Complexity Theory: Overview of Definitions (D), Theorems (T) and Languages (L) Chronological Order

Complexity Theory: Overview of Definitions (D), Theorems (T) and Languages (L) Chronological Order

Complexity Theory: Overview of definitions (D), theorems (T) and languages (L) Chronological order Type Lecture 9 Book Slides Tutorials D Asymptotic Upper Bound big-O Def. 7.2 p. 253 L 9 sl. 3 D Strict Asymptotic Upper Bound small-o Def. 7.5 p. 254 L 9 sl. 4 Running time or (worst-case) time com- D Def. 7.1 p. 252 L 9 sl. 6 plexity of TM D TIME(t(n)) Def. 7.7 p. 255 L 9 sl. 8 T Time complexity of simulating k-tape TM Thm. 7.8 p. 258 L 9 sl. 10 Polynomial Time Equivalence of Deter- T p. 261 L 9 sl. 11 ministic Models D P Def. 7.12 p. 262 L 9 sl.12 L PATH p. 263 L 9 sl. 13 T PATH 2 P p. 264 L 9 sl. 13 T ALLDFA 2 P T 9 ex. 5 Type Lecture 10 Book Slides Tutorials L RELPRIME p. 265 L 10 sl. 2 Thm. 7.15 p. L 10 sl. 2{ T RELPRIME 2 P 265 3 Thm. 7.16 p. L 10 sl. 4{ T Every context-free language is in P T 10 ex. 1 266{267 5 L 10 sl. 6{ T Closure properties of P T 10 ex. 2 7 Running time or (worst-case) time com- D Def. 7.9 p. 259 L 10 sl. 8 plexity of nondeterministic TM D NTIME(t(n)) Def. 7.21 p. 271 L 10 sl. 9 L HAMPATH p. 268 L 10 sl. 9 T HAMPATH 2 NTIME(n2) p. 268{269 L 10 sl. 10 Thm. 7.20 p. 270 (see also D NP Def. 7.19 p. L 10 sl. 11 270) Type Lecture 11 Book Slides Tutorials D Polynomial Time Verifiable Languages Def. 7.18 p. 269 L 11 sl. 3 Poly. Time Verifiers vs. Nondeterministic T Thm. 7.20 p 270 L 11 sl. 4 Poly. Time TMs L CLIQUE p. 272 L 11 sl. 5 Thm. 7.24 p. T CLIQUE 2 NP L 11 sl. 5 272 L SUBSET-SUM p. 273 L 11 sl. 5 Thm. 7.25 p. T SUBSET-SUM 2 NP L 11 sl. 5 273 D co-NP p. 273 L 11 sl. 5 D EXPTIME p. 312 L 11 sl. 6 D Polynomial Time Computable Function Def. 7.28 p. 276 L 11 sl. 8 D Polynomial Time Mapping Reduction Def. 7.29 p. 276 L 11 sl. 8 Thm. 7.31 p. T Solving problems in P by reductions L 11 sl. 9 277 L SAT p. 275 L 11 sl. 10 L 3SAT p. 278 L 11 sl. 11 Thm. 7.32 p. T 3SAT ≤P CLIQUE L 11 sl. 12 278{279 T BINPACK 2 NP T 11 ex. 2 T co-NP ⊆ EXPTIME T 11 ex. 4 T Poly. Time Reductions are Transitive T 11 ex. 5 Type Lecture 12 Book Slides Tutorials D NP-completeness Def. 7.34 p. 280 L 12 sl. 3 Thm. 7.35 p. T If B 2 P is NP-complete then P = NP L 12 sl. 3 280 If B is NP-complete and B poly. time Thm. 7.36 p. T L 12 sl. 3 reduces to C 2 NP then C is NP-complete 280 Thm. 7.37 p. L 12 sl. 4{ T SAT is NP-complete (Cook-Levin) T 12 ex. 3 280{286 11 Type Lecture 13 Book Slides Tutorials L CNF-SAT and 3SAT p. 278 L 13 sl. 3 Proof of Cor. L 13 sl. 3{ T CNF-SAT ≤ 3SAT T 13 ex. 4 P 7.42 p. 286 4 T 3SAT is NP-complete Cor. 7.42 p. 286 L 13 sl. 3 T CLIQUE is NP-complete Cor. 7.43 p. 287 L 13 sl. 5 L VERTEX-COVER p. 288 L 13 sl. 6 Proof of Thm. L 13 sl. 6{ T 3SAT ≤ VERTEX-COVER T 13 ex. 5 P 7.44 p. 288{289 7 Thm. 7.44 p. T VERTEX-COVER is NP-complete L 13 sl. 6 288 Proof of Thm. L 13 sl. 8{ T 3SAT ≤ HAMPATH P 7.46 p. 290{294 9 Thm. 7.46 p. T HAMPATH is NP-complete L 13 sl. 8 290 L UHAMPATH p. 295 L 13 sl. 10 Thm. 7.55 p. T UHAMPATH is NP-complete L 13 sl. 10 Test 4 295 L SUBSET-SUM p. 295 L 11 sl. 11 Thm. 7.56 p. T SUBSET-SUM is NP-complete L 13 sl. 11 296 Thm. 7.56 p. L 13 sl. 11{ T 3SAT ≤ SUBSET-SUM Test 4 P 296{298 12 T Closure properties of NP T 13 ex. 1 T NOTA is NP-complete T 13 ex. 3 Type Lecture 14 Book Slides Tutorials D Space complexity of TM Def. 8.1 p. 307 L 14 sl. 3 D Space complexity of Nondeterministic TM Def. 8.1 p. 307 L 14 sl. 3 D SPACE(t(n)) Def. 8.2 p. 308 L 14 sl. 4 D NSPACE(t(n)) Def. 8.2 p. 308 L 14 sl. 4 T SAT 2 SPACE(n) Exa. 8.3 p. 308 L 14 sl. 5 L 14 sl. 6 L ALLNFA p. 309 and L 15 sl. 5 L 14 sl. 6{ T ALL 2 NSPACE(n) read slides NFA 7 NSPACE(t(n)) ⊆ SPACE(t2(n)) (Sav- Thm. 8.5 p. L 14 sl. 9{ T itch) 310{311 10 D PSPACE Def. 8.6 p. 312 L 14 sl. 11 T NP ⊆ PSPACE p. 312 L 14 sl. 12 T co-NP ⊆ PSPACE L 14 sl. 12 T 14 ex. 2 T PSPACE ⊆ EXPTIME p. 312 L 14 sl. 13 T 14 ex. 4 Overview of Time and Space Complexity T p. 312{313 L 14 sl. 14 Classes T Closure properties of PSPACE T 14 ex. 1 Type Lecture 15 Book Slides Tutorials D PSPACE-completeness Def. 8.8 p. 313 L 15 sl. 2 L ALBA L 15 sl. 3 A is PSPACE-complete (padding T LBA L 15 sl. 3 technique) L TQBF p. 315 L 15 sl. 4 TQBF is PSPACE-complete (without T p. 315 L 15 sl. 4 proof).

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    4 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us