ORIGINAL RESEARCH published: 30 October 2018 doi: 10.3389/fvets.2018.00269 The Use of Kernel Density Estimation With a Bio-Physical Model Provides a Method to Quantify Connectivity Among Salmon Farms: Spatial Planning and Management With Epidemiological Relevance Danielle L. Cantrell 1*, Erin E. Rees 1,2, Raphael Vanderstichel 1, Jon Grant 3, Edited by: Ramón Filgueira 4 and Crawford W. Revie 1 Saraya Tavornpanich, Norwegian Veterinary Institute, 1 Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Norway Canada, 2 Land and Sea Systems Analysis, Granby, QC, Canada, 3 Department of Oceanography, Dalhousie University, Reviewed by: Halifax, NS, Canada, 4 Marine Affairs Program, Dalhousie University, Halifax, NS, Canada Nabeil Salama, Marine Scotland, United Kingdom Ingrid Askeland Johnsen, Connectivity in an aquatic setting is determined by a combination of hydrodynamic Norwegian Institute of Marine circulation and the biology of the organisms driving linkages. These complex processes Research (IMR), Norway can be simulated in coupled biological-physical models. The physical model refers to Lars Qviller, Norwegian Veterinary Institute, an underlying circulation model defined by spatially-explicit nodes, often incorporating Norway a particle-tracking model. The particles can then be given biological parameters or *Correspondence: behaviors (such as maturity and/or survivability rates, diel vertical migrations, avoidance, Danielle L. Cantrell
[email protected] or seeking behaviors). The output of the bio-physical models can then be used to quantify connectivity among the nodes emitting and/or receiving the particles. Here we Specialty section: propose a method that makes use of kernel density estimation (KDE) on the output of This article was submitted to Veterinary Epidemiology and a particle-tracking model, to quantify the infection or infestation pressure (IP) that each Economics, node causes on the surrounding area.