Complexity Theory: Overview of Definitions (D), Theorems (T) and Languages (L) Chronological Order

Total Page:16

File Type:pdf, Size:1020Kb

Complexity Theory: Overview of Definitions (D), Theorems (T) and Languages (L) Chronological Order Complexity Theory: Overview of definitions (D), theorems (T) and languages (L) Chronological order Type Lecture 9 Book Slides Tutorials D Asymptotic Upper Bound big-O Def. 7.2 p. 253 L 9 sl. 3 D Strict Asymptotic Upper Bound small-o Def. 7.5 p. 254 L 9 sl. 4 Running time or (worst-case) time com- D Def. 7.1 p. 252 L 9 sl. 6 plexity of TM D TIME(t(n)) Def. 7.7 p. 255 L 9 sl. 8 T Time complexity of simulating k-tape TM Thm. 7.8 p. 258 L 9 sl. 10 Polynomial Time Equivalence of Deter- T p. 261 L 9 sl. 11 ministic Models D P Def. 7.12 p. 262 L 9 sl.12 L PATH p. 263 L 9 sl. 13 T PATH 2 P p. 264 L 9 sl. 13 T ALLDFA 2 P T 9 ex. 5 Type Lecture 10 Book Slides Tutorials L RELPRIME p. 265 L 10 sl. 2 Thm. 7.15 p. L 10 sl. 2{ T RELPRIME 2 P 265 3 Thm. 7.16 p. L 10 sl. 4{ T Every context-free language is in P T 10 ex. 1 266{267 5 L 10 sl. 6{ T Closure properties of P T 10 ex. 2 7 Running time or (worst-case) time com- D Def. 7.9 p. 259 L 10 sl. 8 plexity of nondeterministic TM D NTIME(t(n)) Def. 7.21 p. 271 L 10 sl. 9 L HAMPATH p. 268 L 10 sl. 9 T HAMPATH 2 NTIME(n2) p. 268{269 L 10 sl. 10 Thm. 7.20 p. 270 (see also D NP Def. 7.19 p. L 10 sl. 11 270) Type Lecture 11 Book Slides Tutorials D Polynomial Time Verifiable Languages Def. 7.18 p. 269 L 11 sl. 3 Poly. Time Verifiers vs. Nondeterministic T Thm. 7.20 p 270 L 11 sl. 4 Poly. Time TMs L CLIQUE p. 272 L 11 sl. 5 Thm. 7.24 p. T CLIQUE 2 NP L 11 sl. 5 272 L SUBSET-SUM p. 273 L 11 sl. 5 Thm. 7.25 p. T SUBSET-SUM 2 NP L 11 sl. 5 273 D co-NP p. 273 L 11 sl. 5 D EXPTIME p. 312 L 11 sl. 6 D Polynomial Time Computable Function Def. 7.28 p. 276 L 11 sl. 8 D Polynomial Time Mapping Reduction Def. 7.29 p. 276 L 11 sl. 8 Thm. 7.31 p. T Solving problems in P by reductions L 11 sl. 9 277 L SAT p. 275 L 11 sl. 10 L 3SAT p. 278 L 11 sl. 11 Thm. 7.32 p. T 3SAT ≤P CLIQUE L 11 sl. 12 278{279 T BINPACK 2 NP T 11 ex. 2 T co-NP ⊆ EXPTIME T 11 ex. 4 T Poly. Time Reductions are Transitive T 11 ex. 5 Type Lecture 12 Book Slides Tutorials D NP-completeness Def. 7.34 p. 280 L 12 sl. 3 Thm. 7.35 p. T If B 2 P is NP-complete then P = NP L 12 sl. 3 280 If B is NP-complete and B poly. time Thm. 7.36 p. T L 12 sl. 3 reduces to C 2 NP then C is NP-complete 280 Thm. 7.37 p. L 12 sl. 4{ T SAT is NP-complete (Cook-Levin) T 12 ex. 3 280{286 11 Type Lecture 13 Book Slides Tutorials L CNF-SAT and 3SAT p. 278 L 13 sl. 3 Proof of Cor. L 13 sl. 3{ T CNF-SAT ≤ 3SAT T 13 ex. 4 P 7.42 p. 286 4 T 3SAT is NP-complete Cor. 7.42 p. 286 L 13 sl. 3 T CLIQUE is NP-complete Cor. 7.43 p. 287 L 13 sl. 5 L VERTEX-COVER p. 288 L 13 sl. 6 Proof of Thm. L 13 sl. 6{ T 3SAT ≤ VERTEX-COVER T 13 ex. 5 P 7.44 p. 288{289 7 Thm. 7.44 p. T VERTEX-COVER is NP-complete L 13 sl. 6 288 Proof of Thm. L 13 sl. 8{ T 3SAT ≤ HAMPATH P 7.46 p. 290{294 9 Thm. 7.46 p. T HAMPATH is NP-complete L 13 sl. 8 290 L UHAMPATH p. 295 L 13 sl. 10 Thm. 7.55 p. T UHAMPATH is NP-complete L 13 sl. 10 Test 4 295 L SUBSET-SUM p. 295 L 11 sl. 11 Thm. 7.56 p. T SUBSET-SUM is NP-complete L 13 sl. 11 296 Thm. 7.56 p. L 13 sl. 11{ T 3SAT ≤ SUBSET-SUM Test 4 P 296{298 12 T Closure properties of NP T 13 ex. 1 T NOTA is NP-complete T 13 ex. 3 Type Lecture 14 Book Slides Tutorials D Space complexity of TM Def. 8.1 p. 307 L 14 sl. 3 D Space complexity of Nondeterministic TM Def. 8.1 p. 307 L 14 sl. 3 D SPACE(t(n)) Def. 8.2 p. 308 L 14 sl. 4 D NSPACE(t(n)) Def. 8.2 p. 308 L 14 sl. 4 T SAT 2 SPACE(n) Exa. 8.3 p. 308 L 14 sl. 5 L 14 sl. 6 L ALLNFA p. 309 and L 15 sl. 5 L 14 sl. 6{ T ALL 2 NSPACE(n) read slides NFA 7 NSPACE(t(n)) ⊆ SPACE(t2(n)) (Sav- Thm. 8.5 p. L 14 sl. 9{ T itch) 310{311 10 D PSPACE Def. 8.6 p. 312 L 14 sl. 11 T NP ⊆ PSPACE p. 312 L 14 sl. 12 T co-NP ⊆ PSPACE L 14 sl. 12 T 14 ex. 2 T PSPACE ⊆ EXPTIME p. 312 L 14 sl. 13 T 14 ex. 4 Overview of Time and Space Complexity T p. 312{313 L 14 sl. 14 Classes T Closure properties of PSPACE T 14 ex. 1 Type Lecture 15 Book Slides Tutorials D PSPACE-completeness Def. 8.8 p. 313 L 15 sl. 2 L ALBA L 15 sl. 3 A is PSPACE-complete (padding T LBA L 15 sl. 3 technique) L TQBF p. 315 L 15 sl. 4 TQBF is PSPACE-complete (without T p. 315 L 15 sl. 4 proof).
Recommended publications
  • CS601 DTIME and DSPACE Lecture 5 Time and Space Functions: T, S
    CS601 DTIME and DSPACE Lecture 5 Time and Space functions: t, s : N → N+ Definition 5.1 A set A ⊆ U is in DTIME[t(n)] iff there exists a deterministic, multi-tape TM, M, and a constant c, such that, 1. A = L(M) ≡ w ∈ U M(w)=1 , and 2. ∀w ∈ U, M(w) halts within c · t(|w|) steps. Definition 5.2 A set A ⊆ U is in DSPACE[s(n)] iff there exists a deterministic, multi-tape TM, M, and a constant c, such that, 1. A = L(M), and 2. ∀w ∈ U, M(w) uses at most c · s(|w|) work-tape cells. (Input tape is “read-only” and not counted as space used.) Example: PALINDROMES ∈ DTIME[n], DSPACE[n]. In fact, PALINDROMES ∈ DSPACE[log n]. [Exercise] 1 CS601 F(DTIME) and F(DSPACE) Lecture 5 Definition 5.3 f : U → U is in F (DTIME[t(n)]) iff there exists a deterministic, multi-tape TM, M, and a constant c, such that, 1. f = M(·); 2. ∀w ∈ U, M(w) halts within c · t(|w|) steps; 3. |f(w)|≤|w|O(1), i.e., f is polynomially bounded. Definition 5.4 f : U → U is in F (DSPACE[s(n)]) iff there exists a deterministic, multi-tape TM, M, and a constant c, such that, 1. f = M(·); 2. ∀w ∈ U, M(w) uses at most c · s(|w|) work-tape cells; 3. |f(w)|≤|w|O(1), i.e., f is polynomially bounded. (Input tape is “read-only”; Output tape is “write-only”.
    [Show full text]
  • Interactive Proof Systems and Alternating Time-Space Complexity
    Theoretical Computer Science 113 (1993) 55-73 55 Elsevier Interactive proof systems and alternating time-space complexity Lance Fortnow” and Carsten Lund** Department of Computer Science, Unicersity of Chicago. 1100 E. 58th Street, Chicago, IL 40637, USA Abstract Fortnow, L. and C. Lund, Interactive proof systems and alternating time-space complexity, Theoretical Computer Science 113 (1993) 55-73. We show a rough equivalence between alternating time-space complexity and a public-coin interactive proof system with the verifier having a polynomial-related time-space complexity. Special cases include the following: . All of NC has interactive proofs, with a log-space polynomial-time public-coin verifier vastly improving the best previous lower bound of LOGCFL for this model (Fortnow and Sipser, 1988). All languages in P have interactive proofs with a polynomial-time public-coin verifier using o(log’ n) space. l All exponential-time languages have interactive proof systems with public-coin polynomial-space exponential-time verifiers. To achieve better bounds, we show how to reduce a k-tape alternating Turing machine to a l-tape alternating Turing machine with only a constant factor increase in time and space. 1. Introduction In 1981, Chandra et al. [4] introduced alternating Turing machines, an extension of nondeterministic computation where the Turing machine can make both existential and universal moves. In 1985, Goldwasser et al. [lo] and Babai [l] introduced interactive proof systems, an extension of nondeterministic computation consisting of two players, an infinitely powerful prover and a probabilistic polynomial-time verifier. The prover will try to convince the verifier of the validity of some statement.
    [Show full text]
  • On the Randomness Complexity of Interactive Proofs and Statistical Zero-Knowledge Proofs*
    On the Randomness Complexity of Interactive Proofs and Statistical Zero-Knowledge Proofs* Benny Applebaum† Eyal Golombek* Abstract We study the randomness complexity of interactive proofs and zero-knowledge proofs. In particular, we ask whether it is possible to reduce the randomness complexity, R, of the verifier to be comparable with the number of bits, CV , that the verifier sends during the interaction. We show that such randomness sparsification is possible in several settings. Specifically, unconditional sparsification can be obtained in the non-uniform setting (where the verifier is modelled as a circuit), and in the uniform setting where the parties have access to a (reusable) common-random-string (CRS). We further show that constant-round uniform protocols can be sparsified without a CRS under a plausible worst-case complexity-theoretic assumption that was used previously in the context of derandomization. All the above sparsification results preserve statistical-zero knowledge provided that this property holds against a cheating verifier. We further show that randomness sparsification can be applied to honest-verifier statistical zero-knowledge (HVSZK) proofs at the expense of increasing the communica- tion from the prover by R−F bits, or, in the case of honest-verifier perfect zero-knowledge (HVPZK) by slowing down the simulation by a factor of 2R−F . Here F is a new measure of accessible bit complexity of an HVZK proof system that ranges from 0 to R, where a maximal grade of R is achieved when zero- knowledge holds against a “semi-malicious” verifier that maliciously selects its random tape and then plays honestly.
    [Show full text]
  • The Complexity of Space Bounded Interactive Proof Systems
    The Complexity of Space Bounded Interactive Proof Systems ANNE CONDON Computer Science Department, University of Wisconsin-Madison 1 INTRODUCTION Some of the most exciting developments in complexity theory in recent years concern the complexity of interactive proof systems, defined by Goldwasser, Micali and Rackoff (1985) and independently by Babai (1985). In this paper, we survey results on the complexity of space bounded interactive proof systems and their applications. An early motivation for the study of interactive proof systems was to extend the notion of NP as the class of problems with efficient \proofs of membership". Informally, a prover can convince a verifier in polynomial time that a string is in an NP language, by presenting a witness of that fact to the verifier. Suppose that the power of the verifier is extended so that it can flip coins and can interact with the prover during the course of a proof. In this way, a verifier can gather statistical evidence that an input is in a language. As we will see, the interactive proof system model precisely captures this in- teraction between a prover P and a verifier V . In the model, the computation of V is probabilistic, but is typically restricted in time or space. A language is accepted by the interactive proof system if, for all inputs in the language, V accepts with high probability, based on the communication with the \honest" prover P . However, on inputs not in the language, V rejects with high prob- ability, even when communicating with a \dishonest" prover. In the general model, V can keep its coin flips secret from the prover.
    [Show full text]
  • The Complexity Zoo
    The Complexity Zoo Scott Aaronson www.ScottAaronson.com LATEX Translation by Chris Bourke [email protected] 417 classes and counting 1 Contents 1 About This Document 3 2 Introductory Essay 4 2.1 Recommended Further Reading ......................... 4 2.2 Other Theory Compendia ............................ 5 2.3 Errors? ....................................... 5 3 Pronunciation Guide 6 4 Complexity Classes 10 5 Special Zoo Exhibit: Classes of Quantum States and Probability Distribu- tions 110 6 Acknowledgements 116 7 Bibliography 117 2 1 About This Document What is this? Well its a PDF version of the website www.ComplexityZoo.com typeset in LATEX using the complexity package. Well, what’s that? The original Complexity Zoo is a website created by Scott Aaronson which contains a (more or less) comprehensive list of Complexity Classes studied in the area of theoretical computer science known as Computa- tional Complexity. I took on the (mostly painless, thank god for regular expressions) task of translating the Zoo’s HTML code to LATEX for two reasons. First, as a regular Zoo patron, I thought, “what better way to honor such an endeavor than to spruce up the cages a bit and typeset them all in beautiful LATEX.” Second, I thought it would be a perfect project to develop complexity, a LATEX pack- age I’ve created that defines commands to typeset (almost) all of the complexity classes you’ll find here (along with some handy options that allow you to conveniently change the fonts with a single option parameters). To get the package, visit my own home page at http://www.cse.unl.edu/~cbourke/.
    [Show full text]
  • CS 579: Computational Complexity. Lecture 2 Space Complexity
    CS 579: Computational Complexity. Lecture 2 Space complexity. Alexandra Kolla Today Space Complexity, L,NL Configuration Graphs Log- Space Reductions NL Completeness, STCONN Savitch’s theorem SL Turing machines, briefly (3-tape) Turing machine M described by tuple (Γ,Q,δ), where ◦ Γ is “alphabet” . Contains start and blank symbol, 0,1,among others (constant size). ◦ Q is set of states, including designated starting state and halt state (constant size). ◦ Transition function δ:푄 × Γ3 → 푄 × Γ2 × {퐿, 푆, 푅}3 describing the rules M uses to move. Turing machines, briefly (3-tape) NON-DETERMINISTIC Turing machine M described by tuple (Γ,Q,δ0,δ1), where ◦ Γ is “alphabet” . Contains start and blank symbol, 0,1,among others (constant size). ◦ Q is set of states, including designated starting state and halt state (constant size). ◦ Two transition functions δ0, δ1 :푄 × Γ3 → 푄 × Γ2 × {퐿, 푆, 푅}3. At every step, TM makes non- deterministic choice which one to Space bounded turing machines Space-bounded turing machines used to study memory requirements of computational tasks. Definition. Let 푠: ℕ → ℕ and 퐿 ⊆ {0,1}∗. We say that L∈ SPACE(s(n)) if there is a constant c and a TM M deciding L s.t. at most c∙s(n) locations on M’s work tapes (excluding the input tape) are ever visited by M’s head during its computation on every input of length n. We will assume a single work tape and no output tape for simplicity. Similarly for NSPACE(s(n)), TM can only use c∙s(n) nonblank tape locations, regardless of its nondeterministic choices Space bounded turing machines Read-only “input” tape.
    [Show full text]
  • Lecture 10: Space Complexity III
    Space Complexity Classes: NL and L Reductions NL-completeness The Relation between NL and coNL A Relation Among the Complexity Classes Lecture 10: Space Complexity III Arijit Bishnu 27.03.2010 Space Complexity Classes: NL and L Reductions NL-completeness The Relation between NL and coNL A Relation Among the Complexity Classes Outline 1 Space Complexity Classes: NL and L 2 Reductions 3 NL-completeness 4 The Relation between NL and coNL 5 A Relation Among the Complexity Classes Space Complexity Classes: NL and L Reductions NL-completeness The Relation between NL and coNL A Relation Among the Complexity Classes Outline 1 Space Complexity Classes: NL and L 2 Reductions 3 NL-completeness 4 The Relation between NL and coNL 5 A Relation Among the Complexity Classes Definition for Recapitulation S c NPSPACE = c>0 NSPACE(n ). The class NPSPACE is an analog of the class NP. Definition L = SPACE(log n). Definition NL = NSPACE(log n). Space Complexity Classes: NL and L Reductions NL-completeness The Relation between NL and coNL A Relation Among the Complexity Classes Space Complexity Classes Definition for Recapitulation S c PSPACE = c>0 SPACE(n ). The class PSPACE is an analog of the class P. Definition L = SPACE(log n). Definition NL = NSPACE(log n). Space Complexity Classes: NL and L Reductions NL-completeness The Relation between NL and coNL A Relation Among the Complexity Classes Space Complexity Classes Definition for Recapitulation S c PSPACE = c>0 SPACE(n ). The class PSPACE is an analog of the class P. Definition for Recapitulation S c NPSPACE = c>0 NSPACE(n ).
    [Show full text]
  • User's Guide for Complexity: a LATEX Package, Version 0.80
    User’s Guide for complexity: a LATEX package, Version 0.80 Chris Bourke April 12, 2007 Contents 1 Introduction 2 1.1 What is complexity? ......................... 2 1.2 Why a complexity package? ..................... 2 2 Installation 2 3 Package Options 3 3.1 Mode Options .............................. 3 3.2 Font Options .............................. 4 3.2.1 The small Option ....................... 4 4 Using the Package 6 4.1 Overridden Commands ......................... 6 4.2 Special Commands ........................... 6 4.3 Function Commands .......................... 6 4.4 Language Commands .......................... 7 4.5 Complete List of Class Commands .................. 8 5 Customization 15 5.1 Class Commands ............................ 15 1 5.2 Language Commands .......................... 16 5.3 Function Commands .......................... 17 6 Extended Example 17 7 Feedback 18 7.1 Acknowledgements ........................... 19 1 Introduction 1.1 What is complexity? complexity is a LATEX package that typesets computational complexity classes such as P (deterministic polynomial time) and NP (nondeterministic polynomial time) as well as sets (languages) such as SAT (satisfiability). In all, over 350 commands are defined for helping you to typeset Computational Complexity con- structs. 1.2 Why a complexity package? A better question is why not? Complexity theory is a more recent, though mature area of Theoretical Computer Science. Each researcher seems to have his or her own preferences as to how to typeset Complexity Classes and has built up their own personal LATEX commands file. This can be frustrating, to say the least, when it comes to collaborations or when one has to go through an entire series of files changing commands for compatibility or to get exactly the look they want (or what may be required).
    [Show full text]
  • A Study of the NEXP Vs. P/Poly Problem and Its Variants by Barıs
    A Study of the NEXP vs. P/poly Problem and Its Variants by Barı¸sAydınlıoglu˘ A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Computer Sciences) at the UNIVERSITY OF WISCONSIN–MADISON 2017 Date of final oral examination: August 15, 2017 This dissertation is approved by the following members of the Final Oral Committee: Eric Bach, Professor, Computer Sciences Jin-Yi Cai, Professor, Computer Sciences Shuchi Chawla, Associate Professor, Computer Sciences Loris D’Antoni, Asssistant Professor, Computer Sciences Joseph S. Miller, Professor, Mathematics © Copyright by Barı¸sAydınlıoglu˘ 2017 All Rights Reserved i To Azadeh ii acknowledgments I am grateful to my advisor Eric Bach, for taking me on as his student, for being a constant source of inspiration and guidance, for his patience, time, and for our collaboration in [9]. I have a story to tell about that last one, the paper [9]. It was a late Monday night, 9:46 PM to be exact, when I e-mailed Eric this: Subject: question Eric, I am attaching two lemmas. They seem simple enough. Do they seem plausible to you? Do you see a proof/counterexample? Five minutes past midnight, Eric responded, Subject: one down, one to go. I think the first result is just linear algebra. and proceeded to give a proof from The Book. I was ecstatic, though only for fifteen minutes because then he sent a counterexample refuting the other lemma. But a third lemma, inspired by his counterexample, tied everything together. All within three hours. On a Monday midnight. I only wish that I had asked to work with him sooner.
    [Show full text]
  • A Short History of Computational Complexity
    The Computational Complexity Column by Lance FORTNOW NEC Laboratories America 4 Independence Way, Princeton, NJ 08540, USA [email protected] http://www.neci.nj.nec.com/homepages/fortnow/beatcs Every third year the Conference on Computational Complexity is held in Europe and this summer the University of Aarhus (Denmark) will host the meeting July 7-10. More details at the conference web page http://www.computationalcomplexity.org This month we present a historical view of computational complexity written by Steve Homer and myself. This is a preliminary version of a chapter to be included in an upcoming North-Holland Handbook of the History of Mathematical Logic edited by Dirk van Dalen, John Dawson and Aki Kanamori. A Short History of Computational Complexity Lance Fortnow1 Steve Homer2 NEC Research Institute Computer Science Department 4 Independence Way Boston University Princeton, NJ 08540 111 Cummington Street Boston, MA 02215 1 Introduction It all started with a machine. In 1936, Turing developed his theoretical com- putational model. He based his model on how he perceived mathematicians think. As digital computers were developed in the 40's and 50's, the Turing machine proved itself as the right theoretical model for computation. Quickly though we discovered that the basic Turing machine model fails to account for the amount of time or memory needed by a computer, a critical issue today but even more so in those early days of computing. The key idea to measure time and space as a function of the length of the input came in the early 1960's by Hartmanis and Stearns.
    [Show full text]
  • NP-Hardness of Circuit Minimization for Multi-Output Functions
    Electronic Colloquium on Computational Complexity, Report No. 21 (2020) NP-Hardness of Circuit Minimization for Multi-Output Functions Rahul Ilango∗ Bruno Loffy Igor C. Oliveiraz MIT University of Porto University of Warwick February 21, 2020 Abstract Can we design efficient algorithms for finding fast algorithms? This question is captured by various circuit minimization problems, and algorithms for the corresponding tasks have significant practical applications. Following the work of Cook and Levin in the early 1970s, a central question is whether minimizing the circuit size of an explicitly given function is NP- complete. While this is known to hold in restricted models such as DNFs, making progress with respect to more expressive classes of circuits has been elusive. In this work, we establish the first NP-hardness result for circuit minimization of total functions in the setting of general (unrestricted) Boolean circuits. More precisely, we show that computing the minimum circuit size of a given multi-output Boolean function f : f0; 1gn ! f0; 1gm is NP-hard under many-one polynomial-time randomized reductions. Our argument builds on a simpler NP-hardness proof for the circuit minimization problem for (single-output) Boolean functions under an extended set of generators. Complementing these results, we investigate the computational hardness of minimizing com- munication. We establish that several variants of this problem are NP-hard under deterministic reductions. In particular, unless P = NP, no polynomial-time computable function can approx- imate the deterministic two-party communication complexity of a partial Boolean function up to a polynomial. This has consequences for the class of structural results that one might hope to show about the communication complexity of partial functions.
    [Show full text]
  • Lecture 4: Space Complexity II: NL=Conl, Savitch's Theorem
    COM S 6810 Theory of Computing January 29, 2009 Lecture 4: Space Complexity II Instructor: Rafael Pass Scribe: Shuang Zhao 1 Recall from last lecture Definition 1 (SPACE, NSPACE) SPACE(S(n)) := Languages decidable by some TM using S(n) space; NSPACE(S(n)) := Languages decidable by some NTM using S(n) space. Definition 2 (PSPACE, NPSPACE) [ [ PSPACE := SPACE(nc), NPSPACE := NSPACE(nc). c>1 c>1 Definition 3 (L, NL) L := SPACE(log n), NL := NSPACE(log n). Theorem 1 SPACE(S(n)) ⊆ NSPACE(S(n)) ⊆ DTIME 2 O(S(n)) . This immediately gives that N L ⊆ P. Theorem 2 STCONN is NL-complete. 2 Today’s lecture Theorem 3 N L ⊆ SPACE(log2 n), namely STCONN can be solved in O(log2 n) space. Proof. Recall the STCONN problem: given digraph (V, E) and s, t ∈ V , determine if there exists a path from s to t. 4-1 Define boolean function Reach(u, v, k) with u, v ∈ V and k ∈ Z+ as follows: if there exists a path from u to v with length smaller than or equal to k, then Reach(u, v, k) = 1; otherwise Reach(u, v, k) = 0. It is easy to verify that there exists a path from s to t iff Reach(s, t, |V |) = 1. Next we show that Reach(s, t, |V |) can be recursively computed in O(log2 n) space. For all u, v ∈ V and k ∈ Z+: • k = 1: Reach(u, v, k) = 1 iff (u, v) ∈ E; • k > 1: Reach(u, v, k) = 1 iff there exists w ∈ V such that Reach(u, w, dk/2e) = 1 and Reach(w, v, bk/2c) = 1.
    [Show full text]