Understanding Machinima
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Motion Enriching Using Humanoide Captured Motions
MASTER THESIS: MOTION ENRICHING USING HUMANOIDE CAPTURED MOTIONS STUDENT: SINAN MUTLU ADVISOR : A NTONIO SUSÌN SÀNCHEZ SEPTEMBER, 8TH 2010 COURSE: MASTER IN COMPUTING LSI DEPERTMANT POLYTECNIC UNIVERSITY OF CATALUNYA 1 Abstract Animated humanoid characters are a delight to watch. Nowadays they are extensively used in simulators. In military applications animated characters are used for training soldiers, in medical they are used for studying to detect the problems in the joints of a patient, moreover they can be used for instructing people for an event(such as weather forecasts or giving a lecture in virtual environment). In addition to these environments computer games and 3D animation movies are taking the benefit of animated characters to be more realistic. For all of these mediums motion capture data has a great impact because of its speed and robustness and the ability to capture various motions. Motion capture method can be reused to blend various motion styles. Furthermore we can generate more motions from a single motion data by processing each joint data individually if a motion is cyclic. If the motion is cyclic it is highly probable that each joint is defined by combinations of different signals. On the other hand, irrespective of method selected, creating animation by hand is a time consuming and costly process for people who are working in the art side. For these reasons we can use the databases which are open to everyone such as Computer Graphics Laboratory of Carnegie Mellon University. Creating a new motion from scratch by hand by using some spatial tools (such as 3DS Max, Maya, Natural Motion Endorphin or Blender) or by reusing motion captured data has some difficulties. -
The Social Media Marketing Book Dan Zarrella
the social media marketing book Dan Zarrella Beijing · Cambridge · Farnham · Köln · Sebastopol · Taipei · Tokyo The Social Media Marketing Book by Dan Zarrella Copyright © 2010 Dan Zarrella. Printed in Canada. Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472. O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/institutional sales department: (800) 998-9938 or [email protected]. Editor: Laurel R. T. Ruma Indexer: Julie Hawks Production Editor: Rachel Monaghan Interior Designer: Ron Bilodeau Copyeditor: Audrey Doyle Cover Designer: Monica Kamsvaag Proofreader: Sumita Mukherji Illustrator: Robert Romano Printing History: November 2009: First Edition. While every precaution has been taken in the preparation of this book, the publisher and author assume no responsibility for errors or omissions, or for damages resulting from the use of the information contained herein. This book presents general information about technology and services that are constantly changing, and therefore it may contain errors and/or information that, while accurate when it was written, is no longer accurate by the time you read it. Some of the activities discussed in this book, such as advertising, fund raising, and corporate communications, may be subject to legal restrictions. Your use of or reliance on the information in this book is at your own risk and the author and O’Reilly Media, Inc., disclaim responsibility for any resulting damage or expense. The content of this book represents the views of the author only, and does not represent the views of O’Reilly Media, Inc. -
Walt Disney the World of Animation
Ziptales Advanced Library Worksheet 2 Walt Disney The World of Animation Walt always loved drawing...he made a ‘flip-book’ of walking stick figures drawings to amuse his sick sister. Even as a young boy, Walt Disney knew the entertaining power of animation. The ‘flip book’ he made was a rudimentary animation device invented during the 19th century. It produced the appearance of movement by simply ‘flipping’ sequential hand drawn illustrations in a book. This idea was later developed into what we now know as cartoons: sequential drawings, known as ‘cells’, photographed and displayed rapidly. Later, animators utilised techinques such as ‘claymation’ (clay or plasticine figures being manipulated and photographed) and digital animations (using computer software) to create their masterpieces. Task 1: Create an animation using one of the above techniques; flip-book, cartoon, claymation or digital animation. Step 1: Select the technique you are going to use ensuring you have access to the materials/ equipment required. Step 2: Write a short story to be told in the animation using the common elements of a narrative: orientation, complication, series of events, resolution. Step 3: Design a ‘story board’ displaying a rough idea of what will happen in each ‘cell’ of the animation. Step 4: Create the animation and display it to an appropriate audience. Extension Activities: • Research your favourite animated cartoon. (NOTE: It must be suitable for children – not ‘adult’ cartoons such as South Park and Family Guy). Who created the cartoon? When was it created? Where was it created? Where has it been shown? • Identify four different animation techniques used for feature films (for example Rotoscoping, Live Action animation). -
Holliday, Christopher. " Toying with Performance: Toy Story, Virtual
Holliday, Christopher. " Toying with Performance: Toy Story, Virtual Puppetry and Computer- Animated Film Acting." Toy Story: How Pixar Reinvented the Animated Feature. By Susan Smith, Noel Brown and Sam Summers. London: Bloomsbury Academic, 2017. 87–104. Bloomsbury Collections. Web. 1 Oct. 2021. <http://dx.doi.org/10.5040/9781501324949.ch-006>. Downloaded from Bloomsbury Collections, www.bloomsburycollections.com, 1 October 2021, 07:14 UTC. Copyright © Susan Smith, Sam Summers and Noel Brown 2018. You may share this work for non-commercial purposes only, provided you give attribution to the copyright holder and the publisher, and provide a link to the Creative Commons licence. 87 Chapter 6 T OYING WITH PERFORMANCE: TOY STORY , VIRTUAL PUPPETRY AND COMPUTER-A NIMATED FILM ACTING C h r i s t o p h e r H o l l i d a y In the early 1990s, during the emergence of the global fast food industry boom, the Walt Disney studio abruptly ended its successful alliance with restaurant chain McDonald’s – which, since 1982, had held the monopoly on Disney’s tie- in promotional merchandise – and instead announced a lucrative ten- fi lm licensing contract with rival outlet, Burger King. Under the terms of this agree- ment, the Florida- based restaurant would now hold exclusivity over Disney’s array of animated characters, and working alongside US toy manufacturers could license collectible toys as part of its meal packages based on characters from the studio’s animated features Beauty and the Beast (Gary Trousdale and Kirk Wise, 1991), Aladdin (Ron Clements and John Musker, 1992), Th e Lion King (Roger Allers and Rob Minkoff , 1994), Pocahontas (Mike Gabriel and Eric Goldberg, 1995) and Th e Hunchback of Notre Dame (Gary Trousdale and Kirk Wise, 1996).1 Produced by Pixar Animation Studio as its fi rst computer- animated feature fi lm but distributed by Disney, Toy Story (John Lasseter, 1995) was likewise subject to this new commercial deal and made commensu- rate with Hollywood’s increasingly synergistic relationship with the fast food market. -
Animation: Types
Animation: Animation is a dynamic medium in which images or objects are manipulated to appear as moving images. In traditional animation, images are drawn or painted by hand on transparent celluloid sheets to be photographed and exhibited on film. Today most animations are made with computer generated (CGI). Commonly the effect of animation is achieved by a rapid succession of sequential images that minimally differ from each other. Apart from short films, feature films, animated gifs and other media dedicated to the display moving images, animation is also heavily used for video games, motion graphics and special effects. The history of animation started long before the development of cinematography. Humans have probably attempted to depict motion as far back as the Paleolithic period. Shadow play and the magic lantern offered popular shows with moving images as the result of manipulation by hand and/or some minor mechanics Computer animation has become popular since toy story (1995), the first feature-length animated film completely made using this technique. Types: Traditional animation (also called cel animation or hand-drawn animation) was the process used for most animated films of the 20th century. The individual frames of a traditionally animated film are photographs of drawings, first drawn on paper. To create the illusion of movement, each drawing differs slightly from the one before it. The animators' drawings are traced or photocopied onto transparent acetate sheets called cels which are filled in with paints in assigned colors or tones on the side opposite the line drawings. The completed character cels are photographed one-by-one against a painted background by rostrum camera onto motion picture film. -
Automated Staging for Virtual Cinematography Amaury Louarn, Marc Christie, Fabrice Lamarche
Automated Staging for Virtual Cinematography Amaury Louarn, Marc Christie, Fabrice Lamarche To cite this version: Amaury Louarn, Marc Christie, Fabrice Lamarche. Automated Staging for Virtual Cinematography. MIG 2018 - 11th annual conference on Motion, Interaction and Games, Nov 2018, Limassol, Cyprus. pp.1-10, 10.1145/3274247.3274500. hal-01883808 HAL Id: hal-01883808 https://hal.inria.fr/hal-01883808 Submitted on 28 Sep 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Automated Staging for Virtual Cinematography Amaury Louarn Marc Christie Fabrice Lamarche IRISA / INRIA IRISA / INRIA IRISA / INRIA Rennes, France Rennes, France Rennes, France [email protected] [email protected] [email protected] Scene 1: Camera 1, CU on George front screencenter and Marty 3/4 backright screenleft. George and Marty are in chair and near bar. (a) Scene specification (b) Automated placement of camera and characters (c) Resulting shot enforcing the scene specification Figure 1: Automated staging for a simple scene, from a high-level language specification (a) to the resulting shot (c). Our system places both actors and camera in the scene. Three constraints are displayed in (b): Close-up on George (green), George seen from the front (blue), and George screencenter, Marty screenleft (red). -
Lightweight Procedural Animation with Believable Physical Interactions
Proceedings of the Fourth Artificial Intelligence and Interactive Digital Entertainment Conference Lightweight Procedural Animation with Believable Physical Interactions Ian Horswill Northwestern University, Departments of EECS and Radio/Television/Film 2133 Sheridan Road, Evanston IL 60208 [email protected] Abstract matics system. Posture control is performed by applying I describe a procedural animation system that uses tech- simulated forces and torques to the torso and pelvis. niques from behavior-based robot control, combined with a Interestingly, the use of a dynamic simulation actually minimalist physical simulation, to produce believable cha- simplifies control, allowing the use of relatively crude con- racter motions in a dynamic world. Although less realistic trol signals, which are then smoothed by the passive dy- than motion capture or full biomechanical simulation, the namics of the character body and body-environment inte- system produces compelling, responsive character behavior. raction; similar results have been found in both human and It is also fast, supports believable physical interactions be- robot motor control (Williamson, 2003). tween characters such as hugging, and makes it easy to au- Twig shows that surprisingly simple techniques can gen- thor new behaviors. erate believable2 motions and interactions. Much of the focus of this paper will be on ways in which Twig is able to Overview1 cheat to avoid doing complicated modeling or control, while still maintaining believability. This work is indebted Versatile procedural animation is a necessary component to the work of Jakobsen (Jakobsen, 2001) and Perlin (Per- for applications such as interactive drama, in which charac- lin, 1995, 2003; Perlin & Goldberg, 1996), both for their ters participate in complex interactions that cannot be pre- general approaches of using simple techniques to generate planned at authoring time. -
Inverse Kinematics Last Time? Today Keyframing Procedural Animation Physically-Based Animation
Last Time? • Navier-Stokes Equations • Conservation of Inverse Kinematics Momentum & Mass • Incompressible Flow Today Keyframing • How do we animate? • Use spline curves to automate the in betweening – Keyframing – Good control – Less tedious than drawing every frame – Procedural Animation • Creating a good animation still requires considerable – Physically-Based Animation skill and talent – Forward and Inverse Kinematics – Motion Capture • Rigid Body Dynamics • Finite Element Method ACM © 1987 “Principles of traditional animation applied to 3D computer animation” Procedural Animation Physically-Based Animation • Describes the motion algorithmically, • Assign physical properties to objects as a function of small number of (masses, forces, inertial properties) parameters • Example: a clock with second, minute • Simulate physics by solving equations and hour hands • Realistic but difficult to control – express the clock motions in terms of a “seconds” variable – the clock is animated by varying the v0 seconds parameter mg • Example: A bouncing ball -kt –Abs(sin(ωt+θ0))*e 1 Articulated Models Skeleton Hierarchy • Articulated models: • Each bone transformation – rigid parts described relative xyzhhhhhh,,,,,qf s – connected by joints to the parent in hips the hierarchy: qfttt,, s • They can be animated by specifying the joint left-leg ... angles as functions of time. r-thigh qc qi qi ()t r-calf y vs qfff, x r-foot z t1 t2 t1 t2 1 DOF: knee 2 DOF: wrist 3 DOF: arm Forward Kinematics Inverse Kinematics (IK) • Given skeleton xyzhhhhhh,,,,,qf -
The Significance of Anime As a Novel Animation Form, Referencing Selected Works by Hayao Miyazaki, Satoshi Kon and Mamoru Oshii
The significance of anime as a novel animation form, referencing selected works by Hayao Miyazaki, Satoshi Kon and Mamoru Oshii Ywain Tomos submitted for the degree of Doctor of Philosophy Aberystwyth University Department of Theatre, Film and Television Studies, September 2013 DECLARATION This work has not previously been accepted in substance for any degree and is not being concurrently submitted in candidature for any degree. Signed………………………………………………………(candidate) Date …………………………………………………. STATEMENT 1 This dissertation is the result of my own independent work/investigation, except where otherwise stated. Other sources are acknowledged explicit references. A bibliography is appended. Signed………………………………………………………(candidate) Date …………………………………………………. STATEMENT 2 I hereby give consent for my dissertation, if accepted, to be available for photocopying and for inter-library loan, and for the title and summary to be made available to outside organisations. Signed………………………………………………………(candidate) Date …………………………………………………. 2 Acknowledgements I would to take this opportunity to sincerely thank my supervisors, Elin Haf Gruffydd Jones and Dr Dafydd Sills-Jones for all their help and support during this research study. Thanks are also due to my colleagues in the Department of Theatre, Film and Television Studies, Aberystwyth University for their friendship during my time at Aberystwyth. I would also like to thank Prof Josephine Berndt and Dr Sheuo Gan, Kyoto Seiko University, Kyoto for their valuable insights during my visit in 2011. In addition, I would like to express my thanks to the Coleg Cenedlaethol for the scholarship and the opportunity to develop research skills in the Welsh language. Finally I would like to thank my wife Tomoko for her support, patience and tolerance over the last four years – diolch o’r galon Tomoko, ありがとう 智子. -
The Uses of Animation 1
The Uses of Animation 1 1 The Uses of Animation ANIMATION Animation is the process of making the illusion of motion and change by means of the rapid display of a sequence of static images that minimally differ from each other. The illusion—as in motion pictures in general—is thought to rely on the phi phenomenon. Animators are artists who specialize in the creation of animation. Animation can be recorded with either analogue media, a flip book, motion picture film, video tape,digital media, including formats with animated GIF, Flash animation and digital video. To display animation, a digital camera, computer, or projector are used along with new technologies that are produced. Animation creation methods include the traditional animation creation method and those involving stop motion animation of two and three-dimensional objects, paper cutouts, puppets and clay figures. Images are displayed in a rapid succession, usually 24, 25, 30, or 60 frames per second. THE MOST COMMON USES OF ANIMATION Cartoons The most common use of animation, and perhaps the origin of it, is cartoons. Cartoons appear all the time on television and the cinema and can be used for entertainment, advertising, 2 Aspects of Animation: Steps to Learn Animated Cartoons presentations and many more applications that are only limited by the imagination of the designer. The most important factor about making cartoons on a computer is reusability and flexibility. The system that will actually do the animation needs to be such that all the actions that are going to be performed can be repeated easily, without much fuss from the side of the animator. -
The Formation of Temporary Communities in Anime Fandom: a Story of Bottom-Up Globalization ______
THE FORMATION OF TEMPORARY COMMUNITIES IN ANIME FANDOM: A STORY OF BOTTOM-UP GLOBALIZATION ____________________________________ A Thesis Presented to the Faculty of California State University, Fullerton ____________________________________ In Partial Fulfillment of the Requirements for the Degree Master of Arts in Geography ____________________________________ By Cynthia R. Davis Thesis Committee Approval: Mark Drayse, Department of Geography & the Environment, Chair Jonathan Taylor, Department of Geography & the Environment Zia Salim, Department of Geography & the Environment Summer, 2017 ABSTRACT Japanese animation, commonly referred to as anime, has earned a strong foothold in the American entertainment industry over the last few decades. Anime is known by many to be a more mature option for animation fans since Western animation has typically been sanitized to be “kid-friendly.” This thesis explores how this came to be, by exploring the following questions: (1) What were the differences in the development and perception of the animation industries in Japan and the United States? (2) Why/how did people in the United States take such interest in anime? (3) What is the role of anime conventions within the anime fandom community, both historically and in the present? These questions were answered with a mix of historical research, mapping, and interviews that were conducted in 2015 at Anime Expo, North America’s largest anime convention. This thesis concludes that anime would not have succeeded as it has in the United States without the heavy involvement of domestic animation fans. Fans created networks, clubs, and conventions that allowed for the exchange of information on anime, before Japanese companies started to officially release anime titles for distribution in the United States. -
Combining Performance Animation and Virtual Reality for Early Childhood Education Role-Play
COMBINING PERFORMANCE ANIMATION AND VIRTUAL REALITY FOR EARLY CHILDHOOD EDUCATION ROLE-PLAY THESIS Presented in Partial Fulfillment of the Requirements for The Degree of Masters of Fine Arts in the Graduate School of The Ohio State University By Katherine Frances Talmadge Kalal ***** The Ohio State University 2008 Thesis Committee: Approved by Professor Alan Price, Advisor Professor Laurie Katz ________________________ Professor Wayne Carlson Advisor Graduate Program in Industrial, Interior, and Visual Communication Design ABSTRACT Role-playing is an essential component to social skills training in early childhood education. However, current programs are either not interactive enough in role-playing, or through the process of interaction with adults, become confrontational and frightening. A combination of virtual reality and performance animation can provide an environment for a child to learn through role-playing that is non-threatening, yet interactive enough for authentic and constructive interaction, as well as facilitating communication between the teacher and student. This study begins with a review of literature and contemporary applications of early childhood education, performance animation, and virtual reality. The question of how performance animation and virtual reality can contribute to a lesson that uses role- play is explored through prototyping components of an immersive environment for role- play with digital characters. This prototype was then demonstrated to early childhood educators. A focus study was conducted to evaluate the prototype and its implications in the field of early childhood education. The findings from the focus group are presented and analyzed. Conclusions are drawn based on the focus group feedback and designer’s experience in combining these fields.