Phylogeny of Hepatocystis Parasites of Australian Flying Foxes

Total Page:16

File Type:pdf, Size:1020Kb

Phylogeny of Hepatocystis Parasites of Australian Flying Foxes View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Queensland DAF eResearch Archive IJP: Parasites and Wildlife 7 (2018) 207–212 Contents lists available at ScienceDirect IJP: Parasites and Wildlife journal homepage: www.elsevier.com/locate/ijppaw Phylogeny of Hepatocystis parasites of Australian flying foxes reveals distinct ☆ T parasite clade ∗ Juliane Schaera,b, , Lee McMichaelc, Anita N. Gordond, Daniel Russella, Kai Matuschewskib, Susan L. Perkinse, Hume Fieldf, Michelle Powera a Department of Biological Sciences, Macquarie University, North Ryde, 2109, Australia b Department of Molecular Parasitology, Institute of Biology, Humboldt University, 10117, Berlin, Germany c School of Veterinary Science, University of Queensland, Gatton Campus, Gatton, QLD, 4343, Australia d Biosecurity Sciences Laboratory, Health and Food Science Precinct, 39 Kessels Rd, Coopers Plains, Queensland, 4108, Australia e Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY, 10024, USA f EcoHealth Alliance, New York, NY, 10001, USA ARTICLE INFO ABSTRACT Keywords: Hepatocystis parasites are close relatives of mammalian Plasmodium species and infect a range of primates and Haemosporida bats. Here, we present the phylogenetic relationships of Hepatocystis parasites of three Australian flying fox Hepatocystis species. Multilocus phylogenetic analysis revealed that Hepatocystis parasites of Pteropus species from Australia Chiroptera and Asia form a distinct clade that is sister to all other Hepatocystis parasites of primates and bats from Africa and Malaria Asia. No patterns of host specificity were recovered within the Pteropus-specific parasite clade and the Pteropus Hepatocystis sequences from all three Australian host species sampled fell into two divergent clades. Australia 1. Introduction other haemosporidian parasite genera. Bats (Chiroptera) are hosts to perhaps the most diverse array of The life-threatening disease malaria is caused by single-cell eu- haemosporidian parasites among mammals, with nine different genera karyotic parasites of the genus Plasmodium. The human-infecting described in this mammalian order. The parasite genera in bats com- Plasmodium species belong to a large monophyletic group of haemos- prise species of Plasmodium and Hepatocystis, and seven genera thought poridian parasites (Haemosporida) that comprise 200 formally de- to exclusively infect chiropteran hosts (Perkins and Schaer, 2016). Due scribed species of Plasmodium and almost 300 closely related species to this diversity, bat malaria parasites are of particular interest for the (Martinsen and Perkins, 2013; Galen et al., 2018). These parasites infect study of the taxonomy and systematics of malaria parasites. Recent a diverse array of dipteran invertebrate as well as vertebrate hosts. molecular studies have mainly focused on bat malaria parasites from Mammalian haemosporidian parasites are currently classified in ten African and European bat hosts (e.g. Witsenburg et al., 2012; Schaer different genera, including Plasmodium and Hepatocystis, whereas the et al., 2013; Lutz et al., 2016; Schaer et al., 2017). In contrast, our mammalian Plasmodium clade is paraphyletic, because it contains the knowledge of haemosporidian parasites of Australian bats is very lim- parasites of the genus Hepatocystis (Perkins and Schaer, 2016; Galen ited and restricted to morphological investigations, with no molecular et al., 2018). The large group of haemosporidian parasites not only data available for any of the haemosporidian parasites in these bats. differs in host preferences, but also in morphology, life history and Molecular studies have greatly improved our understanding of hae- effects on their hosts. Uncovering the evolutionary history and biology mosporidian parasites. They are particularly needed for the character- of these parasites will help define their biological adaptations, host ization of the understudied haemosporidians of wildlife to recover the switches and acquisitions of novel life-history traits. For example, er- evolutionary history of key life-history characters of the whole group, ythrocytic schizogony or the multiplication of parasites in the blood, to determine host specificity patterns and the transitions among the the life cycle stage that is associated with the characteristic clinical different dipteran and vertebrate host groups (Martinsen and Perkins, signs of malaria in humans, is exclusive to parasites of the genus Plas- 2013). Further, molecular identifications allow the differentiation of modium (that infect several groups of vertebrates) and is absent in all parasites that are morphologically indistinguishable and are essential ☆ Note: Nucleotide sequence data reported in this paper are available in the GenBank database under accession nos. MH397732-MH397876. ∗ Corresponding author. Department of Biological Sciences, Macquarie University, North Ryde, 2109, Australia. E-mail address: [email protected] (J. Schaer). https://doi.org/10.1016/j.ijppaw.2018.06.001 Received 2 May 2018; Received in revised form 31 May 2018; Accepted 5 June 2018 2213-2244/ © 2018 The Authors. Published by Elsevier Ltd on behalf of Australian Society for Parasitology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/BY-NC-ND/4.0/). J. Schaer et al. IJP: Parasites and Wildlife 7 (2018) 207–212 for any taxonomic revisions of described morphospecies (Galen et al., Table 1 2018). Based on morphological criteria, four haemosporidian genera List of investigated samples and corresponding blood stage morphology. have been reported in Australian bat hosts: Hepatocystis, Poly- aSample/Abbreviation in Locality bblood stage morphology chromophilus, Johnsprentia and Sprattiella (Table S1). The conception of phylogenetic trees the two genera Johnsprentia and Sprattiella has only been introduced very recently (Landau et al., 2012a, b). The parasite observations that P_alecto_A17 Ayr No blood smear available P_alecto_A22 Tallebudgera No blood smear available led to the description of these two new parasite genera were gathered P_alecto_L1 Boonah Category 2 from infected Pteropus alecto individuals collected in Townsville, P_alecto_L2 Boonah Subpatent infection, no Queensland, Australia in 1978. Both Johnsprentia and Sprattiella await parasites detected independent confirmation. Polychromophilus parasites only infect in- P_alecto_L3 Boonah Category 2 sectivorous bats of the bat families Miniopteridae and Vespertilionidae P_alecto_L5 Boonah Category 2 P_alecto_L7 Boonah No blood smear available (suborder Yangochiroptera) and display a wide distribution in tempe- P_alecto_L8 Boonah Category 2 rate and tropical areas worldwide. In contrast, Hepatocystis is restricted P_alecto_L10 Boonah No blood smear available to two bat families of the suborder Yinpterochiroptera, fruit bat/flying P_alecto_L11 Boonah No blood smear available fox species (Pteropodidae) and hipposiderid bats (Hipposideridae) of P_alecto_L13 Boonah No blood smear available fi P_conspicillatus_A25 Topaz No blood smear available Africa, Asia and Australia (c.f. Perkins and Schaer, 2016). The rst re- P_conspicillatus_L14 Gordonvale Category 1 ports of Hepatocystis in Australian flying foxes date back to 1909 and P_conspicillatus_L15 Gordonvale Category 1 1911, with “Plasmodium” infections independently reported in Pteropus P_conspicillatus_L16 Gordonvale Category 1 alecto gouldi (Breinl et al., 1912). The parasite species was originally P_conspicillatus_L17 Gordonvale Category 1 described as Plasmodium pteropi, and later reclassified as Hepatocystis P_conspicillatus_L18 Gordonvale Category 1 fl P_conspicillatus_L19 Gordonvale Category 1 pteropi (Manwell, 1946; Garnham, 1966). Four Australian ying fox P_conspicillatus_L20 Gordonvale Category 1 species of the genus Pteropus (Pteropus alecto, Pteropus poliocephalus, P_conspicillatus_L21 Gordonvale Category 1 Pteropus scapulatus, Pteropus conspicillatus) were subsequently identified P_conspicillatus_L22 Gordonvale No blood smear available as hosts for H. pteropi (Mackerras, 1959). A second species of Hepato- P_conspicillatus_L23 Gordonvale No blood smear available P_conspicillatus_L25 Gordonvale No blood smear available cystis, Hepatocystis levinei was described from P. poliocephalus (Landau P_conspicillatus_L27 Gordonvale No blood smear available et al., 1985) and more recently, a study reported the same species from P_conspicillatus_L32 Gordonvale No blood smear available P. alecto, sampled in Queensland in 1978 (Landau et al., 2012a). P_conspicillatus_L33 Gordonvale No blood smear available Mammalian haemosporidian genera that lack asexual replication in the P_conspicillatus_L34 Gordonvale No blood smear available blood (all haemosporidian genera except Plasmodium) are generally P_conspicillatus_L35 Gordonvale No blood smear available P_conspicillatus_L37 Gordonvale Category 2 considered as benign infections in their mammalian hosts. The blood P_conspicillatus_L40 Gordonvale Category 2 stages of Hepatocystis, Sprattiella and Johnsprentia parasites are confined P_conspicillatus_L41 Gordonvale No blood smear available to gametocytes, whereas the schizonts occur in different tissues. Ac- P_conspicillatus_L43 Gordonvale Category 1 cording to the authors, Sprattiella-infected bats feature schizonts in the P_scapulatus_A1 North Lakes No blood smear available P_scapulatus_A2 Caboolture No blood smear available lumen of renal veins of the kidney and Johnsprentia parasites develop
Recommended publications
  • Wildlife Parasitology in Australia: Past, Present and Future
    CSIRO PUBLISHING Australian Journal of Zoology, 2018, 66, 286–305 Review https://doi.org/10.1071/ZO19017 Wildlife parasitology in Australia: past, present and future David M. Spratt A,C and Ian Beveridge B AAustralian National Wildlife Collection, National Research Collections Australia, CSIRO, GPO Box 1700, Canberra, ACT 2601, Australia. BVeterinary Clinical Centre, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Werribee, Vic. 3030, Australia. CCorresponding author. Email: [email protected] Abstract. Wildlife parasitology is a highly diverse area of research encompassing many fields including taxonomy, ecology, pathology and epidemiology, and with participants from extremely disparate scientific fields. In addition, the organisms studied are highly dissimilar, ranging from platyhelminths, nematodes and acanthocephalans to insects, arachnids, crustaceans and protists. This review of the parasites of wildlife in Australia highlights the advances made to date, focussing on the work, interests and major findings of researchers over the years and identifies current significant gaps that exist in our understanding. The review is divided into three sections covering protist, helminth and arthropod parasites. The challenge to document the diversity of parasites in Australia continues at a traditional level but the advent of molecular methods has heightened the significance of this issue. Modern methods are providing an avenue for major advances in documenting and restructuring the phylogeny of protistan parasites in particular, while facilitating the recognition of species complexes in helminth taxa previously defined by traditional morphological methods. The life cycles, ecology and general biology of most parasites of wildlife in Australia are extremely poorly understood. While the phylogenetic origins of the Australian vertebrate fauna are complex, so too are the likely origins of their parasites, which do not necessarily mirror those of their hosts.
    [Show full text]
  • The Nuclear 18S Ribosomal Dnas of Avian Haemosporidian Parasites Josef Harl1, Tanja Himmel1, Gediminas Valkiūnas2 and Herbert Weissenböck1*
    Harl et al. Malar J (2019) 18:305 https://doi.org/10.1186/s12936-019-2940-6 Malaria Journal RESEARCH Open Access The nuclear 18S ribosomal DNAs of avian haemosporidian parasites Josef Harl1, Tanja Himmel1, Gediminas Valkiūnas2 and Herbert Weissenböck1* Abstract Background: Plasmodium species feature only four to eight nuclear ribosomal units on diferent chromosomes, which are assumed to evolve independently according to a birth-and-death model, in which new variants origi- nate by duplication and others are deleted throughout time. Moreover, distinct ribosomal units were shown to be expressed during diferent developmental stages in the vertebrate and mosquito hosts. Here, the 18S rDNA sequences of 32 species of avian haemosporidian parasites are reported and compared to those of simian and rodent Plasmodium species. Methods: Almost the entire 18S rDNAs of avian haemosporidians belonging to the genera Plasmodium (7), Haemo- proteus (9), and Leucocytozoon (16) were obtained by PCR, molecular cloning, and sequencing ten clones each. Phy- logenetic trees were calculated and sequence patterns were analysed and compared to those of simian and rodent malaria species. A section of the mitochondrial CytB was also sequenced. Results: Sequence patterns in most avian Plasmodium species were similar to those in the mammalian parasites with most species featuring two distinct 18S rDNA sequence clusters. Distinct 18S variants were also found in Haemopro- teus tartakovskyi and the three Leucocytozoon species, whereas the other species featured sets of similar haplotypes. The 18S rDNA GC-contents of the Leucocytozoon toddi complex and the subgenus Parahaemoproteus were extremely high with 49.3% and 44.9%, respectively.
    [Show full text]
  • A MOLECULAR PHYLOGENY of MALARIAL PARASITES RECOVERED from CYTOCHROME B GENE SEQUENCES
    J. Parasitol., 88(5), 2002, pp. 972±978 q American Society of Parasitologists 2002 A MOLECULAR PHYLOGENY OF MALARIAL PARASITES RECOVERED FROM CYTOCHROME b GENE SEQUENCES Susan L. Perkins* and Jos. J. Schall Department of Biology, University of Vermont, Burlington, Vermont 05405. e-mail: [email protected] ABSTRACT: A phylogeny of haemosporidian parasites (phylum Apicomplexa, family Plasmodiidae) was recovered using mito- chondrial cytochrome b gene sequences from 52 species in 4 genera (Plasmodium, Hepatocystis, Haemoproteus, and Leucocy- tozoon), including parasite species infecting mammals, birds, and reptiles from over a wide geographic range. Leucocytozoon species emerged as an appropriate out-group for the other malarial parasites. Both parsimony and maximum-likelihood analyses produced similar phylogenetic trees. Life-history traits and parasite morphology, traditionally used as taxonomic characters, are largely phylogenetically uninformative. The Plasmodium and Hepatocystis species of mammalian hosts form 1 well-supported clade, and the Plasmodium and Haemoproteus species of birds and lizards form a second. Within this second clade, the relation- ships between taxa are more complex. Although jackknife support is weak, the Plasmodium of birds may form 1 clade and the Haemoproteus of birds another clade, but the parasites of lizards fall into several clusters, suggesting a more ancient and complex evolutionary history. The parasites currently placed within the genus Haemoproteus may not be monophyletic. Plasmodium falciparum of humans was not derived from an avian malarial ancestor and, except for its close sister species, P. reichenowi,is only distantly related to haemospordian parasites of all other mammals. Plasmodium is paraphyletic with respect to 2 other genera of malarial parasites, Haemoproteus and Hepatocystis.
    [Show full text]
  • Ungulate Malaria Parasites Thomas J
    www.nature.com/scientificreports OPEN Ungulate malaria parasites Thomas J. Templeton1,2,*, Masahito Asada1,*, Montakan Jiratanh3, Sohta A. Ishikawa4,5, Sonthaya Tiawsirisup6, Thillaiampalam Sivakumar7, Boniface Namangala8, Mika Takeda1, Kingdao Mohkaew3, Supawan Ngamjituea3, Noboru Inoue7, Chihiro Sugimoto9, Yuji Inagaki5,10, Yasuhiko Suzuki9, Naoaki Yokoyama7, Morakot Kaewthamasorn11 & Osamu Kaneko1 Received: 14 December 2015 Accepted: 02 March 2016 Haemosporida parasites of even-toed ungulates are diverse and globally distributed, but since their discovery in 1913 their characterization has relied exclusively on microscopy-based descriptions. In Published: 21 March 2016 order to bring molecular approaches to bear on the identity and evolutionary relationships of ungulate malaria parasites, we conducted Plasmodium cytb-specific nested PCR surveys using blood from water buffalo in Vietnam and Thailand, and goats in Zambia. We found thatPlasmodium is readily detectable from water buffalo in these countries, indicating that buffaloPlasmodium is distributed in a wider region than India, which is the only area in which buffaloPlasmodium has been reported. Two types (I and II) of Plasmodium sequences were identified from water buffalo and a third type (III) was isolated from goat. Morphology of the parasite was confirmed in Giemsa-reagent stained blood smears for the Type I sample. Complete mitochondrial DNA sequences were isolated and used to infer a phylogeny in which ungulate malaria parasites form a monophyletic clade within the Haemosporida, and branch prior to the clade containing bird, lizard and other mammalian Plasmodium. Thus it is likely that host switching of Plasmodium from birds to mammals occurred multiple times, with a switch to ungulates independently from other mammalian Plasmodium.
    [Show full text]
  • High Diversity of West African Bat Malaria Parasites and a Tight Link with Rodent Plasmodium Taxa
    High diversity of West African bat malaria parasites and a tight link with rodent Plasmodium taxa Juliane Schaera,b,1,2, Susan L. Perkinsc,1,2, Jan Decherd, Fabian H. Leendertze, Jakob Fahrf,g, Natalie Weberh, and Kai Matuschewskia,i aParasitology Unit, Max Planck Institute for Infection Biology, 10117 Berlin, Germany; bMuseum für Naturkunde, Leibniz Institute for Research on Evolution and Biodiversity, 10115 Berlin, Germany; cSackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY 10024; dSection of Mammals, Zoologisches Forschungsmuseum A. König, 53113 Bonn, Germany; eRobert Koch Institute, 13302 Berlin, Germany; fZoological Institute, Technische Universität Braunschweig, 38106 Braunschweig, Germany; gDepartment of Migration and Immuno-ecology, Max Planck Institute for Ornithology, 78315 Radolfzell, Germany; hInstitute of Experimental Ecology, University of Ulm, 89069 Ulm, Germany; and iInstitute of Biology, Humboldt University, 10117 Berlin, Germany Edited by Jitender P. Dubey, US Department of Agriculture, Beltsville, MD, and approved September 10, 2013 (received for review June 10, 2013) As the only volant mammals, bats are captivating for their high to the late 19th century (10). The corresponding vectors for most taxonomic diversity, for their vital roles in ecosystems—particularly as bat parasites remain unknown. Similarly, the phylogenetic rela- pollinators and insectivores—and, more recently, for their important tionships for the majority of these parasites remain enigmatic. roles in the maintenance and transmission of zoonotic viral diseases. Here, we present a unique systematic analysis of Haemosporida Genome sequences have identified evidence for a striking expansion in a diverse species assemblage of bats. For this study, we per- of and positive selection in gene families associated with immunity.
    [Show full text]
  • Rerooting the Evolutionary Tree of Malaria Parasites
    Rerooting the evolutionary tree of malaria parasites Diana C. Outlawa and Robert E. Ricklefsb,1 aDepartment of Biological Sciences, Mississippi State University, Mississippi State, MS 39762; and bDepartment of Biology, University of Missouri, St. Louis, MO 63121 Contributed by Robert E. Ricklefs, June 7, 2011 (sent for review April 1, 2011) Malaria parasites (Plasmodium spp.) have plagued humans for mil- confirmation, which results in a paraphyletic Plasmodium (Fig. lennia. Less well known are related parasites (Haemosporida), 1C; SI Text). with diverse life cycles and dipteran vectors that infect other ver- Rooting phylogenies can be problematic when outgroup taxa tebrates. Understanding the evolution of parasite life histories, are not well established, as in the case of malaria parasites including switches between hosts and vectors, depends on knowl- (13). In many cases, the midpoint rooting method (14), which edge of evolutionary relationships among parasite lineages. In defines the root at the node between the two most divergent particular, inferences concerning time of origin and trait evolution groups, is used and provides plausible results comparable to require correct placement of the root of the evolutionary tree. outgroup rooting methods (reviewed in ref. 15). However, Phylogenetic reconstructions of the diversification of malaria para- when rates of evolution are heterogeneous across branches in sites from DNA sequences have suffered from uncertainty concern- a phylogeny, midpoint rooting can be confounded, as can ing outgroup taxa, limited taxon sampling, and selection on genes outgroup rooting methods (9), whereas molecular clock root- used to assess relationships. As a result, inferred relationships ing methods seem robust to moderate violations of homoge- among the Haemosporida have been unstable, and questions con- neity.
    [Show full text]
  • Babesial Infection in the Madagascan Flying Fox, Pteropus Rufus É
    Ranaivoson et al. Parasites & Vectors (2019) 12:51 https://doi.org/10.1186/s13071-019-3300-7 RESEARCH Open Access Babesial infection in the Madagascan flying fox, Pteropus rufus É. Geoffroy, 1803 Hafaliana C. Ranaivoson1,2, Jean-Michel Héraud1, Heidi K. Goethert3, Sam R. Telford III3, Lydia Rabetafika2† and Cara E. Brook4,5*† Abstract Background: Babesiae are erythrocytic protozoans, which infect the red blood cells of vertebrate hosts to cause disease. Previous studies have described potentially pathogenic infections of Babesia vesperuginis in insectivorous bats in Europe, the Americas and Asia. To date, no babesial infections have been documented in the bats of Madagascar, or in any frugivorous bat species worldwide. Results: We used standard microscopy and conventional PCR to identify babesiae in blood from the endemic Madagascan flying fox (Pteropus rufus). Out of 203 P. rufus individuals captured between November 2013 and January 2016 and screened for erythrocytic parasites, nine adult males (4.43%) were infected with babesiae. Phylogenetic analysis of sequences obtained from positive samples indicates that they cluster in the Babesia microti clade, which typically infect felids, rodents, primates, and canids, but are distinct from B. vesperuginis previously described in bats. Statistical analysis of ecological trends in the data suggests that infections were most commonly observed in the rainy season and in older-age individuals. No pathological effects of infection on the host were documented; age-prevalence patterns indicated susceptible-infectious (SI) transmission dynamics characteristic of a non-immunizing persistent infection. Conclusions: To our knowledge, this study is the first report of any erythrocytic protozoan infecting Madagascan fruit bats and the first record of a babesial infection in a pteropodid fruit bat globally.
    [Show full text]
  • Plasmodium Asexual Growth and Sexual Development in the Haematopoietic Niche of the Host
    REVIEWS Plasmodium asexual growth and sexual development in the haematopoietic niche of the host Kannan Venugopal 1, Franziska Hentzschel1, Gediminas Valkiūnas2 and Matthias Marti 1* Abstract | Plasmodium spp. parasites are the causative agents of malaria in humans and animals, and they are exceptionally diverse in their morphology and life cycles. They grow and develop in a wide range of host environments, both within blood- feeding mosquitoes, their definitive hosts, and in vertebrates, which are intermediate hosts. This diversity is testament to their exceptional adaptability and poses a major challenge for developing effective strategies to reduce the disease burden and transmission. Following one asexual amplification cycle in the liver, parasites reach high burdens by rounds of asexual replication within red blood cells. A few of these blood- stage parasites make a developmental switch into the sexual stage (or gametocyte), which is essential for transmission. The bone marrow, in particular the haematopoietic niche (in rodents, also the spleen), is a major site of parasite growth and sexual development. This Review focuses on our current understanding of blood-stage parasite development and vascular and tissue sequestration, which is responsible for disease symptoms and complications, and when involving the bone marrow, provides a niche for asexual replication and gametocyte development. Understanding these processes provides an opportunity for novel therapies and interventions. Gametogenesis Malaria is one of the major life- threatening infectious Malaria parasites have a complex life cycle marked Maturation of male and female diseases in humans and is particularly prevalent in trop- by successive rounds of asexual replication across gametes. ical and subtropical low- income regions of the world.
    [Show full text]
  • Malária Em Mamíferos Silvestres1
    Malária em mamíferos... CUROTTO et al. 67 MALÁRIA EM MAMÍFEROS SILVESTRES1 Sandra Mara Curotto2 Thais Gislon da Silva3 Fernando Zanlorenzi Basso4 Ivan Roque de Barros Filho5 CUROTTO, S. M.; SILVA, T. G. da; BASSO, F. Z.; BARROS FILHO, I. R. de. Malária em mamíferos silvestres. Arq. Ciênc. Vet. Zool. UNIPAR, Umuarama, v. 15, n. 1, p. 67-77, jan./jun. 2012. RESUMO: Muito do conhecimento sobre a biologia do parasita da malária foi obtido de estudos de campo e de laboratório em modelos experimentais primatas e murinos. Essa revisão faz uma síntese das espécies de Plasmodium spp. descritas no mundo que infectam mamíferos não humanos e discute a importância e aplicações em estudos experimentais de algumas es- pécies. Em primatas, existem 29 espécies conhecidas de Plasmodium spp. que parasitam grandes símios, macacos e lêmures. Além da importância da utilização dos primatas em estudos experimentais, foi demonstrado que existe transmissão natural de malárias de seres humanos para outros primatas e vice-versa, merecendo destaque um grande de foco de infecção por malária de macacos em seres humanos na Ásia. Em roedores murinos, são descritas cinco espécies que infectam ratos silves- tres na África central e Egito. Em outros mamíferos, são conhecidos como hospedeiros o porco espinho africano, morcegos, esquilos e ungulados. A malária é uma doença de impacto mundial histórico e recente e os modelos animais, tanto roedores quanto primatas, tiveram e terão um crucial papel na realização de estudos experimentais. Porém, a malária em mamíferos é ainda carente de esclarecimentos, sendo ainda necessários estudos para se definir as espécies de Plamodium existentes, seus respectivos hospedeiros silvestres e distribuição geográfica, assim como a importância e as consequências do parasitismo nesses animais.
    [Show full text]
  • Protozoan Parasites of Wildlife in South-East Queensland
    Protozoan parasites of wildlife in south-east Queensland P.J. O’DONOGHUE Department of Parasitology, The University of Queensland, Brisbane 4072, Queensland Abstract: Over the last 2 years, samples were collected from 1,311 native animals in south-east Queensland and examined for enteric, blood and tissue protozoa. Infections were detected in 33% of 122 mammals, 12% of 367 birds, 16% of 749 reptiles and 34% of 73 fish. A total of 29 protozoan genera were detected; including zooflagellates (Trichomonas, Cochlosoma) in birds; eimeriorine coccidia (Eimeria, Isospora, Cryptosporidium, Sarcocystis, Toxoplasma, Caryospora) in birds and reptiles; haemosporidia (Haemoproteus, Plasmodium, Leucocytozoon, Hepatocystis) in birds and bats, adeleorine coccidia (Haemogregarina, Schellackia, Hepatozoon) in reptiles and mammals; myxosporea (Ceratomyxa, Myxidium, Zschokkella) in fish; enteric ciliates (Trichodina, Balantidium, Nyctotherus) in fish and amphibians; and endosymbiotic ciliates (Macropodinium, Isotricha, Dasytricha, Cycloposthium) in herbivorous marsupials. Despite the frequency of their occurrence, little is known about the pathogenic significance of these parasites in native Australian animals. Introduction Information on the protozoan parasites of native Australian wildlife is sparse and fragmentary; most records being confined to miscellaneous case reports and incidental findings made in the course of other studies. Early workers conducted several small-scale surveys on the protozoan fauna of various host groups, mainly birds, reptiles and amphibians (eg. Johnston & Cleland 1910; Cleland & Johnston 1910; Johnston 1912). The results of these studies have subsequently been catalogued and reviewed (cf. Mackerras 1958; 1961). Since then, few comprehensive studies have been conducted on the protozoan parasites of native animals compared to the extensive studies performed on the parasites of domestic and companion animals (cf.
    [Show full text]
  • Community Organization of Avian Malaria Parasites in Lowland Amazonia: Prevalence, Diversity, and Specialization in a Local Assemblage
    University of Missouri, St. Louis IRL @ UMSL Dissertations UMSL Graduate Works 6-7-2014 Community organization of avian malaria parasites in lowland Amazonia: Prevalence, diversity, and specialization in a local assemblage Linda Maria Elenor Svensson University of Missouri-St. Louis, [email protected] Follow this and additional works at: https://irl.umsl.edu/dissertation Part of the Biology Commons Recommended Citation Svensson, Linda Maria Elenor, "Community organization of avian malaria parasites in lowland Amazonia: Prevalence, diversity, and specialization in a local assemblage" (2014). Dissertations. 249. https://irl.umsl.edu/dissertation/249 This Dissertation is brought to you for free and open access by the UMSL Graduate Works at IRL @ UMSL. It has been accepted for inclusion in Dissertations by an authorized administrator of IRL @ UMSL. For more information, please contact [email protected]. COMMUNITY ORGANIZATION OF AVIAN MALARIA PARASITES IN LOWLAND AMAZONIA: PREVALENCE, DIVERSITY, AND SPECIALIZATION IN A LOCAL ASSEMBLAGE Linda Maria Elenor Svensson Coelho M.S. in Ecology, Evolution, and Systematics, University of Missouri-St. Louis, 2008 B.S. in Molecular Environmental Biology, University of California, Berkeley, 2005 A Thesis submitted to The Graduate School at the University of Missouri – St. Louis in partial fulfillment of the requirements for the degree Doctor of Philosophy in Biology with an emphasis in Ecology, Evolution, and Systematics August 2012 Advisory Committee Robert E. Ricklefs, Ph.D. Chairperson Patricia G. Parker, Ph.D. John G. Blake, Ph.D. Bette A. Loiselle, Ph.D. Ravinder N.M. Sehgal, Ph.D. Svensson-Coelho, L. Maria E., 2012, UMSL, p. 2 TABLE OF CONTENTS ACKNOWLEDGEMENTS ............................................................................................................ 3 GENERAL ABSTRACT ...............................................................................................................
    [Show full text]
  • Revisions to the Classification, Nomenclature, and Diversity of Eukaryotes
    University of Rhode Island DigitalCommons@URI Biological Sciences Faculty Publications Biological Sciences 9-26-2018 Revisions to the Classification, Nomenclature, and Diversity of Eukaryotes Christopher E. Lane Et Al Follow this and additional works at: https://digitalcommons.uri.edu/bio_facpubs Journal of Eukaryotic Microbiology ISSN 1066-5234 ORIGINAL ARTICLE Revisions to the Classification, Nomenclature, and Diversity of Eukaryotes Sina M. Adla,* , David Bassb,c , Christopher E. Laned, Julius Lukese,f , Conrad L. Schochg, Alexey Smirnovh, Sabine Agathai, Cedric Berneyj , Matthew W. Brownk,l, Fabien Burkim,PacoCardenas n , Ivan Cepi cka o, Lyudmila Chistyakovap, Javier del Campoq, Micah Dunthornr,s , Bente Edvardsent , Yana Eglitu, Laure Guillouv, Vladimır Hamplw, Aaron A. Heissx, Mona Hoppenrathy, Timothy Y. Jamesz, Anna Karn- kowskaaa, Sergey Karpovh,ab, Eunsoo Kimx, Martin Koliskoe, Alexander Kudryavtsevh,ab, Daniel J.G. Lahrac, Enrique Laraad,ae , Line Le Gallaf , Denis H. Lynnag,ah , David G. Mannai,aj, Ramon Massanaq, Edward A.D. Mitchellad,ak , Christine Morrowal, Jong Soo Parkam , Jan W. Pawlowskian, Martha J. Powellao, Daniel J. Richterap, Sonja Rueckertaq, Lora Shadwickar, Satoshi Shimanoas, Frederick W. Spiegelar, Guifre Torruellaat , Noha Youssefau, Vasily Zlatogurskyh,av & Qianqian Zhangaw a Department of Soil Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, S7N 5A8, SK, Canada b Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD, United Kingdom
    [Show full text]