The Influence of Iron and Phosphate Mineral Inclusions

Total Page:16

File Type:pdf, Size:1020Kb

The Influence of Iron and Phosphate Mineral Inclusions Micro-scale mineralogic controls on microbial attachment to silicate surfaces: the influence of iron and phosphate mineral inclusions Jennifer A. Roberts & Brian T. Hughes Department of Geology, University of Kansas, Lawrence, Kansas, USA David A. Fowle Great Lakes Institute for Environmental Research/Department of Earth Sciences, University of Windsor, Windsor, Ontario, Canada ABSTRACT: Microorganisms are ubiquitous in the shallow subsurface often attached to sediment surfaces where they alter the geochemical microenvironment and mediate weathering reactions. Microbial attachment on sediment grains, however, is heterogeneous and the variability of microbial occurrence cannot be easily explained. This study examined how phosphate mineral and iron oxide inclusions in feldspars influence mi- crobial attachment and distribution on the silicate surface using field colonization experiments in an anaerobic groundwater. Magnetite inclusions were preferentially colonized compared to the silicate groundmass while there was no discernable difference between colonization of phosphate mineral inclusions and the silicate sur- face. These differences are likely due to electrostatic interactions between the inclusion surfaces and cells as a function of the pH of the groundwater. 1 INTRODUCTION inclusions within silicate rocks in the spatial distri- bution of attached microorganisms. There is growing evidence that microbes are not merely passive occupants of many subsurface envi- 1.1 Microbial attachment ronments, but mediate biogeochemical reactions and perturb water-rock equilibria at the point of attach- Microbial attachment potentially impacts mineral ment (e.g. Liermann et al. 2000), potentially dissolv- weathering reactions, pore-scale heterogeneity, ing or precipitating mineral phases (e.g. Bennett et metal mobility through adsorption to the cell well al. 2001). The distribution of microorganisms on (e.g. Fowle & Fein 1999) and is a primary control in sediment grains and mineral surfaces, however, is microbial transport through porous media (Fletcher heterogeneous and the “patchy” nature of microbial & Murphy 2001). Efforts have been made to charac- occurrence, and associated surface reactions, are still terize microbial attachment to mineral surfaces ther- poorly understood. modynamically through surface and solution chem- Previous research on subsurface microbial colo- istry (e.g. Yee et al. 2000) or by using DLVO theory nization suggests that the distribution of microorgan- to model electrostatic interactions (Hermansson isms on different mineral surfaces in situ is related, 1999). These approaches provide guiding principles in part, to the nutrient content of the mineral. Micro- for cell-mineral interactions, but still do not effec- organisms preferentially colonize and destroy sili- tively describe the wide variability of microbial dis- cate minerals that contain limiting trace nutrients, tribution in subsurface environments. such as phosphorus and iron, occurring as trace apa- Feldspar and quartz surfaces, for example, are tite and iron oxyhydroxides (Rogers et al. 1998). uniformly negatively charged at environmental pHs, Colonizing cells release and utilize nutrients from as are bacteria, so attachment to those silicate sur- the silicate matrix, stimulating growth, biodegrada- faces must overcome some degree of coulombic re- tion rate, and silicate dissolution (Rogers & Bennett pulsion. In natural sediments, however, mineral 2004). It is still unclear, however, whether the min- grains are often coated with clay and Fe oxyhydrox- eralogy of the point of attachment is the nutrient-rich ides, which are positively charged at circum-neutral inclusion or silicate matrix. It is not known if these pH (pHzpc 8-9) compared to silicate surfaces (pHzpc inclusions impact only initial attachment, or if they 2-4 for quartz and feldspar; Stumm & Morgan influence irreversible attachment, subsequent growth 1996). Many studies have demonstrated that these and colonization, and surface etching. In this study oxide coatings account for the bulk of bacterial at- we investigated the role of nutrient-bearing mineral tachment to sediments that would otherwise have unfavorable attachment behavior (Ryan et al. 1999). In this study we used silicate surfaces that do not 2 EXPERIMENTAL APPROACH have surface coatings, but contain mineral inclusions 2.1 Mineral characterization and preparation of iron and phosphate minerals that possess different surface characteristics than the silicate groundmass. A suite of silicates rocks containing varying The surface expression of these inclusions is rela- amounts of P and Fe, including anorthoclase (Wards tively small, ~10-50 um in diameter, but collectively # 46E0575), two different microclines (Wards # they may function like macroscopic charge hetero- 46E5125, Keystone, South Dakota and Wards geneity; therefore, enabling models of the inclusions #46E5120, Ontario, Canada), and quartz (Wards # with a bulk uniform electrostatic potential (Song et 46E6605) were used to investigate the role of spatial al. 1994). These inclusions are also potential sources compositional heterogeneity as it relates to microbial of essential nutrients or terminal electron acceptors attachment. Silicate rock specimens have been char- that may be otherwise scarce in solution and limiting acterized previously using light microscopy, trace to the indigenous microbial population. metal and whole rock analysis. Rocks were prepared as thin sections with four rock types on each slide. Anorthoclase, S.D. micro- 1.2 Silicates as nutrient sources cline, quartz, and O. microcline were mounted in ~1 Because of their positive charge at neutral pH and cm2 chunks, sectioned to ~35 um and probe- their ubiquitous nature as coatings in natural sedi- polished. Thin sections were utilized in all field and ments, the role of Fe oxides in colloid deposition has laboratory experiments to minimize surface rough- been studied extensively. Fe can be scarce in many ness or microtopography as attachment variables, groundwaters because of the low solubility of Fe and to provide an ideal surface for spatial analysis of oxyhydroxides at neutral pH but it is still necessary the trace and major element geochemistry (LA-ICP- for microorganisms in cellular electron transport. MS), and microbial attachment (SEM). Additionally, Fe-oxidizing bacteria derive energy Thin sections were analyzed for the initial spatial from the oxidation of Fe2+ to Fe3+, while facultative distribution of trace and major elements in the min- and obligate anaerobes derive energy from the eral phases via LA-ICP-MS. A ThermoElemental Fe3+/Fe2+ redox couple (+0.77 V) using iron as a X7 ICP-MS was utilized coupled with Nd:YAG terminal electron acceptor (TEA). Many dissimila- (266 nm) laser ablation setup which has been de- tory iron reducing bacteria (DIRB) require contact scribed in detail elsewhere (e.g. Crowe et al. 2003). with Fe to achieve reduction (e.g. Lovley & Phillips Laser transects (7 micron spot size) were conducted 1988) and may use flagella to detect and attach to across apatite, biotite, and magnetite phases in the Fe-rich surfaces (e.g. Caccavo & Das 2002). host rock. Trace element concentrations in the apa- Few if any studies, however, have investigated tite phases were calculated based on the stoichiome- the role of phosphate minerals in colloid deposition. try of CaO in fluroapatite as an internal standard and Like the Fe oxides, phosphate minerals are sparingly a NIST 610 glass as an external standard. soluble at neutral pH and exhibit pHzpc ranging from 6.4 to 8.5 (Stumm & Morgan 1996). Bioavailable P is commonly lacking in many subsurface environ- 2.2 Field colonization studies ments and can diminish cell growth and metabolic Thin sections were incubated in situ in a carbon- efficiency. P is a fundamental macronutrient needed rich, anaerobic groundwater using a stainless-steel by microorganisms for synthesis of nucleic acids, holder that was placed in the water well and left un- nucleotides, phosphoproteins, and phospholipids disturbed for twelve months. The sectioned rocks (e.g. Ehrlich 2002), compounds used as the energy were exposed to the native microbial consortium, source for driving biosynthetic reactions in the cell. which is dominated by DIRB, methanogens, and Because P plays a fundamental role in microbial life fermenting bacteria (Bekins et al. 1999). The sam- functions, microorganisms significantly impact the ples were retrieved and tissues were fixed in the distribution and cycling of P in subsurface environ- field using a chemical critical point drying method ments. The major reservoir for inorganic P in these (Vandevivere & Bevaye 1993; Nation 1983). The geologic settings are minerals such as apatite, and slides were stub-mounted, gold sputter coated and microorganisms may access this mineral-bound P imaged on a LEO 1550 field emission scanning elec- from both detrital (e.g. Goldstein 1986) and igneous tron microscope at 20 kV. Samples were imaged us- sources (Taunton et al. 2000). We hypothesize that ing secondary electron (SED) and backscatter elec- microorganisms will preferentially attach to surface tron detectors (BSD) to optimize for imaging of exposures of Fe- or P-bearing mineral inclusions attached microorganisms and mineralogy, respec- rather than to the nutrient-poor silicate groundmass tively. Fe and phosphate mineral inclusions were lo- in which they are included. Attachment is likely cated using BSD and inclusion composition was promoted by the positive
Recommended publications
  • O Lunar and Planetary Institute Provided by the NASA Astrophysics Data System WHITLOCKITE SATURATION
    WHITLOCKITE SATURATION IN LUNAR BASALTS, J.E. Dickinson and P.C. Hess, Dept. of Geological Sciences, Brown University, Providence, RI 02912 As part of a continuing program initiated to evaluate the evolution of late-stage lunar magmas and the possible effects of crystallization of minor phases on their geochemistry, we have determined the saturation surface for whitlockite, Ca (PO ), in a liquid composition produced by crystallization of KREEP basalt 15386 lf~able1). Whitlockite is by far the most abundant phos- phate mineral in lunar rocks and in all probability is more abundant than other minor phases such as zircon, zirccnolite, monazite, and tranquillityite (1). Whitlockite is also an important component of mesosiderites, reported average modal phosphate abundances in mesosiderites ranging from 0.0-3.7% (avg. 1.9%) (2). Even higher phosphate abundances (up to 9.4%) have been observed in basaltic lithic clasts of presumed impact melt origin found in mesosiderites (3). Analyses of lunar whitlockites commonly show Ce203and Y203 contents up to 3 wt% and REE contents that may be as high as 1-2 wt% for La203and Nd203 de- creasing to levels of -0.1-0.2 wt% for the HREE (1). It has been shown that whitlockite is generally more enriched in REE's relative to chondrites than other minor phases in the same rock (4). Uranium and thorium may also be present in significant amounts although other minerals may contain more. Whit- lockite may, therefore, be an important reservoir of rare earth and heat producing elements. In addition, the amount of FeO and MgO in whitlockite is variable (Table 1).
    [Show full text]
  • Validation of Zeolites to Maximize Ammonium and Phosphate Removal from Anaerobic Digestate by Combination of Zeolites in Ca and Na Forms Page 1
    Validation of zeolites to maximize ammonium and phosphate removal from anaerobic digestate by combination of zeolites in Ca and Na forms Page 1 Abstract Ammonium and phosphate are fundamental nutrients for human life, but their excess in water can lead to eutrophication, an uncontrolled growth of biomass with a consequent deficit of oxygen (hypoxia) that can be really dangerous for water life. This excess is principally due to human activities such as industry and agriculture (detergents, fertilizers) and the problem is expected to grow during next years. Then, it is necessary to find an efficient, simple and low cost technology able to remove the nutrients from water in order to avoid environmental damages. Moreover, the population growth, the constant improvement in agriculture and the consequent increase in fertilizers demand have made the recovery of nutrient from water a real need, as it has been estimated that a 20% of the total needs of Europe could be recovered from wastewaters. Although both ammonium and phosphate have to be recovered from wastewater, their simultaneous removal by means of one adsorbent material has rarely been reported hitherto. The merit of using one material for the simultaneous removal is obvious, even if it has not been achieved yet. In general, most of the solutions proposed for the simultaneous removal of ammonium and phosphate are based on the use of two types of reagents. A large list of removal technologies, ranging from biological to physic-chemical methods, have been widely studied: in this work, zeolites in Ca and Na forms were evaluated as sorbents for phosphate and ammonium from synthetic water and real anaerobic digestate.
    [Show full text]
  • Monazite, Rhabdophane, Xenotime & Churchite
    Monazite, rhabdophane, xenotime & churchite: Vibrational spectroscopy of gadolinium phosphate polymorphs Nicolas Clavier, Adel Mesbah, Stephanie Szenknect, N. Dacheux To cite this version: Nicolas Clavier, Adel Mesbah, Stephanie Szenknect, N. Dacheux. Monazite, rhabdophane, xenotime & churchite: Vibrational spectroscopy of gadolinium phosphate polymorphs. Spec- trochimica Acta Part A: Molecular and Biomolecular Spectroscopy, Elsevier, 2018, 205, pp.85-94. 10.1016/j.saa.2018.07.016. hal-02045615 HAL Id: hal-02045615 https://hal.archives-ouvertes.fr/hal-02045615 Submitted on 26 Feb 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Monazite, rhabdophane, xenotime & churchite : vibrational spectroscopy of gadolinium phosphate polymorphs N. Clavier 1,*, A. Mesbah 1, S. Szenknect 1, N. Dacheux 1 1 ICSM, CEA, CNRS, ENSCM, Univ Montpellier, Site de Marcoule, BP 17171, 30207 Bagnols/Cèze cedex, France * Corresponding author: Dr. Nicolas CLAVIER ICSM, CEA, CNRS, ENSCM, Univ Montpellier Site de Marcoule BP 17171 30207 Bagnols sur Cèze France Phone : + 33 4 66 33 92 08 Fax : + 33 4 66 79 76 11 [email protected] - 1 - Abstract : Rare-earth phosphates with the general formula REEPO4·nH2O belong to four distinct structural types: monazite, rhabdophane, churchite, and xenotime.
    [Show full text]
  • An Overview of Phosphate Mining and Reclamation in Florida
    An Overview of Phosphate Mining and Reclamation in Florida Casey Beavers Graduate Committee: Dr. Rex Ellis, Chairman Dr. Edward Hanlon Dr. Greg MacDonald April 2013 Introduction Phosphate has significant economic importance in Florida, yet 70% of surveyed Florida residents claimed that they were uninformed about the industry (Breeze, 2002). Residents who are aware of phosphate mining and fertilizer manufacturing in Florida tend to have strong opinions either in favor or in opposition to its presence. This document is meant to provide an overview of phosphate mining and reclamation in Florida to address the following questions: Why do we care about phosphate? Why is phosphate mined in Florida? How is phosphate mined? Who is impacted by Florida phosphate mining? What happens to the land after mining? What are some of the controversies of phosphate mining? The following topics will be discussed: phosphate as a resource, the geology of the Florida phosphate deposits, the economics of phosphate mining and fertilizer production, the history of mining in Florida, the regulations involved in mining, the process of phosphate mining, the reclamation or restoration of the mined areas, and lastly--the controversies surrounding phosphate mining in Florida. Phosphate Plants and animals are unable to live without phosphorus. It is an essential component in ATP, an energy-bearing compound that drives biochemical processes. Phosphorus also comprises much of the molecular composition of DNA, RNA, and phospholipids that are necessary to the function of cellular membranes. Nitrogen, another essential element, may be fixed from the atmosphere, meaning its supply is limitless. Phosphorus, present as phosphate minerals in the soil, is a non-renewable resource.
    [Show full text]
  • Turquoise and Variscite by Dean Sakabe MEETING Wednesday
    JANUARY 2015 - VOLUME 50, ISSUE 1 Meeting Times Turquoise and Variscite By Dean Sakabe MEETING We are starting the year off with Tur- Wednesday quoise and Variscite. January 28, 2015 Turquoise is a copper aluminum phosphate, whose name originated in 6:15-8:00 pm medieval Europe. What happened was Makiki District Park that traders from Turkey introduced the blue-green gemstone obtained Admin Building from Persia (the present day Iran) to Turquoise (Stabilized), Europeans. Who in turn associated Chihuahua, Mexico NEXT MONTH this stone with the Turkish traders, Tucson Gem & rather than the land of the stones origin. Hence they called this stone Mineral Show “Turceis” or, later in French “turquois.” Over time english speakers adopted this French word, but adding an “e” (Turquiose). The Spanish called this stone “Turquesa”. LAPIDARY The gemstone grade of Turquoise has a hardness of around 6, however Every Thursday the vast majority of turquoise falls in the softer 3–5 range. With the 6:30-8:30pm exception being the Turquoise from Cripple Creek, Colorado which is in the 7-8 range. Turquoise occurs in range of hues from sky blue to grey Makiki District Park -green. It is also found in arid places that has a high concentration of 2nd floor Arts and copper in the soil. The blue color is created by copper and the green Crafts Bldg by bivalent iron, with a little amount of chrome. Turquoise often, has veins or blotches running MEMBERSHIP through it, most often brown, but can be light gray or black DUE COSTS 2015 depending on where it was Single: $10.00 found.
    [Show full text]
  • 12018 Olivine Basalt 787 Grams
    12018 Olivine Basalt 787 grams Figure 1: Original “mug shot” for 12018 PET showing main pieces and smaller pieces. NASA #S69-64111. Note the apparent encrustation. Introduction Mineralogy 12018 is an olivine basalt with an apparent Olivine: Kushiro et al. (1971) reported Fo -Fo for accumulation of mafic minerals. Figures 1 and 14 show 73 43 olivine phenocrysts. Walter et al. (1971) found that an apparent “encrustation” on the surface of 12018. olivine in 12018 had lower trace element contents (figure 5) than for other rocks. Petrography Walter et al. (1971) report that 12018 is comprised of Pyroxene: Walter et al. (1971), Brown et al. (1971) about 70% larger olivine and pyroxene crystals set in and Kushiro et al. (1971) determined that the pyroxene 20% variolitic matrix (figure 2). French et al. (1972) composition in 12018 did not trend towards Fe- describe the sample “as medium-grained with an enrichment (figure 4). average grain size of about 0.4 to 1.0 mm”. They found that 12018 was “virtually undeformed and no shock- Plagioclase: Plagioclase is An90-94 (Walter et al. 1971). metamorphic effects were observed.” The plagioclase in 12018 has the least trace element content (figure 6). 12018 also contains an association of fayalite-K-rich glass-phosphate that is interpreted as residual melt (El Goresy et al. 1971). Lunar Sample Compendium C Meyer 2011 Figure 3: Photomicrographsof 12018,9 showing highly mafic proportions. NASA S70-49554 and 555. Scale is 2.2 mm Figure 2: Photo of thin section of 12018 showing large cluster of mafic minerals. NASA # S70-30249.
    [Show full text]
  • The Importance of Minerals in Coal As the Hosts of Chemical Elements: a Review
    The importance of minerals in coal as the hosts of chemical elements: A review Robert B. Finkelmana,b, Shifeng Daia,c,*, David Frenchd a State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, China b University of Texas at Dallas, Richardson, TX 75080, USA c College of Geoscience and Survey Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China d PANGEA Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia *, Corresponding author: [email protected]; [email protected] Abstract Coal is a complex geologic material composed mainly of organic matter and mineral matter, the latter including minerals, poorly crystalline mineraloids, and elements associated with non- mineral inorganics. Among mineral matter, minerals play the most significant role in affecting the utilization of coal, although, in low rank coals, the non-mineral elements may also be significant. Minerals in coal are often regarded as a nuisance being responsible for most of the problems arising during coal utilization, but the minerals are also seen as a potentially valuable source of critical metals and may also, in some cases, have a beneficial effect in coal gasification and liquefaction. With a few exceptions, minerals are the major hosts of the vast majority of elements present in coal. In this review paper, we list more than 200 minerals that have been identified in coal and its low temperature ash, although the validity of some of these minerals has not been confirmed. Base on chemical compositions, minerals found in coal can be classified into silicate, sulfide and selenide, phosphate, carbonate, sulfate, oxide and hydroxide, and others.
    [Show full text]
  • The Phosphate Mineral Association of the Granitic Pegmatites of the Fregeneda Area (Salamanca, Spain)
    The phosphate mineral association of the granitic pegmatites of the Fregeneda area (Salamanca, Spain) E. RODA Dept. de Mineralogfa y Petrologfa, Univ. del Pals Vasco/EHU, Apdo. 644, 48080 Bilbao, Spain F. FONTAN Univ. Paul Sabatier, URA 067, Toulouse, France A. PESQUERA AND F. VELASCO Dept. de Mineralogfa y Petrologfa, Univ. del Pals Vasco/EHU, Apdo. 644, 48080 Bilbao, Spain Abstract In the Fregeneda area different pegmatitic types can be distinguished on the basis of their mineralogy, internal structure and field relationships. The most common type corresponds with simple pegmatites with a homogeneous internal structure, but Li and Sn-bearing pegmatites are also relatively widespread, besides a minority group of Fe-Mn phosphate-bearing pegmatites that has recently been characterized. These pegmatites are located in an intermediate zone, between the barren pegmatites and the most evolved Li and Sn-bearing bodies, and they carry a complex association of phosphate minerals. The study of these phosphates has allowed the identification of the primary phases as wyllieite, graflonite, sarcopside, triplite-zwieselite and ferrisicklerite; the secondary phosphates are rosemaryite, heterosite-purpurite, alluaudite and v/iyrynenite. In this study, the main characteristics of these phosphate minerals are reported, including their chemical composition, analysed by electron microprobe, and their unit-cell parameters, calculated using X-ray powder diffraction techniques. A common transformation mechanism in this phosphate association is the oxidation of the transition metal cations at the same time as Na-leaching in wyllieite to generate rosemaryite, and Li-leaching in ferrisicklerite to generate heterosite. The occurrence of sarcopside lamellae in ferrisicklerite and heterosite is evidence of the replacement processes of the former by the latter.
    [Show full text]
  • The Occurrence of Li-Fe-Mn Phosphate Minerals in Granitic Pegmatites of Namibia
    Communs geol. Surv. Namibia, 7 (1991) 21-35 The occurrence of Li-Fe-Mn phosphate minerals in granitic pegmatites of Namibia Paul Keller Institut für Mineralogie und Kristallchemie der Universität, Pfaffenwaldring 55, D- W7000 Stuttgart 80, Germany This is the first comprehensive account of Li-Fe-Mn phosphates (triphylite-lithiophilite and the topotactic alteration products ferrisick- lerite-sicklerite and heterosite-purpurite) from 46 granitic pegmatites of the Damara Sequence (Namibia). The Li-Fe-Mn phosphates display a wide range of Fe/(Fe+Mn) ratios. Preliminary ratios 0.125 ≤ Fe/(Fe+Mn) ≤ 0.845 have been determined by wet chemical and microprobe analyses. Relationships appear to be developed between the Fe/(Fe+Mn) ratios and the observed economic minerals, e.g. beryl, Ta-Nb oxides, petalite, and gem tourmaline. There is evidence for regional distribution patterns of Fe/(Fe+Mn) ratios regarding 8 portions and swarms of 4 pegmatite belts. There is fairly good accordance between the degree of fractionation, and differentiation, and the Fe/(Fe+Mn) ratio (hypothesis of Ginsburg) for a great number of pegmatites, although conspicuous deviations from that hypothesis were also noted. From the occurrence of arborescent Li-Fe-Mn phosphates, seen in 22 pegmatites, important arguments could be found for both the mode of the pegmatite evolution and for their economic mineralisation. Recent field observations prove that thermal under- cooling is predominantly responsible for the arborescent shape of Li-Fe-Mn phosphates in most of the Damaran pegmatites. Introduction erals (Keller, 1974, 1980, 1985, 1987, 1988; Keller & von Knorring, 1985, 1989; Fransolet, Keller & Fontan, The Precambrian Damara Sequence of Namibia is 1986).
    [Show full text]
  • Carbonate, Sulfate and Phosphate Minerals Groups
    University of Anbar Collage of Science Department of Geology Minerals / 1st stage. Carbonate, Sulfate and Phosphate Minerals Groups Assistant lecturer Nazar Zaidan Khalaf Carbonate, Sulfate and phosphate minerals groups Lecture seven Carbonate mineral group 2- • The carbonate minerals contain the anionic complex CO3 , ,which is triangular in its coordination—i.e., with a carbon atom at the center and an oxygen atom at each of the corners of an equilateral triangle. These anionic groups are strongly bonded individual units and do not share oxygen atoms with one another. The triangular carbonate groups are the basic building units of all carbonate minerals and are largely responsible for the properties particular to the class. • The common anhydrous (water-free) carbonates are divided into three groups that differ in structure type: calcite, aragonite, and dolomite. • The copper carbonates azurite and malachite are the only notable hydrous varieties. • This anion group usually occurs in combination with calcium, sodium, uranium, iron, aluminum, manganese, barium, zinc, copper, lead, or the rare-earth elements. The carbonates tend to be soft, soluble in hydrochloric acid, and have a marked anisotropy in many physical properties (e.g., high birefringence) as a result of the planar structure of the carbonate ion. • There are approximately 80 known carbonate minerals, but most of them are rare. The commonest varieties, calcite, dolomite, and aragonite, are prominent constituents of certain rocks: calcite is the principal mineral of limestone's and marbles; dolomite occurs as a replacement for calcite in limestone's, and when this is extensive the rock is termed dolomite; and aragonite occurs in some recent sediments and in the shells of organisms that have calcareous skeletons.
    [Show full text]
  • Joint Meeting
    Joint Meeting 19. Jahrestagung der Deutschen Gesellschaft für Kristallographie 89. Jahrestagung der Deutschen Mineralogischen Gesellschaft Jahrestagung der Österreichischen Mineralogischen Gesellschaft (MinPet 2011) 20.-24. September 2011 Salzburg Referate Oldenbourg Verlag – München Inhaltsverzeichnis Plenarvorträge ............................................................................................................................................................ 1 Goldschmidt Lecture .................................................................................................................................................. 3 Vorträge MS 1: Crystallography at High Pressure/Temperature ................................................................................................. 4 MS 2: Functional Materials I ........................................................................................................................................ 7 MS 3: Metamorphic and Magmatic Processes I ......................................................................................................... 11 MS 4: Computational Crystallography ....................................................................................................................... 14 MS 5: Synchrotron- and Neutron Diffraction ............................................................................................................. 17 MS 6: Functional Materials II and Ionic Conductors ................................................................................................
    [Show full text]
  • Vivianite Impacts on Solids Processes
    FACT SHEET Vivianite Impacts on Solids Processes By: Bipin Pathak Introduction Causes of Formation Vivianite is named in honor of John Henry Vivian In chemical phosphorus removal, (1785 - 1855), an English mineralogist and mine orthophosphate (PO4 3-) binds to iron or owner who first discovered this mineral in aluminum and precipitates out of solution. Iron Cornwall. Pure, fresh vivianite is colorless but salts are a common choice over other metal salts oxidizes very easily and changes color from deep because of additional benefits in controlling odor blue to black. It is an iron-phosphate mineral and hydrogen sulfide production during (Fe3[PO4]2.8H2O), formed in an anaerobic system anaerobic digestion. Parameters including redox in the presence of dissolved ferrous ions and conditions, pH, alkalinity, presence of organic phosphorous (P) with relatively low sulfide substances, and particle morphology influence concentrations. It is different from struvite the binding and release of phosphorus. The (magnesium ammonia phosphate precipitate) in solubility of ferrous and ferric ions varies with pH terms of chemical composition and and oxidation reduction potential (Figure 2a). appearance. Struvite deposits generally appear The reduction of ferric into ferrous iron in as white or off-white crystallizations. anaerobic environments leads to P release from Fe-P minerals. In precipitation reactions, ferrous Vivianite is a hard scale build-up that can form iron exhibits preference for some chemicals over on flow meters, valves, pumps, heat exchangers, other chemicals (Figure 2b). This can create dewatering equipment and other areas conditions that favor formation of vivianite by downstream of the anaerobic digestion process binding the reduced Fe with P released in the (Figure 1).
    [Show full text]