The Evolutionary Host Switches of Polychromophilus: a Multi-Gene
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Reconstruction of the Evolutionary History of Haemosporida
Parasitology International 65 (2016) 5–11 Contents lists available at ScienceDirect Parasitology International journal homepage: www.elsevier.com/locate/parint Reconstruction of the evolutionary history of Haemosporida (Apicomplexa) based on the cyt b gene with characterization of Haemocystidium in geckos (Squamata: Gekkota) from Oman João P. Maia a,b,c,⁎, D. James Harris a,b, Salvador Carranza c a CIBIO Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, N° 7, 4485-661 Vairão, Vila do Conde, Portugal b Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre FC4 4169-007 Porto, Portugal c Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Maritím de la Barceloneta, 37-49, 08003 Barcelona, Spain article info abstract Article history: The order Haemosporida (Apicomplexa) includes many medically important parasites. Knowledge on the diver- Received 4 April 2015 sity and distribution of Haemosporida has increased in recent years, but remains less known in reptiles and their Received in revised form 7 September 2015 taxonomy is still uncertain. Further, estimates of evolutionary relationships of this order tend to change when Accepted 10 September 2015 new genes, taxa, outgroups or alternative methodologies are used. We inferred an updated phylogeny for the Available online 12 September 2015 Cytochrome b gene (cyt b) of Haemosporida and screened a total of 80 blood smears from 17 lizard species from Oman belonging to 11 genera. The inclusion of previously underrepresented genera resulted in an alterna- Keywords: Haemoproteus tive estimate of phylogeny for Haemosporida based on the cyt b gene. -
Wildlife Parasitology in Australia: Past, Present and Future
CSIRO PUBLISHING Australian Journal of Zoology, 2018, 66, 286–305 Review https://doi.org/10.1071/ZO19017 Wildlife parasitology in Australia: past, present and future David M. Spratt A,C and Ian Beveridge B AAustralian National Wildlife Collection, National Research Collections Australia, CSIRO, GPO Box 1700, Canberra, ACT 2601, Australia. BVeterinary Clinical Centre, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Werribee, Vic. 3030, Australia. CCorresponding author. Email: [email protected] Abstract. Wildlife parasitology is a highly diverse area of research encompassing many fields including taxonomy, ecology, pathology and epidemiology, and with participants from extremely disparate scientific fields. In addition, the organisms studied are highly dissimilar, ranging from platyhelminths, nematodes and acanthocephalans to insects, arachnids, crustaceans and protists. This review of the parasites of wildlife in Australia highlights the advances made to date, focussing on the work, interests and major findings of researchers over the years and identifies current significant gaps that exist in our understanding. The review is divided into three sections covering protist, helminth and arthropod parasites. The challenge to document the diversity of parasites in Australia continues at a traditional level but the advent of molecular methods has heightened the significance of this issue. Modern methods are providing an avenue for major advances in documenting and restructuring the phylogeny of protistan parasites in particular, while facilitating the recognition of species complexes in helminth taxa previously defined by traditional morphological methods. The life cycles, ecology and general biology of most parasites of wildlife in Australia are extremely poorly understood. While the phylogenetic origins of the Australian vertebrate fauna are complex, so too are the likely origins of their parasites, which do not necessarily mirror those of their hosts. -
The Nuclear 18S Ribosomal Dnas of Avian Haemosporidian Parasites Josef Harl1, Tanja Himmel1, Gediminas Valkiūnas2 and Herbert Weissenböck1*
Harl et al. Malar J (2019) 18:305 https://doi.org/10.1186/s12936-019-2940-6 Malaria Journal RESEARCH Open Access The nuclear 18S ribosomal DNAs of avian haemosporidian parasites Josef Harl1, Tanja Himmel1, Gediminas Valkiūnas2 and Herbert Weissenböck1* Abstract Background: Plasmodium species feature only four to eight nuclear ribosomal units on diferent chromosomes, which are assumed to evolve independently according to a birth-and-death model, in which new variants origi- nate by duplication and others are deleted throughout time. Moreover, distinct ribosomal units were shown to be expressed during diferent developmental stages in the vertebrate and mosquito hosts. Here, the 18S rDNA sequences of 32 species of avian haemosporidian parasites are reported and compared to those of simian and rodent Plasmodium species. Methods: Almost the entire 18S rDNAs of avian haemosporidians belonging to the genera Plasmodium (7), Haemo- proteus (9), and Leucocytozoon (16) were obtained by PCR, molecular cloning, and sequencing ten clones each. Phy- logenetic trees were calculated and sequence patterns were analysed and compared to those of simian and rodent malaria species. A section of the mitochondrial CytB was also sequenced. Results: Sequence patterns in most avian Plasmodium species were similar to those in the mammalian parasites with most species featuring two distinct 18S rDNA sequence clusters. Distinct 18S variants were also found in Haemopro- teus tartakovskyi and the three Leucocytozoon species, whereas the other species featured sets of similar haplotypes. The 18S rDNA GC-contents of the Leucocytozoon toddi complex and the subgenus Parahaemoproteus were extremely high with 49.3% and 44.9%, respectively. -
Molecular Characterization of Polychromophilus Parasites of Scotophilus Kuhlii Bats in Thailand Cambridge.Org/Par
Parasitology Molecular characterization of Polychromophilus parasites of Scotophilus kuhlii bats in Thailand cambridge.org/par Chatree Chumnandee1, Nawarat Pha-obnga1, Oskar Werb2, Kai Matuschewski2 and Juliane Schaer2 Research Article 1Department of Animal Science, Faculty of Agriculture and Technology, Nakhon Phanom University, Nakhon Cite this article: Chumnandee C, Pha-obnga Phanom 48000, Thailand and 2Department of Molecular Parasitology, Institute of Biology, Humboldt University, N, Werb O, Matuschewski K, Schaer J (2021). 10115 Berlin, Germany Molecular characterization of Polychromophilus parasites of Scotophilus kuhlii bats in Thailand. Parasitology 148, Abstract 495–499. https://doi.org/10.1017/ S003118202000222X Parasites of the haemosporidian genus Polychromophilus have exclusively been described in bats. These parasites belong to the diverse group of malaria parasites, and Polychromophilus Received: 21 July 2020 presents the only haemosporidian taxon that infects mammalian hosts in tropical as well as Revised: 29 October 2020 in temperate climate zones. This study provides the first information of Polychromophilus Accepted: 21 November 2020 parasites in the lesser Asiatic yellow bat (Scotophilus kuhlii) in Thailand, a common vesper- First published online: 1 December 2020 tilionid bat species distributed in South and Southeast Asia. The gametocyte blood stages of Key words: the parasites could not be assigned to a described morphospecies and molecular analysis Haemosporida; Polychromophilus; Scotophilus; revealed that these parasites might represent a distinct Polychromophilus species. In contrast Thailand to Plasmodium species, Polychromophilus parasites do not multiply in red blood cells Author for correspondence: and, thus, do not cause the clinical symptoms of malaria. Parasitological and molecular Juliane Schaer, investigation of haemosporidian parasites of wildlife, such as the neglected genus E-mail: [email protected] Polychromophilus, will contribute to a better understanding of the evolution of malaria parasites. -
Ungulate Malaria Parasites Thomas J
www.nature.com/scientificreports OPEN Ungulate malaria parasites Thomas J. Templeton1,2,*, Masahito Asada1,*, Montakan Jiratanh3, Sohta A. Ishikawa4,5, Sonthaya Tiawsirisup6, Thillaiampalam Sivakumar7, Boniface Namangala8, Mika Takeda1, Kingdao Mohkaew3, Supawan Ngamjituea3, Noboru Inoue7, Chihiro Sugimoto9, Yuji Inagaki5,10, Yasuhiko Suzuki9, Naoaki Yokoyama7, Morakot Kaewthamasorn11 & Osamu Kaneko1 Received: 14 December 2015 Accepted: 02 March 2016 Haemosporida parasites of even-toed ungulates are diverse and globally distributed, but since their discovery in 1913 their characterization has relied exclusively on microscopy-based descriptions. In Published: 21 March 2016 order to bring molecular approaches to bear on the identity and evolutionary relationships of ungulate malaria parasites, we conducted Plasmodium cytb-specific nested PCR surveys using blood from water buffalo in Vietnam and Thailand, and goats in Zambia. We found thatPlasmodium is readily detectable from water buffalo in these countries, indicating that buffaloPlasmodium is distributed in a wider region than India, which is the only area in which buffaloPlasmodium has been reported. Two types (I and II) of Plasmodium sequences were identified from water buffalo and a third type (III) was isolated from goat. Morphology of the parasite was confirmed in Giemsa-reagent stained blood smears for the Type I sample. Complete mitochondrial DNA sequences were isolated and used to infer a phylogeny in which ungulate malaria parasites form a monophyletic clade within the Haemosporida, and branch prior to the clade containing bird, lizard and other mammalian Plasmodium. Thus it is likely that host switching of Plasmodium from birds to mammals occurred multiple times, with a switch to ungulates independently from other mammalian Plasmodium. -
Catalogue of Protozoan Parasites Recorded in Australia Peter J. O
1 CATALOGUE OF PROTOZOAN PARASITES RECORDED IN AUSTRALIA PETER J. O’DONOGHUE & ROBERT D. ADLARD O’Donoghue, P.J. & Adlard, R.D. 2000 02 29: Catalogue of protozoan parasites recorded in Australia. Memoirs of the Queensland Museum 45(1):1-164. Brisbane. ISSN 0079-8835. Published reports of protozoan species from Australian animals have been compiled into a host- parasite checklist, a parasite-host checklist and a cross-referenced bibliography. Protozoa listed include parasites, commensals and symbionts but free-living species have been excluded. Over 590 protozoan species are listed including amoebae, flagellates, ciliates and ‘sporozoa’ (the latter comprising apicomplexans, microsporans, myxozoans, haplosporidians and paramyxeans). Organisms are recorded in association with some 520 hosts including mammals, marsupials, birds, reptiles, amphibians, fish and invertebrates. Information has been abstracted from over 1,270 scientific publications predating 1999 and all records include taxonomic authorities, synonyms, common names, sites of infection within hosts and geographic locations. Protozoa, parasite checklist, host checklist, bibliography, Australia. Peter J. O’Donoghue, Department of Microbiology and Parasitology, The University of Queensland, St Lucia 4072, Australia; Robert D. Adlard, Protozoa Section, Queensland Museum, PO Box 3300, South Brisbane 4101, Australia; 31 January 2000. CONTENTS the literature for reports relevant to contemporary studies. Such problems could be avoided if all previous HOST-PARASITE CHECKLIST 5 records were consolidated into a single database. Most Mammals 5 researchers currently avail themselves of various Reptiles 21 electronic database and abstracting services but none Amphibians 26 include literature published earlier than 1985 and not all Birds 34 journal titles are covered in their databases. Fish 44 Invertebrates 54 Several catalogues of parasites in Australian PARASITE-HOST CHECKLIST 63 hosts have previously been published. -
Nycteria Parasites of Afrotropical Insectivorous Bats Q ⇑ Juliane Schaer A,B, , Deeann M
International Journal for Parasitology xxx (2015) xxx–xxx Contents lists available at ScienceDirect International Journal for Parasitology journal homepage: www.elsevier.com/locate/ijpara Nycteria parasites of Afrotropical insectivorous bats q ⇑ Juliane Schaer a,b, , DeeAnn M. Reeder c, Megan E. Vodzak c, Kevin J. Olival d, Natalie Weber e, Frieder Mayer b, Kai Matuschewski a,f, Susan L. Perkins g a Max Planck Institute for Infection Biology, Parasitology Unit, 10117 Berlin, Germany b Museum für Naturkunde – Leibniz Institute for Research on Evolution and Biodiversity, 10115 Berlin, Germany c Department of Biology, Bucknell University, Lewisburg, PA 17837, USA d EcoHealth Alliance, New York, NY 10001, USA e Institute of Experimental Ecology, University of Ulm, 89069 Ulm, Germany f Institute of Biology, Humboldt University, 10117 Berlin, Germany g Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY 10024, USA article info abstract Article history: Parasitic protozoan parasites have evolved many co-evolutionary paths towards stable transmission to Received 12 October 2014 their host population. Plasmodium spp., the causative agents of malaria, and related haemosporidian Received in revised form 13 January 2015 parasites are dipteran-borne eukaryotic pathogens that actively invade and use vertebrate erythrocytes Accepted 17 January 2015 for gametogenesis and asexual development, often resulting in substantial morbidity and mortality of Available online xxxx the infected hosts. Here, we present results of a survey of insectivorous bats from tropical Africa, includ- ing new isolates of species of the haemosporidian genus Nycteria. A hallmark of these parasites is their Keywords: capacity to infect bat species of distinct families of the two evolutionary distant chiropteran suborders. -
Plasmodium Asexual Growth and Sexual Development in the Haematopoietic Niche of the Host
REVIEWS Plasmodium asexual growth and sexual development in the haematopoietic niche of the host Kannan Venugopal 1, Franziska Hentzschel1, Gediminas Valkiūnas2 and Matthias Marti 1* Abstract | Plasmodium spp. parasites are the causative agents of malaria in humans and animals, and they are exceptionally diverse in their morphology and life cycles. They grow and develop in a wide range of host environments, both within blood- feeding mosquitoes, their definitive hosts, and in vertebrates, which are intermediate hosts. This diversity is testament to their exceptional adaptability and poses a major challenge for developing effective strategies to reduce the disease burden and transmission. Following one asexual amplification cycle in the liver, parasites reach high burdens by rounds of asexual replication within red blood cells. A few of these blood- stage parasites make a developmental switch into the sexual stage (or gametocyte), which is essential for transmission. The bone marrow, in particular the haematopoietic niche (in rodents, also the spleen), is a major site of parasite growth and sexual development. This Review focuses on our current understanding of blood-stage parasite development and vascular and tissue sequestration, which is responsible for disease symptoms and complications, and when involving the bone marrow, provides a niche for asexual replication and gametocyte development. Understanding these processes provides an opportunity for novel therapies and interventions. Gametogenesis Malaria is one of the major life- threatening infectious Malaria parasites have a complex life cycle marked Maturation of male and female diseases in humans and is particularly prevalent in trop- by successive rounds of asexual replication across gametes. ical and subtropical low- income regions of the world. -
Malária Em Mamíferos Silvestres1
Malária em mamíferos... CUROTTO et al. 67 MALÁRIA EM MAMÍFEROS SILVESTRES1 Sandra Mara Curotto2 Thais Gislon da Silva3 Fernando Zanlorenzi Basso4 Ivan Roque de Barros Filho5 CUROTTO, S. M.; SILVA, T. G. da; BASSO, F. Z.; BARROS FILHO, I. R. de. Malária em mamíferos silvestres. Arq. Ciênc. Vet. Zool. UNIPAR, Umuarama, v. 15, n. 1, p. 67-77, jan./jun. 2012. RESUMO: Muito do conhecimento sobre a biologia do parasita da malária foi obtido de estudos de campo e de laboratório em modelos experimentais primatas e murinos. Essa revisão faz uma síntese das espécies de Plasmodium spp. descritas no mundo que infectam mamíferos não humanos e discute a importância e aplicações em estudos experimentais de algumas es- pécies. Em primatas, existem 29 espécies conhecidas de Plasmodium spp. que parasitam grandes símios, macacos e lêmures. Além da importância da utilização dos primatas em estudos experimentais, foi demonstrado que existe transmissão natural de malárias de seres humanos para outros primatas e vice-versa, merecendo destaque um grande de foco de infecção por malária de macacos em seres humanos na Ásia. Em roedores murinos, são descritas cinco espécies que infectam ratos silves- tres na África central e Egito. Em outros mamíferos, são conhecidos como hospedeiros o porco espinho africano, morcegos, esquilos e ungulados. A malária é uma doença de impacto mundial histórico e recente e os modelos animais, tanto roedores quanto primatas, tiveram e terão um crucial papel na realização de estudos experimentais. Porém, a malária em mamíferos é ainda carente de esclarecimentos, sendo ainda necessários estudos para se definir as espécies de Plamodium existentes, seus respectivos hospedeiros silvestres e distribuição geográfica, assim como a importância e as consequências do parasitismo nesses animais. -
Highly Rearranged Mitochondrial Genome in Nycteria Parasites (Haemosporidia) from Bats
Highly rearranged mitochondrial genome in Nycteria parasites (Haemosporidia) from bats Gregory Karadjiana,1,2, Alexandre Hassaninb,1, Benjamin Saintpierrec, Guy-Crispin Gembu Tungalunad, Frederic Arieye, Francisco J. Ayalaf,3, Irene Landaua, and Linda Duvala,3 aUnité Molécules de Communication et Adaptation des Microorganismes (UMR 7245), Sorbonne Universités, Muséum National d’Histoire Naturelle, CNRS, CP52, 75005 Paris, France; bInstitut de Systématique, Evolution, Biodiversité (UMR 7205), Sorbonne Universités, Muséum National d’Histoire Naturelle, CNRS, Université Pierre et Marie Curie, CP51, 75005 Paris, France; cUnité de Génétique et Génomique des Insectes Vecteurs (CNRS URA3012), Département de Parasites et Insectes Vecteurs, Institut Pasteur, 75015 Paris, France; dFaculté des Sciences, Université de Kisangani, BP 2012 Kisangani, Democratic Republic of Congo; eLaboratoire de Biologie Cellulaire Comparative des Apicomplexes, Faculté de Médicine, Université Paris Descartes, Inserm U1016, CNRS UMR 8104, Cochin Institute, 75014 Paris, France; and fDepartment of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697 Contributed by Francisco J. Ayala, July 6, 2016 (sent for review March 18, 2016; reviewed by Sargis Aghayan and Georges Snounou) Haemosporidia parasites have mostly and abundantly been de- and this lack of knowledge limits the understanding of the scribed using mitochondrial genes, and in particular cytochrome evolutionary history of Haemosporidia, in particular their b (cytb). Failure to amplify the mitochondrial cytb gene of Nycteria basal diversification. parasites isolated from Nycteridae bats has been recently reported. Nycteria parasites have been primarily described, based on Bats are hosts to a diverse and profuse array of Haemosporidia traditional taxonomy, in African insectivorous bats of two fami- parasites that remain largely unstudied. -
Interações Taxonômicas Entre Parasitos E Morcegos De Alguns Municípios Do Estado De Minas Gerais
UNIVERSIDADE FEDERAL DE MINAS GERAIS INSTITUTO DE CIÊNCIAS BIOLÓGICAS PROGRAMA DE PÓS-GRADUAÇÃO EM PARASITOLOGIA INTERAÇÕES TAXONÔMICAS ENTRE PARASITOS E MORCEGOS DE ALGUNS MUNICÍPIOS DO ESTADO DE MINAS GERAIS. ÉRICA MUNHOZ DE MELLO BELO HORIZONTE ÉRICA MUNHOZ DE MELLO INTERAÇÕES TAXONÔMICAS ENTRE PARASITOS E MORCEGOS DE ALGUNS MUNICÍPIOS DO ESTADO DE MINAS GERAIS. Tese apresentada ao Programa de Pós-Graduação em Parasitologia do Instituto de Ciências Biológicas da Universidade Federal de Minas Gerais, como requisito parcial à obtenção do título de Doutora em Parasitolog ia. Área de concentração: Helmintologia Orientação: Dra. Élida Mara Leite Rabelo/UFMG Co -Orientação: Dr. Reinaldo José da Silva/UNESP BELO HORIZONTE 2017 À minha família e aos meus amigos pelo apoio e compreensão. À todos os meus mestres pelos incentivos e contribuições na minha formação. AGRADECIMENTOS À minha orientadora, Élida Mara Leite Rabelo, que desde sempre me incentivou, confiou na minha capacidade, me deu total liberdade para desenvolver a tese e foi muito participativa ao longo de todo o processo. Muito obrigada por todos os ensinamentos, toda ajuda e todo o apoio de amiga, as vezes de mãe. Te ter como orientadora foi uma honra e eternamente serei grata por isso. Ao meu co-orientador, Reinaldo José da Silva, que mesmo de longe, sempre esteve presente ao longo de todo o doutorado. Muito obrigada pelos ensinamentos, pelo seu esforço em me ajudar ao máximo nas minhas visitas relâmpagos à Botucatu, e pela confiança no meu trabalho. Sempre será um privilégio trabalhar com você. Às bancas da qualificação e da defesa final por todas as sugestões, muito obrigada. -
A Highly Rearranged Mitochondrial Genome in Nycteria Parasites
A highly rearranged mitochondrial genome in Nycteria parasites (Haemosporidia) from bats Gregory Karadjian, Alexandre Hassanin, Benjamin Saintpierre, Guy-Crispin Gembu Tungaluna, Frederic Ariey, Francisco J. Ayala, Irene Landau, Linda Duval To cite this version: Gregory Karadjian, Alexandre Hassanin, Benjamin Saintpierre, Guy-Crispin Gembu Tungaluna, Fred- eric Ariey, et al.. A highly rearranged mitochondrial genome in Nycteria parasites (Haemosporidia) from bats. Proceedings of the National Academy of Sciences of the United States of America , National Academy of Sciences, 2016, 113 (35), pp.9834 - 9839. 10.1073/pnas.1610643113. hal-01395176 HAL Id: hal-01395176 https://hal.sorbonne-universite.fr/hal-01395176 Submitted on 10 Nov 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial| 4.0 International License A highly rearranged mitochondrial genome in Nycteria parasites (Haemosporidia) from bats Gregory Karadjian a, b, 1, Alexandre Hassaninc, 1, Benjamin Saintpierred, Guy-Crispin Gembu