.

Макед. фарм. билт., 61 (1) 19 - 26 (2015) 22 Ivana Cvetkovikj, Gjoshe Stefkov, Marija Karapandzova and Svetlana Kulevanova ------tr. 0.11 0.11 3.24 0.25 2.73 2.05 0.21 0.73 0.28 0.23 8.61 2.87 1.85 0.35 1.52 0.45 3.58 49.89 GR 19 ------tr. tr. tr. 0.11 1.13 2.97 0.75 2.69 2.22 0.24 0.79 0.27 0.16 0.15 0.96 2.58 1.19 6.10 1.54 0.50 5.26 38.63 GR 18 ------0.11 4.22 0.35 6.14 1.90 0.10 0.18 0.51 0.15 0.34 2.63 4.74 1.99 1.65 0.30 6.39 55.95 GR 17 ------tr. tr. 3.26 0.22 0.12 5.78 1.70 0.23 0.51 0.22 0.44 0.10 6.05 3.30 1.14 0.45 0.43 5.80 58.27 GR 16 ------tr. tr. tr. 1.92 0.36 0.82 0.21 0.14 0.21 0.40 6.55 2.28 1.77 0.15 1.66 0.44 3.18 23.71 GR 15 ------tr. tr. tr. tr. tr. tr. tr. 2.79 2.08 1.36 9.76 3.54 2.49 1.50 0.66 3.61 43.38 GR 14 ------tr. tr. tr. 0.28 2.26 1.93 0.15 3.52 1.57 0.20 0.43 0.49 0.15 0.37 2.29 1.89 8.52 0.47 0.43 3.26 37.36 ALB 13 ------tr. tr. tr. 0.43 3.96 1.02 4.46 2.69 0.67 0.60 1.83 2.82 5.24 0.86 0.46 2.65 36.89 ALB 12 ------tr. tr. 4.33 6.03 3.38 2.96 0.27 0.18 0.46 0.10 0.38 0.42 2.54 2.05 0.20 0.60 2.06 39.24 18.62 ALB 11 ------tr. 0.20 0.13 4.44 4.28 3.53 2.62 0.19 0.40 0.28 0.12 0.18 0.62 1.89 0.96 2.30 0.62 2.74 45.02 14.58 ALB 10 ------tr. tr. tr. tr. 0.11 0.11 0.55 5.57 4.50 3.03 2.71 0.85 0.60 0.38 2.23 1.28 0.39 0.68 2.71 47.13 10.10 ALB 9 ------tr. tr. 0.11 2.53 0.61 3.04 2.17 0.91 0.65 0.14 0.14 0.18 2.02 4.07 5.97 0.55 2.29 43.54 10.37 ALB 8 Mill. populations ------tr. 4.56 3.14 2.76 1.78 0.10 0.17 0.34 0.50 0.15 0.12 0.13 0.83 3.87 1.10 9.37 2.88 47.43 ALB 7 ------tr. tr. 0.22 4.69 5.24 3.41 1.74 0.10 0.57 0.60 0.13 0.14 0.76 3.09 0.95 0.22 2.53 0.74 2.26 42.93 16.60 ALB 6 ------Salvia fruticosa 6.03 6.04 3.20 3.03 1.22 0.20 0.19 0.41 1.17 1.68 3.82 0.97 5.69 17.21 19.19 ALB 5 ------tr. tr. tr. 3.67 1.45 2.87 2.10 0.12 0.10 0.86 0.29 4.34 1.41 5.80 0.43 2.50 46.10 ALB 4 ------tr. 0.11 4.32 4.42 2.22 2.60 0.10 0.13 0.87 0.45 3.68 2.30 2.78 0.64 2.23 36.85 16.33 ALB 3 ------tr. tr. 0.11 2.45 0.56 2.58 2.85 0.77 0.10 0.56 2.67 1.65 2.87 0.48 2.34 51.16 ALB 2 ------0.11 1.75 0.51 4.04 2.07 0.15 0.77 0.17 0.14 0.39 4.03 1.72 3.13 0.56 2.19 43.64 ALB 1 2) 924 929 931 935 950 977 979 993 1111 1120 1130 1139 1149 1160 1164 1169 1180 1189 1194 1007 1019 1027 1031 1034 1045 1061 1070 1091 1098 KIE 1) 921 924 926 932 946 969 974 988 1112 1101 1122 1134 1141 1155 1158 1165 1174 1179 1186 1002 1014 1020 1024 1026 1050 1054 1065 1086 1095 KIL - -Thujone -Pinocam Components -3-Thujanol -Sabinene hydrat -Thujone Thujene Pinene Phelandrene Terpinene Campholenal Terpineol Pinene Terpinene Tricyclene α- Cymen α- Camphene Sabinene β- Myrcene α- α- (o) p-Cymene Limonene 1,8-Cineole (E)-β-Ocimene γ- cis Terpinolene Linalool cis trans α- iso Camphor Isoborneol trans phone Borneol Terpinene-4-ol p-Cymen-8-ol α- 1 2 3 4 5 6 7 8 9 11 10 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 No. Table 2. Chemical composition (%) of the essential oils from 19 Table

Maced. pharm. bull., 61 (1) 19 - 26 (2015) Essential oil composition of Salvia fruticosa Mill. populations from Balkan Peninsula 23 ------tr. tr. tr. tr. 0.21 3.14 0.16 0.27 1.63 1.16 1.36 0.12 GR 19 ------0.11 0.11 0.12 0.14 7.00 0.36 1.62 0.15 0.36 0.45 GR 18 ------tr. tr. tr. 0.11 0.16 0.76 0.20 1.03 0.12 GR 17 ------tr. tr. 0.22 1.81 0.12 0.77 GR 16 ------tr. 0.26 0.65 3.98 0.13 0.16 0.14 3.85 0.46 3.00 0.18 0.54 0.80 GR 15 ------0.70 5.25 3.65 1.05 2.31 0.59 0.60 GR 14 ------0.35 1.39 0.16 1.41 2.55 0.35 0.14 0.55 12.39 ALB 13 ------4.53 1.12 0.80 2.88 15.96 ALB 12 ------tr. tr. tr. 0.20 0.32 0.63 0.55 1.38 1.83 0.19 0.66 0.17 ALB 11 ------tr. tr. 0.11 0.10 0.49 1.92 0.24 0.65 ALB 10 ------tr. tr. tr. tr. 0.11 0.43 0.16 0.16 2.08 0.69 0.19 0.29 0.13 ALB 9 ------tr. 0.16 4.03 4.21 0.17 0.26 0.57 0.48 0.21 0.16 ALB 8 ------tr. tr. tr. 0.12 1.14 0.20 0.12 2.68 1.62 0.50 0.56 0.16 0.19 ALB 7 ------tr. tr. 0.34 0.99 0.33 2.78 0.67 0.35 0.41 0.10 0.13 ALB 6 ------0.38 0.33 3.05 1.25 0.49 0.42 0.19 ALB 5 ------tr. tr. tr. tr. tr. tr. 0.21 0.12 0.28 0.16 2.21 0.69 0.38 1.05 0.23 ALB 4 ------tr. tr. tr. tr. 0.19 0.56 1.24 1.31 0.33 0.83 0.16 ALB 3 ------tr. tr. tr. 0.14 3.29 1.63 0.74 0.59 0.14 0.20 ALB 2 ------tr. tr. tr. 0.13 2.91 2.59 0.71 0.92 0.19 0.24 ALB 1 2) / / / / 1200 1220 1260 1289 1293 1301 1321 1339 1340 1361 1365 1379 1382 1396 1412 1423 1432 1455 1458 1454 1465 1480 1481 1493 1498 1499 KIE 1) / / 1194 1214 1254 1284 1289 1298 1316 1334 1335 1346 1356 1359 1374 1373 1374 1390 1405 1417 1430 1439 1452 1458 1464 1478 1479 1489 1496 1496 KIL - - - -E-Caryoph -sesquithujene -(E)-Caryoph Aromaden Components Terpenyl acetate Terpenyl Yaglene Copaene Humulene Copaene Selinene epi epi Terpenyl acetate Terpenyl Elemene Murrolene - Myrtenol Linalyl formate Linalyl acetate Bornyl acetate Thymol Carvacrole δ- Linalyl proprionate δ- α- Eugenol Neryl acetate Isoledene α- α- n.i. 1 7- sesquithujene trans yllene β n.i. 2 Aromadendrene α- allo- drene 9- yllene γ- ar-Kurkumen β- Valencene Viridiflorene 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 No.

Макед. фарм. билт., 61 (1) 19 - 26 (2015) 24 Ivana Cvetkovikj, Gjoshe Stefkov, Marija Karapandzova and Svetlana Kulevanova ------/ tr. tr. tr. 0.11 0.24 0.72 1.56 0.72 2.93 9.94 5.05 3.00 2.93 72.47 93.39 GR 19 GR 19 ------/ 0.10 0.28 0.74 0.06 0.29 2.39 3.38 0.63 3.94 GR 18 6.69 3.94 11.48 11.54 56.76 90.41 GR 18 ------tr. tr. 0.18 0.56 3.15 0.65 / / GR 17 2.11 4.54 14.00 73.92 94.57 GR 17 ------tr. 0.16 0.18 1.16 1.74 0.52 0.27 GR 16 / 2.86 3.60 0.27 12.58 75.66 94.97 GR 16 ------0.11 0.13 0.31 0.82 0.22 2.98 9.95 0.27 6.41 GR 15 / 3.66 6.41 45.03 10.45 13.60 79.15 GR 15 ------0.73 1.99 5.39 GR 14 / / 4.87 8.93 7.38 72.25 93.43 GR 14 ------tr. 0.21 0.19 0.32 5.51 2.75 ALB 13 / 6.37 2.75 10.98 56.33 17.41 93.84 ALB 13 ------4.42 3.54 ALB 12 / 8.95 3.54 13.83 50.75 20.76 97.83 ALB 12 ------tr. 0.15 0.70 0.10 1.21 0.13 0.50 0.66 ALB 11 0.50 3.00 2.14 0.66 18.09 68.81 93.20 ALB 11 ------tr. 0.18 1.25 2.73 0.34 0.16 1.37 ALB 10 0.20 2.92 4.66 1.37 16.17 69.32 94.64 ALB 10 ------tr. tr. tr. 0.19 0.94 2.98 0.51 1.71 ALB 9 0.82 1.49 4.43 1.71 16.88 67.57 92.90 ALB 9 ------tr. 0.23 0.15 0.89 2.25 0.41 1.64 ALB 8 ------4.03 9.83 2.08 3.70 1.64 tr. 73.18 94.46 ALB 8 0.28 0.17 1.13 2.51 0.47 1.92 ALB 7 ------tr. 1.26 3.31 4.28 1.92 0.16 0.18 0.84 2.36 0.49 0.78 13.75 68.48 93.00 ALB 7 ALB 6 ------0.34 0.38 2.48 5.42 1.22 5.39 0.22 1.82 3.87 0.78 16.02 74.52 97.23 ALB 5 ALB 6 ------tr. tr. tr. 0.19 1.21 6.03 1.20 4.42 / ALB 4 2.69 9.50 5.39 19.71 53.90 91.19 ALB 5 ------tr. tr. 3.11 0.15 0.14 1.26 3.05 0.62 ALB 3 0.12 2.35 8.63 4.42 11.17 63.73 90.42 ALB 4 ------tr. tr. 0.26 0.58 1.77 4.81 0.89 3.09 ALB 2 / 3.11 2.78 5.07 14.77 67.25 92.98 ALB 3 ------tr. tr. 0.10 0.33 0.53 2.35 4.96 1.07 4.46 ALB 1 2) KIE - Kovat’s Index Estimated (AMDIS) [28]; tr. = traces (< 0.02%). Index Estimated (AMDIS) [28]; tr. KIE - Kovat’s / / / / / 0.14 9.42 3.56 8.05 3.09 65.02 89.28 2) ALB 2 1503 1517 1526 1527 1587 1594 1596 1613 1653 1663 2060 KIE 1) / 1499 1513 1521 1530 1544 1548 1577 1582 1590 1592 1608 1627 1649 1652 1658 2056 9.71 5.08 8.91 4.46 KIL 58.70 86.86 ALB 1 - -Calemene -Cubenol Components -Intermedol Murrolene Calocarene Cadinol Eudesmol epi Cadinene Cadinene α- γ- trans δ- α- Elemol Sphatulenol Caryophyllene ox ide Globulol Viridiflorol Humulene epoxide 1- β- α- neo Manool Chemical Classes Non-terpene (NT) Monoterpenes (MT) Oxygen-containing monoterpenes (OMT) Sesquiterpenes (ST) Oxygen-containing sesquiterpenes (OST) Diterpenes (DT) Total 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 No. KIL - Kovat’s Index Literature [27]; - Kovat’s KIL 1)

Maced. pharm. bull., 61 (1) 19 - 26 (2015) Essential oil composition of Salvia fruticosa Mill. populations from Balkan Peninsula 25 ray Delamare et al. (2007) and Pierozan et al. (2009) found Ali-Shtayeh, M.S., Yaniv, Z., Mahajna, J., 2000. Ethnobotanical α-thujone as a major compound in their analyzed popula- survey in the Palestinian area: a classification of the healing tions which is in contrast with our results and other avail- potential of medicinal plants. J. Ethnopharmacol. 73, 221- able data. 32. Automated Mass Spectral Deconvolution and Identification Sys- Taking into concideration high cineole and camphor tem software (AMDIS ver.2.1.), National Institute of Stan- content, compounds with well established antibacterial dards and Technology (NIST), Standard Reference Data Pro- properties, potential antimicrobial activity of the essential gram, Gaithersburg, MD (USA). oil of S. fruticosa from Greece and Albania can be fore- Carmona, M.D., Llorach, R., Obon, C., Rivera, D., 2005. “Zah- seen. Positive results of this activity could be used in the raa”, a Unani multi component herbal tea widely consumed pharmaceutical industry, food production, and in the pro- in Syria: components of drug mixtures and alleged medicinal duction of cosmetics or in any other purposes as substitut- properties. J. Ethnopharmacol. 102, 344-50. ed for S. officinalis. Elmann, A., Mordechay, S., Rindner, M., Larkov, O., Elkabetz, Statistical analysis of variance (ANOVA) of the chem- M., Ravid, U., 2009. Protective Effects of the Essential Oil of Salvia fruticosa and Its Constituents on Astrocytic Sus- ical composition of the essential oils for the complete data ceptibility to Hydrogen Peroxide-Induced Cell Death. J. Ag- set of 19 samples revealed that there wasn’t a statistically ric. Food Chem. 57, 6636–41. significant difference in the EO composition ofS. fruticosa European Pharmacopoeia, 8th Edition, Council of Europe, Stras- populations, regardless its origin. bourg, 2014. Giweli, A.A., Dzamic, A.M., Sokovic, M., Ristic, M.S., Janackov- ic, P., Marin, P.D., 2013. The Chemical composition, antimi- Conclusion crobial and antioxidant activities of the essential oil of Salvia fruticosa Growing wild in Libya. Arch. Biol. Sci. 65, 321- The essential oils of 19 different populations of S. fru- 29. ticosa was chemically analyzed and the oil yields were de- Karamanos, A.J., 2008. Cultivation and breeding. The cultivation terminate and compared with the pharmacopeial require- of Sage. In Kintzios SE (Ed.), SAGE “The Genus Salvia” ments. The EO yield ranged from 0.25% to 4.00% and (pp.93 - 108). Amsterdam: Harwood Academic Publishers. Kintzios, S.E., 2000. SAGE “The Genus Salvia”, Amsterdam: eighteen of the total analyzed populations met the mini- Harwood Academic Publishers. mal requirements (≥1.20%). Regarding the chemical anal- Kosar, M., Tunalier, Z., Ozek, T., Kurkcuoglu, M., Husnu Can ysis, a total of 75 components were detected, and 13 com- Baser, K., 2005. A simple method to obtain essential oils ponents (α-pinene, camphene, β-pinene, myrcene, 1,8-cin- from Salvia triloba L. and Laurus nobilis L. by using micro- eole, γ-terpinene, cis-thujone, trans-thujone, camphor, ter- wave-assisted hydrodistillation. Zeitschrift fur Naturforsc- pinene-4-ol, trans-(E)-caryophyllene, aromadendrene and hung C 60, 501-4. α-humulene) were present in all samples. 1,8-Cineole was Longaray Delamare, A.P., Moschen-Pistorello, I.T., Artico, L., a predominant constituent in all sage populations, followed Atti-Serafini, L., Echeverrigaray, S., 2007. Antibacterial ac- by camphor. tivity of the essential oils of L. and Sal- via triloba L. cultivated in South Brazil. Food Chem. 100, The results obtained from the essential oils isolat- 603-8. ed from Greek sage correlate with the available literature Pavlidou, V., Karpouhtsis, I., Franzios, G., Zambetaki, A., Scou- data, and the statistical analysis showed that the oil compo- ras, Z., Mavragani-Tsipidou, P., 2004. Insecticidal and geno- sition is not influenced by the geographical locations. toxic effects of essential oils of Greek sage, Salvia frutico- sa, and Mint, Mentha pulegium, on Drosophila melanogas- ter and Bactrocera oleae (Diptera: Tephritidae). J. Agric. Ur- Acknowledgements ban Entomol. 21, 39-49. Pierozan, M.K., Pauletti, G.F., Rota, L., Atti dos Santos, A.C., Le- SEE-ERA.NET PLUS Joint Call project: ERA 64/01. rin, L.A., Di Luccio, M., Mossi, A.J., Atti-Serafini, L., Can- sian, R.L., Oliveira, J.V., 2009. Chemical characterization and antimicrobial activity of essential oil of Salvia L. spe- References cies. Ciencie e Technologia de Alimentos 29, 764-70. Pitarokili, D., Tzakou, O., Loukis, A., Harvala, C., 2003. Volatile Adams, R.P., 2007. Identification of Essential Oil Components metabolites from Salvia fruticosa as antifungal agents in soil by Gas Chromatography/Mass Spectrometry. 4th Ed. Illinois: borne pathogens. J. Agric. Food Chem. 51, 3294-301. Allured Publishing Corporation, IL, USA, pp 9-31.

Макед. фарм. билт., 61 (1) 19 - 26 (2015) 26 Ivana Cvetkovikj, Gjoshe Stefkov, Marija Karapandzova and Svetlana Kulevanova

Резиме

Состав на етерично масло од популации на Salvia fruticosa Mill. од Балканскиот полуостров

Ивана Цветковиќ*, Ѓоше Стефков, Марија Карапанџова и Светлана Кулеванова

Институт за фармакогнозија, Фармацевтски факултет, Универзитет „Св. Кирил и Методиј“, Мајка Тереза 47, 1000 Скопје, Република Македонија

Клучни зборови: Грчка жалфија, принос, GC/FID/MS, состав на етерични масла, Грција, Албанија.

Целта на оваа студија беше да се испита приносот и хемискиот состав на етеричните масла изолирани од 19 различни популации на Salvia fruticosa Mill. (грчка жалфија, Lamiaceae) од девет различни региони од Р. Албанија и Р. Грција. Содржината на маслата се движи од 0,25% до 4,00%. Осумнаесет од анализираните 19 популации одговараат на пропишаните минимални барања во европската фармакопеја за содржината на маслото. Со GC/FID/ MS анализа на соодветните етерични масла, беа идентификувани вкупно 75 компоненти, што претставуваат 79,15- 97,83% од вкупната содржина. Тринаесет компоненти (α-пинен, камфен, β-пинен, мирцен, 1,8-цинеол, γ-терпинен, cis-тујон, trans-тујон, камфор, терпинен-4-ол, trans-(Е)-кариофилен, аромадендрен и α-хумулен), се детектирани во сите примероци, а 1,8-цинеол е определена како најзастапена поединечна компонента. Статистичката анализа на резултатите покажа дека географското потекло на растенијата нема значајно влијание на варијациите во хемискиот состав на етеричното масло од S. fruticosa.

Maced. pharm. bull., 61 (1) 19 - 26 (2015)