Monroe County Rain Garden Starter Guide
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Rain Gardens for Home Landscapes
fold - fold - What Is a Rain Garden? RAIN GARDENS FOR Rain gardens are beautiful natural landscape features that require less maintenance and fewer chemicals than lawns. Rain gardens capture runoff from impervious areas such as roofs and driveways and allow it to seep slowly into the ground. Most importantly, rain gardens help preserve nearby streams and lakes by reducing the amount of runoff HOME LANDSCAPES and filtering pollutants. Why Plant a Rain Garden? Rain gardens provide for the natural infiltration of rainwater into the soil. This helps to filter out pollutants including fertilizer, pesticides, oil, heavy metals and other chemicals that are carried with the rainwater that washes off your lawn, rooftop and driveway. Rain gardens also reduce peak storm flows, helping to prevent stream bank erosion and lowering the risk for local flooding. By collecting and using rainwater that would other- wise run off your yard, rain gardens allow you to have an attractive landscape with less watering. How Do Rain Gardens Work? A rain garden receives runoff water from roofs or other impervious (hard) surfaces such as driveways. The rain garden holds the water on the landscape so that it can be taken in by plants and soak into the ground instead of flowing into a street and down a storm drain or drainage ditch. The plants, mulch and soil in a rain garden combine natural physical, biological and chemical processes to remove pollutants from runoff. Many pollutants will be filtered out and break down in the soil over time. Water should stand in a rain garden no longer than 24 hours after the rain stops. -
Rain Garden Plant Guide Table of Contents
RAIN GARDEN PLANT GUIDE TABLE OF CONTENTS INTRODUCTION 3 Blue Lobelia ................................................................................ 16 Blue Vervain ............................................................................... 16 Boneset ........................................................................................ 17 GRASSES/SEDGES/RUSHES 4 Butterfly Milkweed ................................................................... 17 Big Bluestem .............................................................................. 4 Cardinal Flower ......................................................................... 17 Bottlebrush Grass .................................................................... 4 Celandine Poppy ...................................................................... 18 Fox Sedge ................................................................................... 4 Columbine ................................................................................... 18 Frank’s Sedge ............................................................................ 5 Common Milkweed .................................................................. 18 Indian Grass ................................................................................ 5 Compass Plant .......................................................................... 19 Little Bluestem .......................................................................... 5 Culver’s Root ............................................................................ -
The Texas Manual on Rainwater Harvesting
The Texas Manual on Rainwater Harvesting Texas Water Development Board Third Edition The Texas Manual on Rainwater Harvesting Texas Water Development Board in cooperation with Chris Brown Consulting Jan Gerston Consulting Stephen Colley/Architecture Dr. Hari J. Krishna, P.E., Contract Manager Third Edition 2005 Austin, Texas Acknowledgments The authors would like to thank the following persons for their assistance with the production of this guide: Dr. Hari Krishna, Contract Manager, Texas Water Development Board, and President, American Rainwater Catchment Systems Association (ARCSA); Jen and Paul Radlet, Save the Rain; Richard Heinichen, Tank Town; John Kight, Kendall County Commissioner and Save the Rain board member; Katherine Crawford, Golden Eagle Landscapes; Carolyn Hall, Timbertanks; Dr. Howard Blatt, Feather & Fur Animal Hospital; Dan Wilcox, Advanced Micro Devices; Ron Kreykes, ARCSA board member; Dan Pomerening and Mary Dunford, Bexar County; Billy Kniffen, Menard County Cooperative Extension; Javier Hernandez, Edwards Aquifer Authority; Lara Stuart, CBC; Wendi Kimura, CBC. We also acknowledge the authors of the previous edition of this publication, The Texas Guide to Rainwater Harvesting, Gail Vittori and Wendy Price Todd, AIA. Disclaimer The use of brand names in this publication does not indicate an endorsement by the Texas Water Development Board, or the State of Texas, or any other entity. Views expressed in this report are of the authors and do not necessarily reflect the views of the Texas Water Development Board, or -
Environmental Systems the Atmosphere and Hydrosphere
Environmental Systems The atmosphere and hydrosphere THE ATMOSPHERE The atmosphere, the gaseous layer that surrounds the earth, formed over four billion years ago. During the evolution of the solid earth, volcanic eruptions released gases into the developing atmosphere. Assuming the outgassing was similar to that of modern volcanoes, the gases released included: water vapor (H2O), carbon monoxide (CO), carbon dioxide (CO2), hydrochloric acid (HCl), methane (CH4), ammonia (NH3), nitrogen (N2) and sulfur gases. The atmosphere was reducing because there was no free oxygen. Most of the hydrogen and helium that outgassed would have eventually escaped into outer space due to the inability of the earth's gravity to hold on to their small masses. There may have also been significant contributions of volatiles from the massive meteoritic bombardments known to have occurred early in the earth's history. Water vapor in the atmosphere condensed and rained down, of radiant energy in the atmosphere. The sun's radiation spans the eventually forming lakes and oceans. The oceans provided homes infrared, visible and ultraviolet light regions, while the earth's for the earliest organisms which were probably similar to radiation is mostly infrared. cyanobacteria. Oxygen was released into the atmosphere by these early organisms, and carbon became sequestered in sedimentary The vertical temperature profile of the atmosphere is variable and rocks. This led to our current oxidizing atmosphere, which is mostly depends upon the types of radiation that affect each atmospheric comprised of nitrogen (roughly 71 percent) and oxygen (roughly 28 layer. This, in turn, depends upon the chemical composition of that percent). -
What's in the Air Gets Around Poster
Air pollution comes AIR AWARENESS: from many sources, Our air contains What's both natural & manmade. a combination of different gasses: OZONE (GOOD) 78% nitrogen, 21% oxygen, in the is a gas that occurs forest fires, vehicle exhaust, naturally in the upper plus 1% from carbon dioxide, volcanic emissions smokestack emissions atmosphere. It filters water vapor, and other gasses. the sun's ultraviolet rays and protects AIRgets life on the planet from the Air moves around burning Around! when the wind blows. rays. Forests can be harmed when nutrients are drained out of the soil by acid rain, and trees can't Air grow properly. pollution ACID RAIN Water The from one place can forms when sulfur cause problems oxides and nitrogen oxides falls from 1 air is in mix with water vapor in the air. constant motion many miles from clouds that form where it Because wind moves the air, acid in the air. Pollutants around the earth (wind). started. rain can fall hundreds of miles from its AIR MONITORING: and tiny bits of soil are As it moves, it absorbs source. Acid rain can make lakes so acidic Scientists check the quality of carried with it to the water from lakes, rivers that plants and animals can't live in the water. our air every day and grade it using the Air Quality Index (AQI). ground below. and oceans, picks up soil We can check the daily AQI on the from the land, and moves Internet or from local 2 pollutants in the air. news sources. Greenhouse gases, sulfur oxides and Earth's nitrogen oxides are added to the air when coal, oil and natural gas are CARS, TRUCKS burned to provide Air energy. -
Precipitation Probability
PRECIPITATION PROBABILITY The probability of precipitation forecast is one of the most least understood elements of the weather forecast. The probability of precipitation has the following features: ..... The likelihood of occurrence of precipitation is stated as a percentage ..... A measurable amount is defined as 0.01" (one hundredth of an inch) or more (usually produces enough runoff for puddles to form) ..... The measurement is of liquid precipitation or the water equivalent of frozen precipitation ..... The probability is for a specified time period (i.e., today, this afternoon, tonight, Thursday) ..... The probability forecast is for any given point in the forecast area To summarize, the probability of precipitation is simply a statistical probability of 0.01" inch of more of precipitation at a given area in the given forecast area in the time period specified. Using a 40% probability of rain as an example, it does not mean (1) that 40% of the area will be covered by precipitation at given time in the given forecast area or (2) that you will be seeing precipitation 40% of the time in the given forecast area for the given forecast time period. Let's look at an example of what the probability does mean. If a forecast for a given county says that there is a 40% chance of rain this afternoon, then there is a 40% chance of rain at any point in the county from noon to 6 p.m. local time. This point probability of precipitation is predetermined and arrived at by the forecaster by multiplying two factors: Forecaster certainty that precipitation will form or move into the area X Areal coverage of precipitation that is expected (and then moving the decimal point two places to the left) Using this, here are two examples giving the same statistical result: (1) If the forecaster was 80% certain that rain would develop but only expected to cover 50% of the forecast area, then the forecast would read "a 40% chance of rain" for any given location. -
Tropical Cyclone Rainfall
Tropical Cyclone Rainfall Michael Brennan National Hurricane Center Outline • Tropical Cyclone (TC) rainfall climatology • Factors influencing TC rainfall • TC rainfall forecasting tools • TC rainfall forecasting process Tropical Cyclone Rainfall Climatology Tropical Cyclone Tracks COMET (2011) Global Mean Monthly TC Rainfall During the TC Season and Percent of Total Annual Rainfall Data from TRMM 2A25 Precipitation Radar from 1998-2006 Jiang and Zipser (2010) Contribution to Total Rainfall from TCs • What percentage of average annual rainfall in southern Baja California, Mexico comes from tropical cyclones? 1. 10-20% 2. 20-30% 3. 40-50% 4. 50-60% Khouakhi et al. (2017) J. Climate Contribution to Global Rainfall from TCs (1970-2014 rain gauge study) • Globally, highest TC rainfall totals are in eastern Asia, northeastern Australia, and the southeastern United States • Percentage of annual rainfall contributed by TCs: • 35-50%: NW Australia, SE China, northern Philippines, Baja California • 40-50%: Western coast of Australia, south Indian Ocean islands, East Asia, Mexico Khouakhi et al. (2017) J. Climate Contribution to Global Rainfall from TCs (1970-2014 rain gauge study) Khouakhi et al. (2017) J. Climate Contribution to Global Rainfall from TCs (1970-2014 rain gauge study) • Relative contribution of TCs to extreme rainfall • Gray circles indicate locations at which TCs have no contribution to extreme rainfall Khouakhi et al. (2017) J. Climate Annual TC Rainfall Equator TC Rain . TC rainfall makes up a larger percentage of total rainfall during years when global rainfall is low . Asymmetric - generally 35 000 0 1998 (cm) 1999 (cm)30 000 0 2000 (cm) 2001 (cm) 2002 (cm)25 000 0 2003 (cm) 2004 (cm) 2005 (cm)20 000 0 15 000 0 10 000 0 50 000 0 -40 -20 0 20 40 more TC rainfall in the Northern Hemisphere TC Rain % of Total Rain . -
Plant Materials Program
Plant Materials Program “The Plant Materials Program and its cooperators have contributed the bulk of the material and technology now used in ecosystem restoration and are our foundation for meeting conservation challenges of the future.” -- D.T. Booth and T.A. Jo nes, Native Plants Journal Improving Urban Landscapes Urban communities are expanding due to growing and allow it to slowly infiltrate into the vegetative populations nationwide. More homes, schools, filter. Nutrients in the runoff are also taken up by shopping centers and roads are connecting people the plants. Bioretention cells are shallow to desired services. Urban landscapes have landscape depressions that often handle large different resource concerns than rural landscapes. volumes of water from nearby impervious surfaces. Urban communities experience significantly more Rain gardens are perennial vegetation strategically impervious surfaces. Rooftops, roads, parking lots, located to capture runoff from impervious surfaces and compacted areas increase surface runoff and such as rooftops, driveways, and patios. Plant deliver more sediment, nutrients, hydrocarbons and materials used in these situations can also provide other pollutants to receiving bodies of water. valuable habitat for wildlife and pollinators. Urban landscapes often experience greater populations of invasive species and weeds that increase the potential of damaging wildfire. Urban landscaping at the Bismarck, North Dakota Plant Materials Center The Plant Materials Program is helping meet the NRCS goal by selecting adapted plants and developing plant technology that can be used to improve the quality of urban landscapes. Arizona golf course with native plant landscaping. One goal of the Natural Resources Conservation Service (NRCS) is to maintain and enhance the health of plant communities. -
Coastal California Rain Gardens Capture Rain and Let the Benefits Flow
ANR Publication 8531 | October 2015 www.anrcatalog.ucanr.edu Coastal California Rain Gardens Capture Rain and Let the Benefits Flow ain gardens collect rainwater and beautify a yard. They provide an effective form of Rrainwater harvesting, allowing property owners to save valuable water from going down storm drains. Rain water has been collected by numerous cultures since ancient times, but the VALERIE BOREL, University of concept of a residential rain garden is recent. California Cooperative Extension Horticulture and Master They were pioneered in Prince George’s County, Gardener Program Coordinator. Maryland, in 1990. Although more commonly Los Angeles; MONIQUE MYERS, found in wetter climates, rain gardens can be Coastal Specialist, California beneficial in California’s Mediterranean climate, Sea Grant; DEBORAH GIRAUD, with our dry and wet seasons. Local rainfall does University of California Cooperative Extension Farm not meet water demand in the summer months Advisor, Humboldt County and water is diverted from rivers or pumped from wells to support local needs. Rain gardens offer an attractive and practical way to conserve water. Rain gardens collect rain that falls on a roof or other surfaces (fig. 1). The water is channeled via rain gutters, pipes, swales (vegetated depressions between two ridges), or curb openings into a depression in the yard, where it soaks into the ground and waters vegetation. A properly functioning rain garden holds water for only a short period of time; it is not a pond feature (fig. 2). Most of the time, the bed of the rain garden is dry. The purpose is to Figure 1. The gravel bed and meandering path of the dry streambed will hold water for a day. -
ESSENTIALS of METEOROLOGY (7Th Ed.) GLOSSARY
ESSENTIALS OF METEOROLOGY (7th ed.) GLOSSARY Chapter 1 Aerosols Tiny suspended solid particles (dust, smoke, etc.) or liquid droplets that enter the atmosphere from either natural or human (anthropogenic) sources, such as the burning of fossil fuels. Sulfur-containing fossil fuels, such as coal, produce sulfate aerosols. Air density The ratio of the mass of a substance to the volume occupied by it. Air density is usually expressed as g/cm3 or kg/m3. Also See Density. Air pressure The pressure exerted by the mass of air above a given point, usually expressed in millibars (mb), inches of (atmospheric mercury (Hg) or in hectopascals (hPa). pressure) Atmosphere The envelope of gases that surround a planet and are held to it by the planet's gravitational attraction. The earth's atmosphere is mainly nitrogen and oxygen. Carbon dioxide (CO2) A colorless, odorless gas whose concentration is about 0.039 percent (390 ppm) in a volume of air near sea level. It is a selective absorber of infrared radiation and, consequently, it is important in the earth's atmospheric greenhouse effect. Solid CO2 is called dry ice. Climate The accumulation of daily and seasonal weather events over a long period of time. Front The transition zone between two distinct air masses. Hurricane A tropical cyclone having winds in excess of 64 knots (74 mi/hr). Ionosphere An electrified region of the upper atmosphere where fairly large concentrations of ions and free electrons exist. Lapse rate The rate at which an atmospheric variable (usually temperature) decreases with height. (See Environmental lapse rate.) Mesosphere The atmospheric layer between the stratosphere and the thermosphere. -
Rain Garden Care Guide
RAIN GARDEN CARE A GUIDE FOR RESIDENTS AND COMMUNITY ORGANIZATIONS TABLE OF CONTENTS Introduction . 1 How to use this guide . 3 Organize your rain garden care . 5 Weeding . 7 Watering . 10 Plant care . 12 Keep the water flowing . 15 Soils and mulch . 16 Troubleshooting . 19 Resources . 20 Acknowledgements . 20 Quick-start guide . 21 CONGRATULATIONS ON YOUR NEW RAIN GARDEN! You have a beautiful and functional landscape where the soil, plants, and mulch partner to absorb and filter urban runoff, and keep it from harming our local waters. Your hard-working landscape will need some care throughout the year, but your time commitment will still be less than what you spent on lawn care during the spring and summer months. This guide will show you the simple steps needed to keep your rain garden looking great and working well. Your original rain garden design determines the ongoing rain garden care. A few mantras for design include, “right plant — right place,” and “an ounce of prevention is worth a pound of cure.” For a rain garden that means choosing plants that complement each other and your yard. Keep in mind that your original rain garden design can be changed over time, as you see how the plants grow. RAIN GARDEN CARE 1 selective native plants or hardy cultivars mulch layer ponding depth 6" to 12" overflow lower than inflow level unlined rain garden bottom soil mix Your rain garden is part of a growing network of “green infrastructure” that beautifies our communities and keeps polluted runoff out of our waterways. By building a rain garden you have created an alternative to costly expansions to sewer and stormwater pipe “gray infrastructure” systems. -
The Cloud Cycle and Acid Rain
gX^\[`i\Zk\em`ifed\ekXc`dgXZkjf]d`e`e^Xkc`_`i_`^_jZ_ffcYffbc\k(+ ( K_\Zcfl[ZpZc\Xe[XZ`[iX`e m the mine ke fro smo uld rain on Lihir? Co e acid caus /P 5IJTCPPLMFUXJMM FYQMBJOXIZ K_\i\Xjfe]fik_`jYffbc\k K_\i\`jefXZ`[iX`efeC`_`i% `jk_Xkk_\i\_XjY\\ejfd\ K_`jYffbc\k\ogcX`ejk_\jZ`\eZ\ d`jle[\ijkXe[`e^XYflkk_\ Xe[Z_\d`jkipY\_`e[XZ`[iX`e% \o`jk\eZ\f]XZ`[iX`efeC`_`i% I\X[fekfÔe[flkn_pk_\i\`jef XZ`[iX`efeC`_`i55 page Normal rain cycle and acid rain To understand why there is no acid rain on Lihir we will look at: 1 How normal rain is formed 2 2 How humidity effects rain formation 3 3 What causes acid rain? 4 4 How much smoke pollution makes acid rain? 5 5 Comparing pollution on Lihir with Sydney and China 6 6 Where acid rain does occur 8–9 7 Could acid rain fall on Lihir? 10–11 8 The effect of acid rain on the environment 12 9 Time to check what you’ve learnt 13 Glossary back page Read the smaller text in the blue bar at the bottom of each page if you want to understand the detailed scientific explanations. > > gX^\) ( ?fnefidXciX`e`j]fid\[ K_\eXkliXcnXk\iZpZc\ :cfl[jXi\]fid\[n_\e_\Xk]ifdk_\jleZXlj\jk_\nXk\i`e k_\fZ\Xekf\mXgfiXk\Xe[Y\Zfd\Xe`em`j`Yc\^Xj% K_`j^Xji`j\j_`^_`ekfk_\X`in_\i\Zffc\ik\dg\iXkli\jZXlj\ `kkfZfe[\ej\Xe[Y\Zfd\k`epnXk\i[ifgc\kj%N_\edXepf] k_\j\nXk\i[ifgc\kjZfcc`[\kf^\k_\ik_\pdXb\Y`^^\inXk\i [ifgj#n_`Z_Xi\kff_\XmpkfÕfXkXifle[`ek_\X`iXe[jfk_\p ]Xcc[fneXjiX`e%K_`jgifZ\jj`jZXcc\[gi\Z`g`kXk`fe% K_\eXkliXcnXk\iZpZc\ _\Xk]ifd k_\jle nXk\imXgflijZfe[\ej\ kfZi\Xk\Zcfl[j gi\Z`g`kXk`fe \mXgfiXk`fe K_\jZ`\eZ\Y\_`e[iX`e K_\_\Xk]ifdk_\jleZXlj\jnXk\i`ek_\