1.3.5 the Kutta Condition ...17

Total Page:16

File Type:pdf, Size:1020Kb

1.3.5 the Kutta Condition ...17 Deift UniVersity ofTechnology Ship HydromechafliCS laboratory Library Mekelweg 2 26282 CD Deift Phone: +31 (0)15 2786873 E-mail: p.w.deheertUdelft.flI 13.04 LECTURE NOTES HYDROFOILS AND PROPELLERS* Justin E. Kerwin January 2OOl Contents i TWO DIMENSIONAL FOIL THEORY - i 1.1 Introduction 2 1.2Foil Geometry 3 1.3Conformal Mapping 9 1.3.1History 9 1.3.2Potential Flow Around A Circle 9 1.3.3Conformal Mapping for Dummies 13 1.3.4The Karman-Trefftz Mapping Function 15 1.3.5The Kutta Condition ....................17 1.3.6Pressure Distributions 19 1.3.7Lift and Drag 24 1.4Linearized Theory for a 2Dimensional Foil Section 26 *©Justjfl E. Kerwin 2001 t Web document updated March 9 i 1.41Problem Formulation 26 27 1.4.2Vortex and Source Distributions 1.4.3Glauert's Theory 31 1.4.4Example-The Flat Plate 35 1.45 Example-The Parabolic Mean Line 36 37 1.4.6The Design of Mean Lines-The NACA a-Series ......... 1.4.7Linearized Pressure Coefficient 40 1.4.8Comparison of Pressure Distributions 41 42 1.4.9Solution of the Linearized Thickness Problem 1.4.10 The Elliptical Thickness Form 43 1.4.11 The Parabolic Thickness Form 44 1.4.12 Superposition 45 47 1.4.13 Lighthill's Rule . 52 1.52-D Vortex Lattice Theory 53 1.5.1 Constant Spacing 53 1.5.2Cosine Spacing . 55 1.5.3Converting from ['to -y(x) 56 1.5.4Drag and Leading Edge Suction 62 1.5.5Adding Foil Thickness to VLM 66 1.5.6The Cavitation Bucket Diagram 74 2LIFTING SURFACES 75 2.1Introductory Concepts 78 2.2The Strength of the Free VortexSheet in the Wake 11 C, 81 2.3The velocity induced by a three-dimensionalvortex line. 84 2.4Velocity Induced by a Straight VortexSegment 87 2.5Linearized Lifting-Surface Theory for a PlanarFoil 87 2.5.1 Formulation of the Linearized Problem 89 2.5.2The Linearized Boundary Condition 90 2.5.3Determining the Velocity 91 2.5.4Relating the Bound and Free Vorticity 93 2.6Lift and Drag 99 2.7Lifting Line Theory 2.7.1 Glauert's Method 99 104 2.7.2Vortex Lattice Solution for the PlanarLifting Line 115 2.7.3The Prandtl Lifting Line Equation 121 2.8Lifting Surface Results 2.8.1 Exact Results 121 122 2.8.2Vortex Lattice Solution of theLinearized Planar Foil 3 PROPELLERS 133 134 3.1Inflow 136 3.2 Notation 140 3.3Actuator Disk 150 3.4Propeller Lifting Line Theory 157 3.4.1The Actuator Disk as a ParticularLifting Line 161 3.5Optimum Circulation Distributions 165 3.5.1 Assigning The Wake Pitch Angle /3 II 3.5.2Properties of Constant Pitch Helical Vortex Sheets 166 169 3.5.3The Circulation Reduction Factor . 3.5.4Application of the Goldstein Factor 172 3.6Lifting Line Theory for Arbitrary CirculationDistributions 175 3.6.1 Lerbs Induction Factor Method 175 3.7Propeller Vortex Lattice Lifting Line Theory 178 181 3.7.1Hub effects . 3.7.2The Vortex Lattice Actuator Disk 185 3.7.3Hub and Tip Unloading 185 4 COMPUTER CODELISTINGS 194 5 APPENDIX 218 5.1Derivation of Glauert's Integral 219 List of Figures 1 Illustration of notation for foil section geometry 2 Sample of tabulated geometry and flow datafor an NA CA mean line and thickness form. This 3 An example of a trailing edge modificationused to reduce singing. particular procedure is frequently used for U.S.Navy and commercial ap- plications..... iv 4 An example of a complete geometrical description of a foil section (includ- ing anti-singing trailing edge modifications) using a fourth order uniform B-spume. The symbols connected with dashed lies represent the B-spume control polygon which completely defines the shape of the foil. The result- ing foil surface evaluated from the .B-spline is shown asthe continuous curve. The upper 'curves show am enlargementof the leading and trailing edge regions. The complete foil is shown in the lower curve 8 5 Flow around a circle with zero circulation.The center of the circle is located at x = .3,y = 0.4. The circle passes through x a = 1.0. The flow angle of attack is 10 degrees. 10 6 Flow around a circle with circulation. The center of the circle is located at z = .3, y = 0.4. The circle passes through z = a = 1.0. Note thatthe rear stagnation point has moved to z = a 12 7 Flow around a Karman- Trefftz foil derived from the flow around a circle' shown in figure 6 with a specified tail angle of T = 25 degrees 14 8 Flow near the trailing edge. The figure on the left is for zero circulation Note the flow around the sharp trailing edge and the presence of a stagna- tion point on the upper surface. The figure on the right shows theresult of adjustïng the circulation to provide smooth flow at the trailing edge.. 17 9 Early flow visualization photograph showing the development of a starting vortex 19 10 Streamlines and pressure contours for a thin, highly cambered section at zero angle of attack.This section is symmetrical about mid-chord, and therefore has sharp leading and trailing edges. As expected, the pressure contours show low pressure on the upper surface (green) andhigh pressure on the lower surface (blue). 21 11 This is the same section as before, but at an angle of attack of 10 degrees. The flow pattern is no longer symmetrical, with high velocities and hence low pressures (red) near the leading edge 22 12 Close up view of the flow near the leading edge at an angle of attack of 10 degrees 23 13 Vertical distribution of the u velocity at the mid-chord of a constant strength vortex panel of strength 'y = 1 28 V 14 Illustration of the circulation path used to showthat the jump in u velocity is equal to the vortex sheet strength, -y. 29 15 Horizontal distribution of the y velocity along a constantstrength vortex panel of strength -y 1. 30 16 Horizontal distribution of the y velocity along a constantstrength source panel of strength= 1. 31 17 Horizontal distribution of the y velocity along a constantstrength vortex panel of strength -y = 1. 36 18 Enlargement of figure showing the differencebetween an NACA a = 1.0 and parabolic mean line near the leading edge. 42 19 Shape and velocity distribution forelliptical and parabolic thickness forms from linear theory.The thickness/chord ratio, t0/c = 0.1.The vertical scale of the thickness formplots has been enlarged for clarity 43 20 Comparison of surface velocity distributionsfor an elliptical thickness form with t0/c = 0.1 and t0/c = 0.2 obtainedfrom an exact solution and from linear theory 47 21 Local representation of the leading edge regionof a foil by a parabola with matching curvature at x 0. This is sometimes referred to as an'oscu- 48 lating parabola". 22 Surface velocity distribution nearthe leading edge of a semi-infinite parabola. 49 23 Vortex lattice approximation of the vortexsheets representing a marine propeller. 52 24 Arrangement of vortex positions, x, andcontrol point positions, x. The vortices are plotted as filed circles,and the control points are shown as open triangles. Thenumber of panels, N 8. 54 25 Comparison of exact solution and vortexlattice method for a fiat plate using 10 and 20 panels. The vortexsheet strength and total lift coefficient is exact. Increasing the numberof panels improves the resolution in the representation of 'y(x). 56 vi 26 Comparison of exact solution and vortex lattice method for a parabolic mean line using .10 and 20 panels. The vortex sheetstrength and total lift coefficient is exact. Increasing the number of paneLs improves the resolu- tion in the representation of y(x) 57 27 Comparison of exact solution and vortex lattice method for an NACA a = .8 mean line using 10 and 20 panels. The vortex sheet strengthand total lift coefficient is not exact, but very close to the analytic result. The error in is visible near the leading edge, where VLM cannot deal with the logarithmic singularity in slope of the mean line 58 28 Vector diagram of force components on a flat plate. For clarity, the angle of attack, a, has been drawn at an unrealistically high value of 30 degrees 60 29 Suction parameter C(x) for a flat plate computed with 8 and 64 vortex elements for unit angle of attack, a 61 30 Suction parameter C(x) for a flat plate, parabolic and NACA a = .8 mean line at unit lift coefficient, computed with 32 vortex elements 62 31 Comparison of source lattice and exact conformal mapping calculations of the pressure distribution around a symmetrical Karman- TreJftz foil. The foil was generated with x = 0.1, Yc = 0.0 and r = 5 degrees.Source lattice results are given for 20 panels (symbols) and 50 panels (continuous curve). The Scherer/Riegels version of Lighthill's leading edge correction has been applied. 63 32 Vortex lattice approximation of the vortex sheets representing a marine propeller 65 33 Pressure distributions for a cambered Karrnan Trefftz section at two dif- ferent angles of attack 66 34 Variation of pressure coefficient with angle of attack at several fixed chord- wise locations for a symmetrical Karrnan Trefftz section.The numbers indicate the approximate chorwdise locations, in percent of chord from the leading edge. The dashed curves are for the corresponding points on the lower surface. Since the foil is symmetrical, the curves for points on the lower surface are the mirror image of the corresponding points on the upper surface.
Recommended publications
  • Claus Kahlert and Otto E. Rössler Institute for Physical and Theoretical Chemistry, University of Tübingen Z. Naturforsch
    Chaos as a Limit in a Boundary Value Problem Claus Kahlert and Otto E. Rössler Institute for Physical and Theoretical Chemistry, University of Tübingen Z. Naturforsch. 39a, 1200- 1203 (1984); received November 8, 1984 A piecewise-linear. 3-variable autonomous O.D.E. of C° type, known to describe constant- shape travelling waves in one-dimensional reaction-diffusion media of Rinzel-Keller type, is numerically shown to possess a chaotic attractor in state space. An analytical method proving the possibility of chaos is outlined and a set of parameters yielding Shil'nikov chaos indicated. A symbolic dynamics technique can be used to show how the limiting chaos dominates the behavior even of the finite boundary value problem. Reaction-diffusion equations occur in many dis­ boundary conditions are assumed. This result was ciplines [1, 2], Piecewise-linear systems are especially obtained by an analytical matching method. The amenable to analysis. A variant to the Rinzel-Keller connection to chaos theory (Smale [6] basic sets) equation of nerve conduction [3] can be written as was not evident at the time. In the following, even the possibility of manifest chaos will be demon­ 9 ö2 — u u + p [- u + r - ß + e (ii - Ö)], strated. o t oa~ In Fig. 1, a chaotic attractor of (2) is presented. Ö The flow can be classified as an example of "screw- — r = - e u + r , (1) 0/ type-chaos" (cf. [7]). A second example of a chaotic attractor is shown in Fig. 2. A 1-D projection of a where 0(a) =1 if a > 0 and zero otherwise; d is the 2-D cross section through the chaotic flow in a threshold parameter.
    [Show full text]
  • Clearing Certain Misconception in the Common Explanations of the Aerodynamic Lift
    Clearing certain misconception in the common explanations of the aerodynamic lift Clearing certain misconception in the common explanations of the aerodynamic lift Navinder Singh,∗ K. Sasikumar Raja, P. Janardhan Physical Research Laboratory, Ahmedabad, India. [email protected] October 30, 2018 Abstract Air travel has become one of the most common means of transportation. The most common question which is generally asked is: How does an airplane gain lift? And the most common answer is via the Bernoulli principle. It turns out that it is wrongly applied in common explanations, and there are certain misconceptions. In an alternative explanation the push of air from below the wing is argued to be the lift generating force via Newton’s law. There are problems with this explanation too. In this paper we try to clear these misconceptions, and the correct explanation, using the Lancaster-Prandtl circulation theory, is discussed. We argue that even the Lancaster-Prandtl theory at the zero angle of attack needs further insights. To this end, we put forward a theory which is applicable at zero angle of attack. A new length scale perpendicular to the lower surface of the wing is introduced and it turns out that the ratio of this length scale to the cord length of a wing is roughly 0.4930 ± 0.09498 for typical NACA airfoils that we analyzed. This invariance points to something fundamental. The idea of our theory is simple. The "squeezing" effect of the flow above the wing due to camber leads to an effective Venturi tube formation and leads to higher velocity over the upper surface of the wing and thereby reducing pressure according the Bernoulli theorem and generating lift.
    [Show full text]
  • How Do Wings Generate Lift? 2
    GENERAL ARTICLE How Do Wings Generate Lift? 2. Myths, Approximate Theories and Why They All Work M D Deshpande and M Sivapragasam A cambered surface that is moving forward in a fluid gen- erates lift. To explain this interesting fact in terms of sim- pler models, some preparatory concepts were discussed in the first part of this article. We also agreed on what is an accept- able explanation. Then some popular models were discussed. Some quantitative theories will be discussed in this conclud- ing part. Finally we will tie up all these ideas together and connect them to the rigorous momentum theorem. M D Deshpande is a Professor in the Faculty of Engineering The triumphant vindication of bold theories – are these not the and Technology at M S Ramaiah University of pride and justification of our life’s work? Applied Sciences. Sherlock Holmes, The Valley of Fear Sir Arthur Conan Doyle 1. Introduction M Sivapragasam is an We start here with two quantitative theories before going to the Assistant Professor in the momentum conservation principle in the next section. Faculty of Engineering and Technology at M S Ramaiah University of Applied 1.1 The Thin Airfoil Theory Sciences. This elegant approximate theory takes us further than what was discussed in the last two sections of Part 111, and quantifies the Resonance, Vol.22, No.1, ideas to get expressions for lift and moment that are remarkably pp.61–77, 2017. accurate. The pressure distribution on the airfoil, apart from cre- ating a lift force, leads to a nose-up or nose-down moment also.
    [Show full text]
  • D'arcy Wentworth Thompson
    D’ARCY WENTWORTH THOMPSON Mathematically trained maverick zoologist D’Arcy Wentworth Thompson (May 2, 1860 –June 21, 1948) was among the first to cross the frontier between mathematics and the biological world and as such became the first true biomathematician. A polymath with unbounded energy, he saw mathematical patterns in everything – the mysterious spiral forms that appear in the curve of a seashell, the swirl of water boiling in a pan, the sweep of faraway nebulae, the thickness of stripes along a zebra’s flanks, the floret of a flower, etc. His premise was that “everything is the way it is because it got that way… the form of an object is a ‘diagram of forces’, in this sense, at least, that from it we can judge of or deduce the forces that are acting or have acted upon it.” He asserted that one must not merely study finished forms but also the forces that mold them. He sought to describe the mathematical origins of shapes and structures in the natural world, writing: “Cell and tissue, shell and bone, leaf and flower, are so many portions of matter and it is in obedience to the laws of physics that their particles have been moved, molded and conformed. There are no exceptions to the rule that God always geometrizes.” Thompson was born in Edinburgh, Scotland, the son of a Professor of Greek. At ten he entered Edinburgh Academy, winning prizes for Classics, Greek Testament, Mathematics and Modern Languages. At seventeen he went to the University of Edinburgh to study medicine, but two years later he won a scholarship to Trinity College, Cambridge, where he concentrated on zoology and natural science.
    [Show full text]
  • A Method of Constructing Phyllotaxically Arranged Modular Models by Partitioning the Interior of a Cylinder Or a Cone
    A method of constructing phyllotaxically arranged modular models by partitioning the interior of a cylinder or a cone Cezary St¸epie´n Institute of Computer Science, Warsaw University of Technology, Poland [email protected] Abstract. The paper describes a method of partitioning a cylinder space into three-dimensional sub- spaces, congruent to each other, as well as partitioning a cone space into subspaces similar to each other. The way of partitioning is of such a nature that the intersection of any two subspaces is the empty set. Subspaces are arranged with regard to phyllotaxis. Phyllotaxis lets us distinguish privileged directions and observe parastichies trending these directions. The subspaces are created by sweeping a changing cross-section along a given path, which enables us to obtain not only simple shapes but also complicated ones. Having created these subspaces, we can put modules inside them, which do not need to be obligatorily congruent or similar. The method ensures that any module does not intersect another one. An example of plant model is given, consisting of modules phyllotaxically arranged inside a cylinder or a cone. Key words: computer graphics; modeling; modular model; phyllotaxis; cylinder partitioning; cone partitioning; genetic helix; parastichy. 1. Introduction Phyllotaxis is the manner of how leaves are arranged on a plant stem. The regularity of leaves arrangement, known for a long time, still absorbs the attention of researchers in the fields of botany, mathematics and computer graphics. Various methods have been used to describe phyllotaxis. A historical review of problems referring to phyllotaxis is given in [7]. Its connections with number sequences, e.g.
    [Show full text]
  • Art and Engineering Inspired by Swarm Robotics
    RICE UNIVERSITY Art and Engineering Inspired by Swarm Robotics by Yu Zhou A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Approved, Thesis Committee: Ronald Goldman, Chair Professor of Computer Science Joe Warren Professor of Computer Science Marcia O'Malley Professor of Mechanical Engineering Houston, Texas April, 2017 ABSTRACT Art and Engineering Inspired by Swarm Robotics by Yu Zhou Swarm robotics has the potential to combine the power of the hive with the sen- sibility of the individual to solve non-traditional problems in mechanical, industrial, and architectural engineering and to develop exquisite art beyond the ken of most contemporary painters, sculptors, and architects. The goal of this thesis is to apply swarm robotics to the sublime and the quotidian to achieve this synergy between art and engineering. The potential applications of collective behaviors, manipulation, and self-assembly are quite extensive. We will concentrate our research on three topics: fractals, stabil- ity analysis, and building an enhanced multi-robot simulator. Self-assembly of swarm robots into fractal shapes can be used both for artistic purposes (fractal sculptures) and in engineering applications (fractal antennas). Stability analysis studies whether distributed swarm algorithms are stable and robust either to sensing or to numerical errors, and tries to provide solutions to avoid unstable robot configurations. Our enhanced multi-robot simulator supports this research by providing real-time simula- tions with customized parameters, and can become as well a platform for educating a new generation of artists and engineers. The goal of this thesis is to use techniques inspired by swarm robotics to develop a computational framework accessible to and suitable for both artists and engineers.
    [Show full text]
  • Morphology and Mathematics. by D'arcy Wentworth Thompson. The
    ( 857 ) XXVII.—Morphology and Mathematics. By D'Arcy Wentworth Thompson. (Read December 7, 1914. MS. received February 1, 1915. Issued separately June 22, 1915.) The study of Organic Form, which we call by GOETHE'S name of Morphology, is but a portion of that wider Science of Form which deals with the forms assumed by matter under all aspects and conditions, and, in a still wider sense, with Forms which are theoretically imaginable. The study of Form may be descriptive merely, or it may become analytical. We begin by describing the shape of an object in the simple words of common speech : we end by denning it in the precise language of mathematics ; and the one method tends to follow the other in strict scientific order and historical continuity. Thus, fer instance, the form of the earth, of a raindrop or a rainbow, the shape of the hanging chain, or the path of a stone thrown up into the air, may all be described, however inadequately, in common words ; but when we have learned to comprehend and to define the sphere, the catenary, or the parabola, we have made a wonderful and perhaps a manifold advance. The mathematical definition of a "form" has a quality of precision which was quite lacking in our earlier stage of mere description ; it is expressed in few words, or in still briefer symbols, and these words or symbols are so pregnant with meaning that thought itself is economised ; we are brought by means of it in touch with GALILEO'S aphorism, that " the Book of Nature is written in characters of Geometry." Next, we soon reach through mathematical analysis to mathematical synthesis ; we discover homologies or identities which were not obvious before, and which our descriptions obscured rather than revealed : as, for instance, when we learn that, however we hold our chain, or however we fire our bullet, the contour of the one or the path of the other is always mathematically homologous.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 6,948,910 B2 Polacsek (45) Date of Patent: Sep
    USOO694891 OB2 (12) United States Patent (10) Patent No.: US 6,948,910 B2 PolacSek (45) Date of Patent: Sep. 27, 2005 (54) SPIRAL-BASED AXIAL FLOW DEVICES William C. Elmore, Mark A. Heald- “Physics of Waves” (C) 1969 PP 5–35, 203–205, 234-235, ISBN-0486 64926–1, (76) Inventor: Ronald R. Polacsek, 73373 Joshua Dover Publ., Canada. Tree St., Palm Desert, CA (US) 92260 A.A. Andronov, AA. Viti, “Theory of Oscillators.” (C) 1966, (*) Notice: Subject to any disclaimer, the term of this pp. 56–58, 199-200, ISBDN-0486-65508–3, Dover Pub patent is extended or adjusted under 35 lishing, Canada. U.S.C. 154(b) by 375 days. Erik Anderson et al., Journal of Experimental Biology, “The Boundary Layer of Swimming Fish' pp 81-102 (C) Dec. 5, (21) Appl. No.: 10/194,386 2000, (C) The Company of Biologists, Great Britain. Stephen Strogatz, “Nonlinear Dynamics and Chaos” (C) 1994 (22) Filed: Jul. 12, 2002 pp. 262-279, ISBDN 0-7382-0453–6 (C) Perseus Books, (65) Prior Publication Data USA. US 2004/0009063 A1 Jan. 15, 2004 (Continued) (51) Int. Cl. ................................................ B64C 11/18 (52) U.S. Cl. ........................................ 416/1; 416/227 R Primary Examiner Edward K. Look (58) Field of Search ................................. 416/1, 227 R, Assistant Examiner Richard Edgar 416/227A, 223 R, 223 A (57) ABSTRACT (56) References Cited Axial flow devices using rigid spiral band profiled blade U.S. PATENT DOCUMENTS catenaries attached variably along and around an axially elongated profiled hub, of axially oriented profile Section 547,210 A 10/1895 Haussmann 1864,848 A 6/1932 Munk ....................
    [Show full text]
  • Lecture 4: Panel Methods G. Dimitriadis Introduction
    Aerodynamics Lecture 4: Panel methods G. Dimitriadis Introduction • Until now we’ve seen two methods for modelling wing sections in ideal flow: –Conformal mapping: Can model only a few classes of wing sections –Thin airfoil theory: Can model any wing section but ignores the thickness. • Both methods are not general. • A more general approach will be presented here. 2D Panel methods • 2D Panel methods refers to numerical methods for calculating the flow around any wing section. • They are based on the replacement of the wing section’s geometry by singularity panels, such as source panels, doublet panels and vortex panels. • The usual boundary conditions are imposed: – Impermeability – Kutta condition Panel placement • Eight panels of length Sj • For each panel, sj=0-Sj. • Eight control (collocation) points (xcj,ycj) located in the middle of each panel. • Nine boundary points (xbj,ybj) • Normal and tangential unit vector on each panel, nj, tj • Vorticity (or source strength) on each panel j(s) (or j(s)) Problem statement • Use linear panels • Use constant singularity strength on each panel, j(s)=j (j(s)=j). • Add free stream U at angle . • Apply boundary conditions: – Far field: automatically satisfied if using source or vortex panels – Impermeability: Choose Neumann or Dirichlet. • Apply Kutta condition. • Find vortex and/or source strength distribution that will satisfy Boundary Conditions and Kutta condition. Panel choice • It is best to chose small panels near the leading and trailing edge and large panels in the middle: x 1 = ()cos +1 , = 0 2 c 2 Notice that now x/c 17 29 begins at 1, passes 16 30 through 0 and then goes 2 1 back to 1.
    [Show full text]
  • Examples of the Golden Ratio You Can Find in Nature
    Examples Of The Golden Ratio You Can Find In Nature It is often said that math contains the answers to most of universe’s questions. Math manifests itself everywhere. One such example is the Golden Ratio. This famous Fibonacci sequence has fascinated mathematicians, scientist and artists for many hundreds of years. The Golden Ratio manifests itself in many places across the universe, including right here on Earth, it is part of Earth’s nature and it is part of us. In mathematics, the Fibonacci sequence is the ordering of numbers in the following integer sequence: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144… and so on forever. Each number is the sum of the two numbers that precede it. The Fibonacci sequence is seen all around us. Let’s explore how your body and various items, like seashells and flowers, demonstrate the sequence in the real world. As you probably know by now, the Fibonacci sequence shows up in the most unexpected places. Here are some of them: 1. Flower petals number of petals in a flower is often one of the following numbers: 3, 5, 8, 13, 21, 34 or 55. For example, the lily has three petals, buttercups have five of them, the chicory has 21 of them, the daisy has often 34 or 55 petals, etc. 2. Faces Faces, both human and nonhuman, abound with examples of the Golden Ratio. The mouth and nose are each positioned at golden sections of the distance between the eyes and the bottom of the chin.
    [Show full text]
  • Explicit Kutta Condition Correction for Rotary Wing Flows A. D'alascio, A
    Transactions on Modelling and Simulation vol 18, © 1997 WIT Press, www.witpress.com, ISSN 1743-355X Explicit Kutta Condition Correction for Rotary Wing Flows A. D'Alascio, A. Visingardi, and P. Renzoni CIRA, Centra Italiano Ricerche Aerospaziali EMail: [email protected], [email protected], p.renzoni@cira. it Abstract An explicit correction to the Kutta condition applied to rotary wing potential flows is described. Indeed, the simple application of the classical steady Kutta condition, which ensures the uniqueness of the solution of the potential flow problems [1,2], is unable to guarantee a zero pressure jump at the blade trailing edge. Several investigations performed on this problem have indicated the presence of considerable non-zero pressure jumps for highly 3D flows (blade root and tip) [3] and for unsteady flows characterized by high reduced frequencies [4]. The application of a Kutta condition correction in CIRA's BEM code RAMSYS [3] has shown the ability to ensure a continuous pressure across the blade trailing edge. 1 Introduction The flow field around helicopter rotors is unsteady and highly three-dimensio- nal. A low frequency unsteadiness is induced in the flow by the relative motion between rotating and non-rotating components of the helicopter. The interaction between each main rotor blade with the wake of preceding blades is responsible for mid frequency unsteadiness whereas high frequency unsteadiness is generated by blade/tip vortex encounters. The rotor blades during their motion are subject to cross flows which make the flow field three-dimensional, expecially in the vicinity of the ro- Transactions on Modelling and Simulation vol 18, © 1997 WIT Press, www.witpress.com, ISSN 1743-355X 780 Boundary Elements tor blade root and tip.
    [Show full text]
  • Explicit Role of Viscosity in Generating Lift
    AIAA JOURNAL Vol. 55, No. 11, November 2017 Technical Notes Explicit Role of Viscosity I. Introduction in Generating Lift HIS Note tries to elucidate the subtle but critical role of the fluid T viscosity in generating the aerodynamic lift. The viscous origin of the lift has not been widely understood or sufficiently highlighted Tianshu Liu∗ in the literature. In classical aerodynamics textbooks [1–4], the lift Western Michigan University, Kalamazoo, Michigan 49008 theory of an airfoil is usually developed based on the classical potential-flow theory, in which the Kutta–Joukowski (K-J) theorem and † ‡ is used as a key element in calculating the lift. However, the airfoil Shizhao Wang and Guowei He circulation in the K-J theorem cannot be automatically determined in Chinese Academy of Sciences, 100190 Beijing, the potential-flow framework alone because the vorticity cannot be People’s Republic of China physically generated in an inviscid flow. This fundamental difficulty is intrinsically related to D’Alembert’s paradox stating that the DOI: 10.2514/1.J055907 integrated pressure force of a body is zero in a steady inviscid irrotational incompressible flow [5,6]. To circumvent this problem, the Kutta condition is imposed at the airfoil trailing edge to determine Nomenclature the circulation. To a great extent, the success of the classical Cd = drag coefficient circulation theory in predicting the lift depends on the clever Cl = lift coefficient application of the Kutta condition and its generalized forms as the Cp = pressure coefficient phenomenological models of the viscous-flow effect on the lift c = chord length, m generation [7].
    [Show full text]