Microfabrication by Two-Photon Lithography, and Characterization, of Sio2/Tio2 Based Hybrid and Ceramic Microstructures

Total Page:16

File Type:pdf, Size:1020Kb

Microfabrication by Two-Photon Lithography, and Characterization, of Sio2/Tio2 Based Hybrid and Ceramic Microstructures Journal of Sol-Gel Science and Technology https://doi.org/10.1007/s10971-020-05355-3 REVIEW PAPER: NANO-STRUCTURED MATERIALS (PARTICLES, FIBERS, COLLOIDS, COMPOSITES, ETC.) Microfabrication by two-photon lithography, and characterization, of SiO2/TiO2 based hybrid and ceramic microstructures 1 1 2 1 1 1 Anne Desponds ● Akos Banyasz ● Gilles Montagnac ● Chantal Andraud ● Patrice Baldeck ● Stephane Parola Received: 5 May 2020 / Accepted: 25 June 2020 © Springer Science+Business Media, LLC, part of Springer Nature 2020 Abstract High resolution fabrication using two-photon lithography is extensively studied for a large range of materials, from polymer to inorganics. Hybrid materials including a sol–gel step have been developed since two decades to increase mechanical or optical properties in particular on silicon-based materials. Among the metal oxide, few studies have been dedicated to titanium and, because of the high reactivity of titanium precursors, obtaining a resin with a high part of titanium is challenging. Indeed, resins for two-photon lithography have to be stable for the processing time and titanium precursors are more difficult to operate due to their higher reactivity and often require extreme working conditions in order to control the 1234567890();,: 1234567890();,: chemical processes. Here, we propose a method, working at ambient conditions, to print submicronic structures of organic–inorganic hybrids with a large proportion of titanium and ceramics using high resolution two-photon process. The material obtained and its evolution during the pyrolysis at 600 and 1000 °C are characterized. We show that TiO2/SiO2-based microceramics can be obtained after the pyrolysis of the microstructures. The respective roles of the two chemical reactions involved in this lithography process, sol–gel condensation and radical photopolymerization, are highlighted. Graphical Abstract Keywords Microfabrication ● Ceramics ● Sol–gel ● Hybrids ● Two-photon polymerization * Anne Desponds 2 Laboratoire de Géologie, CNRS UMR 5276, Ecole Normale [email protected] Supérieure de Lyon, Université de Lyon 1, 46 allée d’Italie, 69364 * Stephane Parola Lyon, France [email protected] 1 Laboratoire de Chimie, CNRS UMR 5182, Ecole Normale Supérieure de Lyon, Université de Lyon 1, 46 allée d’Italie, 69364 Lyon, France Journal of Sol-Gel Science and Technology Highlights ● 3D printing using two-photon absorption processes for the fabrication of high resolution at the submicronic scale of ceramic components. ● Printing TiO2-based ceramics of various compositions, controlling the resolution, structures, and shape after annealing is an important challenge and open perspective to large range of applications. ● Two chemical reactions concomitantly involved during the process are critical, sol–gel condensation and radical photopolymerization. ● Sol–gel approaches toward high resolution 3D printed ceramics is an extremely promising method. 1 Introduction addition reactions possible when coordination of the metal is not complete [25]. Consequently, this metal center is very The patterning of sub-micrometric structures with high sensitive to reaction with ambient H2O. To handle the three-dimensional (3D) spatial resolution is in continual titanium precursor and permit two-photon lithography resin, development to meet and improve the requirements of these compounds are stabilized by MAA to form less applications in various domains (automotive, aerospace, reactive clusters. These reactions between alkoxides and defense, healthcare, consumer, industrial automation, ligands have been particularly studied [26]. It has been robotics, telecommunications). Most of the processes used highlighted that the clusters formation are due to partial to obtain the microdevices are composed of several steps hydrolysis, thus making possible the incorporation of such including chemical and/or physical treatments [1], and the compounds as building blocks for hybrid inorganic–organic utilization of molds or masks, especially with inorganic matrix [27]. However, even under cluster form, the system materials [2, 3]. The multiphotonic lithography technic, also remains very reactive. The addition of a silicon precursor called “direct writing lithography”, may replace these mixed makes it possible to reach a manageable composition but processes which are difficult and complicated, through a resins including a molar ratio Ti/Si superior to 1 are not fabrication by a 3D printing process involving reactions of achievable in these conditions, and the microstructures radical photopolymerization. The two-photon lithography, presented eventually a cracked surface aspect [10]. More based on a two-photon absorption process, has attracted a recently, it has however being demonstrated that, under an high level of interest due to its high spatial resolution, argon environment without oxygen, the proportion of tita- making possible the production of microdevices and nium precursor could be increased [22]. microstructured surface. This technique was explored in the We propose here a simple route, in easily controllable 1990s and the 2000s [4–7]. Many materials are compatible conditions, to obtain ceramic microstructures with high with the two-photon lithography such as photopolymers [8], titanium dioxide content from sol–gel-based resins. The inorganic–organic material composed of silica precursors principle is to create mixed composite oligomers during built up in organic network [9], and its derivatives including the patterning of the microstructures, either by pre- titanium [10], zirconium [11, 12], or metal hybrids [13]. hydrolysis and aging condensation of the alkoxide pre- Full inorganic condensation sol–gel process has also been cursor, followed by two-photon polymerization, or by developed but remains hitherto limited to silica-based simultaneous two-photon controlled inorganic condensa- materials [14, 15]. To obtain full inorganic materials, the tion and two-photon organic photopolymerization. We fabrication in a polymeric matrix including inorganics fol- have noted that the type of titanium precursor has an lowed by a debinding of the organic matter is a route that influence on the stability of the resin. In particular, the has been explored for SiCN microstructures [16], SiO2/ZrO2 replacement of the traditionally used titanium isoprop- [17], or SiOC [18]. oxide by the titanium butoxide allows us to increase the The incorporation of TiO2 in such micromaterials has molar ratio Ti/Si up to 2.3 in the resin in our experimental been widely studied as this metal oxide presents excellent conditions. Infrared spectroscopy allows characterization optical properties (high refractive index) and electronic of the two chemical reactions involved during the transi- properties (semiconductor) [19, 20]. Similar to the tion from resin to micromaterial. On the one hand, the ORMOCER, inorganic–organic resins including Titania sol–gel condensation occurs, creating preform network precursors have been studied for photonics [10, 21] pressure and depending on the aging time, this reaction is more or sensors [22] and biological [23, 24] applications. However, less advanced. On the other hand, the radical photo- contrary to the silica precursors, the titanium is much more polymerization permits to connect the preform sol–gel sensitive to the environment because of (1) its stronger network, and thus to form the micromaterial. electrophile character and (2) its coordination number The fabricated microstructures of composite inorganic– which is superior to its valence, making nucleophilic organic hybrid can then be calcined to remove the organic and Journal of Sol-Gel Science and Technology thus lead to inorganic microstructures with increased optical 0.5, 1, and 3) are considered (Table 1). The reaction med- and mechanical properties. Such process toward Titania-based ium is stirred for 1 h. ceramics remains barely studied. Here is reported the two- Simultaneously, in another amber vial, the titanium pre- photon fabrication of TiO2-based microceramics from such cursor solution is prepared: a solution of Ti(OiPr)4 (TiP) at hybrids. 70 wt% in acetone is prepared and the MAA is added slowly under stirring, with a molar ratio equal to 1 (Table 1). The reaction is stirred for 1 h. 2 Experimental Finally, the resin is prepared in a third amber vial. The silicon solution is added to the photoinitiator, Michler’s 2.1 Chemicals ketone, (0.15 mmol). The titanium precursor solution is then dropped under stirring. The molar proportion of the TiP 3-(Trimethoxysilyl)propyl methacrylate 98% (MAPTMS), solution added to the MAPTMS solution is tuned between 4.4-Bis(dimethylamino)benzophenone 98% (Michler’s samples according to the following molar ratios Ti/Si: 0.4, ketone) are purchased from Sigma-Aldrich. Titanium iso- 0.7, 1, 1.5, 2.3 (Table 1). i propoxide Ti(O Pr)4 (TiP) and titanium butoxide Ti(OBu)4 (TiB) are purchased from Acros. Methacrylic acid (MAA) 2.3 Photopolymerizable resins: MAPTMS/TiB/MAA stabilized with 250 ppm MEHQ is bought from Alfa. The photobase “N-methylnifedipine ethyl ester derivative” is In an amber vial, the silicon precursor solution is prepared: synthetized in our lab and the synthesis method is available a solution of MAPTMS at 80 wt% in acetone is prepared, elsewhere [15]. Concentrated hydrochloric acid 37% (HCl), and a solution of diluted HCl (0.1 M) is added to hydrolyze and acetone 99% are purchased from VWR. The water the silane. The molar ratio H2O/MAPTMS is maintained (H2O) used
Recommended publications
  • Brno University of Technology
    BRNO UNIVERSITY OF TECHNOLOGY Faculty of Chemistry DOCTORAL THESIS Brno, 2016 Ing. Tomá Solný BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UENÍ TECHNICKÉ V BRN FACULTY OF CHEMISTRY FAKULTA CHEMICKÁ INSTITUTE OF MATERIALS SCIENCE ÚSTAV CHEMIE MATERIÁL SYNTHESIS AND PHOTOCATALYTIC APPLICATIONS OF TITANIUM DIOXIDE PÍPRAVA A APLIKACE FOTOKATALYTICKY AKTIVNÍHO OXIDU TITANIITÉHO DOCTORAL THESIS DIZERTANÍ PRÁCE AUTHOR Ing. Tomá Solný AUTOR PRÁCE SUPERVISOR doc. Ing. Petr Ptáek, Ph.D. KOLITEL BRNO 2016 ABSTRACT Hydrolysis conditions for different Ti-alkoxides were examined considering the impact of water to alkoxide ratio and temperature. The prepared hydrolysates and sintered TiO2 nanoparticles were examined with XRD, DTA – TGA, SEM – EDS, BET and PCCS analysis in order to identify the impact of hydrolysis on properties of prepared anatase particles. Magnetite nanoparticles were synthetized by easy one step precipitation method from Mohr´s salt solution and their crystallinity, size and surface properties were examined investigating the influence of temperature and coating by polycarboxylate ether superplasticizer. For immobilization of TiO2 on surfaces of magnetite combined method using the selected nanoparticles of TiO2 and Ti-alkoxides hydrolysis is performed in order to obtain photocatalytically active core–shell powder catalysator with enhanced adsorptive properties. Also the investigation on the applications of TiO2 on surfaces of Mn-Zn ferrite is done with studying the surface treatment by CVD deposition of C and Au layer. Photocatalytic activity of selected prepared photocatalysators is evaluated upon decomposition of methylene blue and isopropanolic and ethanolic vapors for Mn-Zn ferrite in experimental chemical reactor with magnetically holded powdered photocatalysator beds. KEYWORDS: Titanium oxide, anatase, photocatalytic activity, core-shell powder photocatalysator, magnetite, Mn-Zn ferrite, Ti-alkoxides, hydrolysis, sol-gel, nanoparticles.
    [Show full text]
  • Sol-Gel Synthesis of Highly Oriented Lead Barium Titanate And
    SOL-GEL SYNTHESIS OF HIGHLY ORIENTED LEAD BARIUM TITANATE AND LANTHANUM NICKELATE THIN FILMS FOR HIGH STRAIN SENSOR AND ACTUATOR APPLICATIONS Thesis by Stacey Walker Boland In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy California Institute of Technology Pasadena, CA 2005 (Defended March 14, 2005) ii © 2005 Stacey W. Boland All Rights Reserved iii Acknowledgements This thesis would not have been possible without the tremendous support I have received from family and friends. Words cannot express the gratitude I feel for my husband Justin Boland and my parents, Benn and April Walker, who have been my anchors to reality throughout this graduate school experience. I’d also like to thank those in my research group who have made life here so much richer. Special thanks to Lisa Cowan, Mary Thundathil, Martin Smith-Martinez, and Kenji Sasaki for the friendship in addition to the intellectual support. I’d also like to thank Melody Grubbs for her hard work and enthusiasm in the lab through the Caltech FSI and SURF programs, and again for continuing to work even after that! Thanks to my colleagues Victor Shih, P.J. Chen, and Scott Miserendino, who went out of their way to help me explore some of the integration strategies mentioned in Chapter IV, and to Justin, who also helped with these efforts! To my thesis supervisory and examination committee, Sossina Haile, Kaushik Bhattacharya, Dave Goodwin, and George Rossman, I’d like to thank you for your guidance throughout my research endeavors, and again for reading my thesis. Also thanks to… Caltech for letting me plant a garden full of daisies, Omar Knedlik for inventing the ICEE, and Brett Favre for being a great quarterback.
    [Show full text]
  • Synthesis and Stabilization of Nano-Sized Titanium Dioxide
    Russian Chemical Reviews 78 (9) ? ± ? (2009) # 2009 Russian Academy of Sciences and Turpion Ltd DOI 10.1070/RC2009v078n09ABEH004082 Synthesis and stabilization of nano-sized titanium dioxide Z R Ismagilov, L T Tsykoza, N V Shikina, V F Zarytova, V V Zinoviev (deceased), S N Zagrebelnyi Contents I. Introduction II. The effect of synthesis conditions on the degree of dispersion, phase composition and properties of titanium dioxide III. Synthesis of nano-sized TiO2 from titanium alkoxides; product dispersion and phase composition IV. Synthesis of nano-sized TiO2 from TiCl4 ; product dispersion and phase composition V. Synthesis of TiO2 from miscellaneous titanium-containing precursors VI. Stabilization of the disperse state and phase composition of nano-sized TiO2 sols Abstract. The published data on the preparation and the containing TiO2 nanoparticles and aimed at curing cancer dispersion-structural properties of nano-sized TiO2 are and viral or genetic diseases. The necessity of developing considered. Attention is focused on its sol ± gel synthesis new approaches to fight against these diseases is associated from different precursors. The possibilities for the purpose- with the limitations inherent in conventional methods of ful control and stabilization of properties of TiO2 nano- therapy and profilaxis. Thus for viral infections, the therapy powders and sols are analyzed. Information on efficacy tends to decrease due to permanent mutation of physicochemical methods used in studies of the particle viruses. size and the phase composition of nanodisperse TiO2 is Development of methods for the targeted impact on presented. The prospects of using nano-sized TiO2 in injured RNA and DNA molecules includes studies of the medicine and nanobiotechnology are considered.
    [Show full text]
  • Template for Electronic Submission to ACS Journals
    Sol-gel Chemistry of Titanium alkoxide towards HF: impacts of reaction parameters Wei Li, † Monique Body, § Christophe Legein, § and Damien Dambournet†,* † Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire PHENIX, Case 51, 4 place Jussieu, F-75005 Paris, France § Université Bretagne Loire, Université du Maine, UMR CNRS 6283, Institut des Molécules et des Matériaux du Mans (IMMM), Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France KEYWORDS. Fluorolysis, hydrolysis, anatase, hexagonal-tungsten-bronze, oxy- hydroxyfluoride, titanium vacancies, 19F solid state NMR. ABSTRACT. The sol-gel chemistry of titanium-based oxide prepared in a fluorinated medium leads to oxy-hydroxyfluorinated framework owing to the occurrence of both hydrolysis and fluorolysis reactions. Here, a systematic study was carried out to investigate the impact of the sol-gel synthesis parameters on the reaction of titanium alkoxides and HF. This study provides comprehensive insights of the sol-gel process in a fluorinated medium. Depending on the extend of fluorination, two types of structures can be stabilized including an anatase Ti1-x-yx+yO2- 4(x+y)F4x(OH)4y and a fluoride-rich HTB Ti1-xxO1-4x(F,OH)2+4x phases, where refers to titanium vacancies. The reactivity of titanium alkoxide in alcohol toward HF has been shown to mostly depend on the solvent characteristics highlighting an alcohol interchange reaction 1 between the titanium precursor and the solvent. Increasing the fluorine concentration leads to a structural change from the anatase to the fluoride-rich HTB phase which is rationalized by the preferential linking modes of Ti octahedral subunits in relation with its anionic environment, i.e.
    [Show full text]
  • Single and Double Doping of Nanostructured Titanium Dioxide with Silver And
    Single and Double Doping of Nanostructured Titanium Dioxide with Silver and Copper: Structural, Optical and Gas-Sensing Properties by NUBI OLATUNBOSUN OWOLABI THESIS Submitted in fulfilment of the requirements for the degree of DOCTOR OF PHILOSOPHY in PHYSICS in the FACULTY OF SCIENCE & AGRICULTURE (School of Physical and Mineral Sciences) at the UNIVERSITY OF LIMPOPO PROMOTER: Prof. K.E. Rammutla CO-PROMOTER: Dr. T.E. Mosuang 2016 Dedications This one is for you, my late parents. A little too late perhaps, but I got there in the end: Baba, Mama: Bawo ni iba ti dun mo mi ninu to kani e wa laye. Mo dupe pupo lowo yin nitoriwipe e ko fi mi sile. E duro timi titi e fi fi aiye sile. Nitori eyi ni mo fi da lokan wipe mo ma yonju eleyi, yala ohun to o ma gba. E sun re o. i Declaration I declare that SINGLE AND DOUBLE-DOPING OF TITANIUM DIOXIDE NANOPARTICLES WITH SILVER AND COPPER: STRUCTURAL, OPTICAL AND GAS-SENSING APPLICATIONS hereby submitted to the University of Limpopo, for the degree of Doctor of Philosophy (Physics) has not previously been submitted by me for a degree at this or any other university; that it is my work in design and in execution, and that all material contained herein has been duly acknowledged.. ………………………………………………………………………………………………….. NUBI OO (Mr) Date ii Acknowledgements The synthesis of the nanostructured titanium dioxide samples studied in this research was primarily carried out in the laboratories of the University of Limpopo. Other experimental facilities, particularly those involving sample characterisation, were made available through collaboration with other research centres.
    [Show full text]
  • Tio2-Based Nanomaterials: Design, Synthesis, and Applications Journal of Nanomaterials
    Journal of Nanomaterials TiO2-Based Nanomaterials: Design, Synthesis, and Applications Guest Editors: Yuekun Lai, Luning Wang, Dawei Liu, Zhong Chen, and Changjian Lin Nanomaterials TiO2-Based Nanomaterials: Design, Synthesis, and Applications Journal of Nanomaterials TiO2-Based Nanomaterials: Design, Synthesis, and Applications Guest Editors: Yuekun Lai, Luning Wang, Dawei Liu, Zhong Chen, and Changjian Lin Copyright © 2015 Hindawi Publishing Corporation. All rights reserved. This is a special issue published in “Journal of Nanomaterials.” All articles are open access articles distributed under the Creative Com- mons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Editorial Board Domenico Acierno, Italy Samy El-Shall, USA Sanjeev Kumar, India Katerina Aifantis, USA Farid El-Tantawy, Egypt Sushil Kumar, India Sheikh Akbar, USA Ovidiu Ersen, France Prashant Kumar, UK NagehK.Allam,USA Claude Estournes,` France Subrata Kundu, India Margarida Amaral, Portugal Andrea Falqui, Saudi Arabia Michele Laus, Italy Raul Arenal, Spain Xiaosheng Fang, China Eric Le Bourhis, France Ilaria Armentano, Italy Bo Feng, China Burtrand Lee, USA Lavinia Balan, France Matteo Ferroni, Italy Jun Li, Singapore Thierry Baron, France Wolfgang Fritzsche, Germany Meiyong Liao, Japan Andrew R. Barron, USA Alan Fuchs, USA Silvia Licoccia, Italy Hongbin Bei, USA Peng Gao, China Wei Lin, USA Stefano Bellucci, Italy Miguel A. Garcia, Spain Jun Liu, USA Enrico Bergamaschi, Italy Siddhartha Ghosh, Singapore Zainovia Lockman, Malaysia D. Bhattacharyya, New Zealand P. K . G i r i , In d i a Songwei Lu, USA G. Bongiovanni, Italy Russell E. Gorga, USA Jue Lu, USA T. Borca-Tasciuc, USA Jihua Gou, USA Ed Ma, USA Mohamed Bououdina, Bahrain Jean M.
    [Show full text]
  • Microfabrication by Two-Photon Lithography, and Characterization, of Sio2/Tio2 Based Hybrid and Ceramic Microstructures Anne Desponds, A
    Microfabrication by two-photon lithography, and characterization, of SiO2/TiO2 based hybrid and ceramic microstructures Anne Desponds, A. Banyasz, Gilles Montagnac, Chantal Andraud, Patrice Baldeck, Stephane Parola To cite this version: Anne Desponds, A. Banyasz, Gilles Montagnac, Chantal Andraud, Patrice Baldeck, et al.. Micro- fabrication by two-photon lithography, and characterization, of SiO2/TiO2 based hybrid and ceramic microstructures. Journal of Sol-Gel Science and Technology, Springer Verlag, 2020, 95 (3), pp.733-745. 10.1007/s10971-020-05355-3. hal-03041137 HAL Id: hal-03041137 https://hal.archives-ouvertes.fr/hal-03041137 Submitted on 4 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Microfabrication by two-photon lithography, and characterization, of SiO 2/TiO 2 based hybrid and ceramic microstructures Anne Desponds 1, Akos Banyasz 1, Gilles Montagnac 2, Chantal Andraud 1, Patrice Baldeck 1, Stephane Parola 1 1Université de Lyon, Laboratoire de Chimie, CNRS UMR 5182, Ecole Normale Supérieure de Lyon, Université de Lyon 1, 46 allée d’Italie, 69364, Lyon, France. E-mail: [email protected] ; [email protected] 2Laboratoire de Géologie, CNRS UMR 5276, Ecole Normale Supérieure de Lyon, Université de Lyon 1, 46 allée d’Italie, 69364, Lyon, France.
    [Show full text]
  • Synthesis and Technological Processing of Hybrid Organic-Inorganic Materials for Photonic Applications
    Synthesis and technological processing of hybrid organic-inorganic materials for photonic applications Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Julius-Maximilians-Universität Würzburg vorgelegt von Pélagie Declerck aus Chambray-lès-Tours, Frankreich Würzburg 2010 i. Index of abbreviations.………………………………………...……………………..…….5 ii. Definitions……………………………………………………………...……………..……7 ii.1 Water ratio r………………..…………………….………………………...………..…...7 ii.2 NMR notations for silicon species……………….……………..…………......…………7 ii.3 NMR notations for 13C and 1H………….…………….………...…..……...……………8 1 1. Introduction……………..……………………………...…………………….…9 2. Theoretical background…………..………………………………..………..12 2.1 Sol-gel process……..……………………...…………………………….………...12 2.1.1 Background of the sol-gel chemistry……………………………….....…….…...13 2.1.1.1 Chemical reactions…………………………………………………..………..……13 2.1.1.2 Chemical reactivity of metal alkoxides………………...…………….…....………14 2.1.2 Hybrid organic-inorganic materials……….………………………..…………..16 2.1.2.1 Class I materials………………..…………..………………………………………17 2.1.2.2 Class II materials…………………………………………………..…………..…..19 2.1.3 Organically modified silicon alkoxides…………………………..……...………22 2.1.3.1 Organic-inorganic hybrid polymeres..………………………………………..……22 2.1.3.2 Organically modified silicon alkoxides and transition metal alkoxides.….....…….25 2.2 Refractive index………………………………………….....…………………….27 2.2.1 Refractive index of materials……………………………..……………………...27 2.2.1.1 Inorganic oxidic materials………………………………...…...…………………..27 2.2.1.2 Organic materials……………………………………...…………………..….……29
    [Show full text]