Molecular Genotyping and Whole Genome Sequencing of Canadian Cyclospora Cayetanensis Specimens

Total Page:16

File Type:pdf, Size:1020Kb

Molecular Genotyping and Whole Genome Sequencing of Canadian Cyclospora Cayetanensis Specimens Molecular Genotyping and Whole Genome Sequencing of Canadian Cyclospora cayetanensis Specimens by Christine Allison Yanta A Thesis presented to The University of Guelph In partial fulfilment of requirements for the degree of Master of Science in Pathobiology Guelph, Ontario, Canada © Christine Yanta, May, 2021 ii ABSTRACT MOLECULAR GENOTYPING AND WHOLE GENOME SEQUENCING OF CANADIAN CYCLOSPORA CAYETANENSIS SPECIMENS Christine Yanta Advisors: University of Guelph, 2021 Professor John R. Barta Dr. Rebecca A. Guy To improve our understanding of the genetic diversity of the human-infecting coccidium, Cyclospora cayetanensis, 160 clinical fecal samples representing Canadian cyclosporiasis cases, from four provinces (ON=119, QC=24, BC=7, NL=10) identified between 2010 and 2020, were genotyped using a next generation sequencing targeted amplicon approach consisting of eight markers. Genotyping data were collected for at least one marker for 96.2% (154/160) of specimens and only 36.9% (59/160) of specimens had genotyping data for all eight markers. We identified eighteen genetic clusters from the 79.4% (127/160) of specimens that successfully clustered. Whole genome sequence assemblies were generated for five of the cyclosporiasis cases that were genotyped, including a hybrid assembly that improved the current reference assembly (GCF_002999335.1); this refined assembly was 44.2 Mbp in length (297 contigs, N50 value of 654019). These first molecular data generated from Canadian cyclosporiasis cases will support and inform future epidemiological investigations aimed at mitigating cyclosporiasis outbreaks. iii ACKNOWLEDGEMENTS The success of this Master’s research project would have not been possible without the help and support of the amazing people around me. First and foremost, I would like to thank my co-advisor Dr. Rebecca Guy. Dr. Guy first welcomed me as a co-op student in her parasitology lab and has since provided me numerous opportunities to learn new and fascinating parasite and genomics-related things. Without her full confidence and continuous support, I would have never flourished to become the researcher and person I am today. I am also very grateful for my other co-advisor Professor John Barta. Throughout my research, he always believed in my abilities and provided support when needed. I would also like to thank my advisory committee member, Dr. Claire Jardine, for taking the time to provide feedback and advice throughout the project. I would also like to thank my family at NML Guelph. You welcomed me with open arms and since then were always willing to help a girl out. I would especially like to thank the parasitology group, Laura Martin and Marisa Rankin, for the endless support and making the days stuck in the biological safety cabinet with clinical specimens fly by. Thank you to Amy Feddema for being one of my biggest cheerleaders and always having the best coffee break chats. Last but certainly not least, I would like to give a huge shout-out to my family for all of their unconditional love and emotional support throughout this journey. To my parents, Donald and Allice, words simply cannot express how grateful I am to have the both of you in my life. Without your encouragement to chase my dreams and discover my potential, I would not be where I am and who I am today. I thank my brother Jeff for always being there for me and helping me anyway that you could. Finally, I want to thank my partner, Tim Hill, for being the rock in my life. Thank you for always listening, supporting, feeding, and believing in me through the thick and thin of times. You showed me how to simply take a break when things get tough and to enjoy the fresh- air and nature around us. I am so fortunate to have met you and cannot wait to see what is next to come in our journey together. iv TABLE OF CONTENTS ABSTRACT ................................................................................................................................... ii ACKNOWLEDGEMENTS ........................................................................................................... iii TABLE OF CONTENTS ............................................................................................................... iv LIST OF TABLES ......................................................................................................................... vi LIST OF FIGURES ...................................................................................................................... vii LIST OF ABBREVIATIONS ...................................................................................................... viii LIST OF APPENDICES ................................................................................................................ ix DECLARATION OF WORK PERFORMED ................................................................................ x CHAPTER 1: INTRODUCTION AND LITERATURE REVIEW ............................................... 1 1.0 Introduction ........................................................................................................................... 1 2.0 Biological Characteristics ..................................................................................................... 3 2.1 Morphology....................................................................................................................... 3 2.2 Life Cycle.......................................................................................................................... 4 2.3 Infectivity .......................................................................................................................... 5 3.0 Epidemiology ........................................................................................................................ 6 3.1 Geographic Distribution and Prevalence .......................................................................... 6 3.2 Transmission ..................................................................................................................... 6 3.3 Risk Factors and Symptoms.............................................................................................. 9 3.4 Treatment .......................................................................................................................... 9 4.0 Detection ............................................................................................................................... 9 4.1 Clinical Detection Methods .............................................................................................. 9 4.2 Detection in Produce ....................................................................................................... 11 5.0 Molecular Characteristics ................................................................................................... 13 5.1 Molecular Structure ........................................................................................................ 13 5.2 Gene Targets and Schemes ............................................................................................. 17 6.0 Conclusion .......................................................................................................................... 22 STUDY OBJECTIVES AND RATIONALE ............................................................................... 23 CHAPTER 2: EVALUATION OF THE ENSEMBLE-BASED MLST SCHEME ..................... 25 2.1 Abstract ............................................................................................................................... 25 2.2 Introduction ......................................................................................................................... 25 2.3 Materials and Methods ........................................................................................................ 27 2.3.1 Clinical Fecal Specimens ............................................................................................. 27 2.3.2 Ethics............................................................................................................................ 28 2.3.3 DNA Extraction ........................................................................................................... 28 2.3.4 PCR Amplification and Amplicon Clean-Up .............................................................. 28 2.3.5 DNA Sequencing ......................................................................................................... 29 2.3.6 Sequence Analysis and Clustering ............................................................................... 29 2.4 Results ................................................................................................................................. 32 2.4.1 Sequencing Success ..................................................................................................... 32 2.4.2 Clustering ..................................................................................................................... 39 2.5 Discussion ........................................................................................................................... 41 2.6 Conclusion .......................................................................................................................... 44 v CHAPTER 3: WHOLE GENOME SEQUENCING OF CANADIAN CYCLOSPORA CAYETANENSIS SPECIMENS ............................................................................... 45 3.1 Abstract ..............................................................................................................................
Recommended publications
  • University of Oklahoma
    UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE MACRONUTRIENTS SHAPE MICROBIAL COMMUNITIES, GENE EXPRESSION AND PROTEIN EVOLUTION A DISSERTATION SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY By JOSHUA THOMAS COOPER Norman, Oklahoma 2017 MACRONUTRIENTS SHAPE MICROBIAL COMMUNITIES, GENE EXPRESSION AND PROTEIN EVOLUTION A DISSERTATION APPROVED FOR THE DEPARTMENT OF MICROBIOLOGY AND PLANT BIOLOGY BY ______________________________ Dr. Boris Wawrik, Chair ______________________________ Dr. J. Phil Gibson ______________________________ Dr. Anne K. Dunn ______________________________ Dr. John Paul Masly ______________________________ Dr. K. David Hambright ii © Copyright by JOSHUA THOMAS COOPER 2017 All Rights Reserved. iii Acknowledgments I would like to thank my two advisors Dr. Boris Wawrik and Dr. J. Phil Gibson for helping me become a better scientist and better educator. I would also like to thank my committee members Dr. Anne K. Dunn, Dr. K. David Hambright, and Dr. J.P. Masly for providing valuable inputs that lead me to carefully consider my research questions. I would also like to thank Dr. J.P. Masly for the opportunity to coauthor a book chapter on the speciation of diatoms. It is still such a privilege that you believed in me and my crazy diatom ideas to form a concise chapter in addition to learn your style of writing has been a benefit to my professional development. I’m also thankful for my first undergraduate research mentor, Dr. Miriam Steinitz-Kannan, now retired from Northern Kentucky University, who was the first to show the amazing wonders of pond scum. Who knew that studying diatoms and algae as an undergraduate would lead me all the way to a Ph.D.
    [Show full text]
  • Chromera Velia Is Endosymbiotic in Larvae of the Reef Corals Acropora
    Protist, Vol. 164, 237–244, March 2013 http://www.elsevier.de/protis Published online date 12 October 2012 ORIGINAL PAPER Chromera velia is Endosymbiotic in Larvae of the Reef Corals Acropora digitifera and A. tenuis a,b,1 b c,d e Vivian R. Cumbo , Andrew H. Baird , Robert B. Moore , Andrew P. Negri , c f e c Brett A. Neilan , Anya Salih , Madeleine J.H. van Oppen , Yan Wang , and c Christopher P. Marquis a School of Marine and Tropical Biology, James Cook University, Townsville, Queensland, 4811, Australia b ARC Centre of Excellence for Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia c School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia d School of Biological Sciences, Flinders University, GPO Box 2100, Adelaide SA 5001, Australia e Australian Institute of Marine Science PMB 3, Townsville, Queensland, 4810, Australia f Confocal Bio-Imaging Facility, School of Science and Health, University of Western Sydney, NSW 2006, Australia Submitted May 8, 2012; Accepted August 30, 2012 Monitoring Editor: Bland J. Finlay Scleractinian corals occur in symbiosis with a range of organisms including the dinoflagellate alga, Symbiodinium, an association that is mutualistic. However, not all symbionts benefit the host. In par- ticular, many organisms within the microbial mucus layer that covers the coral epithelium can cause disease and death. Other organisms in symbiosis with corals include the recently described Chromera velia, a photosynthetic relative of the apicomplexan parasites that shares a common ancestor with Symbiodinium. To explore the nature of the association between C. velia and corals we first isolated C.
    [Show full text]
  • The Intestinal Protozoa
    The Intestinal Protozoa A. Introduction 1. The Phylum Protozoa is classified into four major subdivisions according to the methods of locomotion and reproduction. a. The amoebae (Superclass Sarcodina, Class Rhizopodea move by means of pseudopodia and reproduce exclusively by asexual binary division. b. The flagellates (Superclass Mastigophora, Class Zoomasitgophorea) typically move by long, whiplike flagella and reproduce by binary fission. c. The ciliates (Subphylum Ciliophora, Class Ciliata) are propelled by rows of cilia that beat with a synchronized wavelike motion. d. The sporozoans (Subphylum Sporozoa) lack specialized organelles of motility but have a unique type of life cycle, alternating between sexual and asexual reproductive cycles (alternation of generations). e. Number of species - there are about 45,000 protozoan species; around 8000 are parasitic, and around 25 species are important to humans. 2. Diagnosis - must learn to differentiate between the harmless and the medically important. This is most often based upon the morphology of respective organisms. 3. Transmission - mostly person-to-person, via fecal-oral route; fecally contaminated food or water important (organisms remain viable for around 30 days in cool moist environment with few bacteria; other means of transmission include sexual, insects, animals (zoonoses). B. Structures 1. trophozoite - the motile vegetative stage; multiplies via binary fission; colonizes host. 2. cyst - the inactive, non-motile, infective stage; survives the environment due to the presence of a cyst wall. 3. nuclear structure - important in the identification of organisms and species differentiation. 4. diagnostic features a. size - helpful in identifying organisms; must have calibrated objectives on the microscope in order to measure accurately.
    [Show full text]
  • Control of Intestinal Protozoa in Dogs and Cats
    Control of Intestinal Protozoa 6 in Dogs and Cats ESCCAP Guideline 06 Second Edition – February 2018 1 ESCCAP Malvern Hills Science Park, Geraldine Road, Malvern, Worcestershire, WR14 3SZ, United Kingdom First Edition Published by ESCCAP in August 2011 Second Edition Published in February 2018 © ESCCAP 2018 All rights reserved This publication is made available subject to the condition that any redistribution or reproduction of part or all of the contents in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise is with the prior written permission of ESCCAP. This publication may only be distributed in the covers in which it is first published unless with the prior written permission of ESCCAP. A catalogue record for this publication is available from the British Library. ISBN: 978-1-907259-53-1 2 TABLE OF CONTENTS INTRODUCTION 4 1: CONSIDERATION OF PET HEALTH AND LIFESTYLE FACTORS 5 2: LIFELONG CONTROL OF MAJOR INTESTINAL PROTOZOA 6 2.1 Giardia duodenalis 6 2.2 Feline Tritrichomonas foetus (syn. T. blagburni) 8 2.3 Cystoisospora (syn. Isospora) spp. 9 2.4 Cryptosporidium spp. 11 2.5 Toxoplasma gondii 12 2.6 Neospora caninum 14 2.7 Hammondia spp. 16 2.8 Sarcocystis spp. 17 3: ENVIRONMENTAL CONTROL OF PARASITE TRANSMISSION 18 4: OWNER CONSIDERATIONS IN PREVENTING ZOONOTIC DISEASES 19 5: STAFF, PET OWNER AND COMMUNITY EDUCATION 19 APPENDIX 1 – BACKGROUND 20 APPENDIX 2 – GLOSSARY 21 FIGURES Figure 1: Toxoplasma gondii life cycle 12 Figure 2: Neospora caninum life cycle 14 TABLES Table 1: Characteristics of apicomplexan oocysts found in the faeces of dogs and cats 10 Control of Intestinal Protozoa 6 in Dogs and Cats ESCCAP Guideline 06 Second Edition – February 2018 3 INTRODUCTION A wide range of intestinal protozoa commonly infect dogs and cats throughout Europe; with a few exceptions there seem to be no limitations in geographical distribution.
    [Show full text]
  • Clinical Parasitology: a Practical Approach
    168 CHAPTER 7 Miscellaneous Protozoa proper personal hygiene, adequate sanitation known as Sarcocystis hominis. Similarly, Sarco- practices, and avoidance of unprotected sex, par- cystis suihominis may be found in pigs. In addi- ticularly among homosexual men. tion to these typical farm animals, a variety of wild animals may also harbor members of the Sarcocystis group. Sarcocystis lindemanni Quick Quiz! 7-5 has been designated as the umbrella term for those organisms that may potentially parasitize All the following are highly recommended when pro- humans. cessing samples for the identification of Isospora belli to ensure identification except: (Objective 7-8) A. Iodine wet prep Morphology B. Decreased microscope light level Mature Oocysts. Members of the genus Sar- C. Modified acid-fast stain cocystis were originally classified and considered D. Saline wet prep as members of the genus Isospora, in part because of the striking morphologic similarities of these parasites (Fig. 7-8; Table 7-4). The oval transpar- Quick Quiz! 7-6 ent organism consists of two mature sporocysts that each average from 10 to 18 μm in length. Which stage of reproduction is considered capable of Each sporocyst is equipped with four sausage- initiating another infection of Isospora belli? (Objec- shaped sporozoites. A double-layered clear and tives 7-5) colorless cell wall surrounds the sporocysts. A. Sporozoites B. Immature oocysts Laboratory Diagnosis C. Merozoites D. Mature oocysts Stool is the specimen of choice for the recovery of Sarcocystis organisms. The oocysts are usually passed into the feces fully developed. When present, these mature oocysts are typically seen Quick Quiz! 7-7 Which of the following patients would be more likely to contract an infection with Isospora belli? (Objective 7-6) Double layered A.
    [Show full text]
  • Using Diatom and Apicomplexan Models to Study the Heme Pathway of Chromera Velia
    International Journal of Molecular Sciences Article Using Diatom and Apicomplexan Models to Study the Heme Pathway of Chromera velia Jitka Richtová 1,2, Lilach Sheiner 3 , Ansgar Gruber 1 , Shun-Min Yang 1,2 , LudˇekKoˇrený 4, Boris Striepen 5 and Miroslav Oborník 1,2,* 1 Biology Centre CAS, Laboratory of Evolutionary Protistology, Institute of Parasitology, 370 05 Ceskˇ é Budˇejovice,Czech Republic; [email protected] (J.R.); [email protected] (A.G.); [email protected] (S.-M.Y.) 2 Faculty of Science, University of South Bohemia, 370 05 Ceskˇ é Budˇejovice,Czech Republic 3 Welcome Centre for Integrative Parasitology, College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8QQ, UK; [email protected] 4 Department of Biochemistry, University of Cambridge, Cambridge CB2 1TN, UK; [email protected] 5 Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; [email protected] * Correspondence: [email protected]; Tel.: +420-387-775-464 Abstract: Heme biosynthesis is essential for almost all living organisms. Despite its conserved function, the pathway’s enzymes can be located in a remarkable diversity of cellular compartments in different organisms. This location does not always reflect their evolutionary origins, as might be expected from the history of their acquisition through endosymbiosis. Instead, the final subcellular localization of the enzyme reflects multiple factors, including evolutionary origin, demand for the product, availability of the substrate, and mechanism of pathway regulation. The biosynthesis of Citation: Richtová, J.; Sheiner, L.; heme in the apicomonad Chromera velia follows a chimeric pathway combining heme elements from Gruber, A.; Yang, S.-M.; Koˇrený,L.; the ancient algal symbiont and the host.
    [Show full text]
  • Enteric Protozoa in the Developed World: a Public Health Perspective
    Enteric Protozoa in the Developed World: a Public Health Perspective Stephanie M. Fletcher,a Damien Stark,b,c John Harkness,b,c and John Ellisa,b The ithree Institute, University of Technology Sydney, Sydney, NSW, Australiaa; School of Medical and Molecular Biosciences, University of Technology Sydney, Sydney, NSW, Australiab; and St. Vincent’s Hospital, Sydney, Division of Microbiology, SydPath, Darlinghurst, NSW, Australiac INTRODUCTION ............................................................................................................................................420 Distribution in Developed Countries .....................................................................................................................421 EPIDEMIOLOGY, DIAGNOSIS, AND TREATMENT ..........................................................................................................421 Cryptosporidium Species..................................................................................................................................421 Dientamoeba fragilis ......................................................................................................................................427 Entamoeba Species.......................................................................................................................................427 Giardia intestinalis.........................................................................................................................................429 Cyclospora cayetanensis...................................................................................................................................430
    [Show full text]
  • Detection of Cyclospora Cayetanensis, Cryptosporidium Spp., and Toxoplasma Gondii on Imported Leafy Green Vegetables in Canadian Survey
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Food and Waterborne Parasitology 2 (2016) 8–14 Contents lists available at ScienceDirect Food and Waterborne Parasitology journal homepage: www.elsevier.com/locate/fawpar Detection of Cyclospora cayetanensis, Cryptosporidium spp., and Toxoplasma gondii on imported leafy green vegetables in Canadian survey Laura F. Lalonde, Alvin A. Gajadhar ⁎ Centre for Food-borne and Animal Parasitology, Canadian Food Inspection Agency, Saskatoon Laboratory, 116 Veterinary Road, Saskatoon, Saskatchewan S7N 2R3, Canada article info abstract Article history: A national survey was performed to determine the prevalence of Cyclospora cayetanensis, Received 17 November 2015 Cryptosporidium spp., and Toxoplasma gondii in leafy green vegetables (leafy greens) purchased Received in revised form 29 January 2016 at retail in Canada. A total of 1171 samples of pre-packaged or bulk leafy greens from domestic Accepted 29 January 2016 (24.25%) and imported (75.75%) sources were collected at retail outlets from 11 Canadian cities Available online 23 February 2016 between April 2014 and March 2015. The samples were processed by shaking or stomaching in an elution buffer followed by oocyst isolation and concentration. DNA extracted from the wash Keywords: concentrates was tested for C. cayetanensis, Cryptosporidium spp., and T. gondii using our previ- Leafy green vegetables ously developed and validated 18S rDNA qPCR assay with a universal coccidia primer cocktail Food safety and melting curve analysis. Test samples that amplified and had a melting temperature and Cyclospora Cryptosporidium melt curve shape matching the C. cayetanensis, C. parvum, C.
    [Show full text]
  • Cyclosporiasis: an Update
    Cyclosporiasis: An Update Cirle Alcantara Warren, MD Corresponding author Epidemiology Cirle Alcantara Warren, MD Cyclosporiasis has been reported in three epidemiologic Center for Global Health, Division of Infectious Diseases and settings: sporadic cases among local residents in an International Health, University of Virginia School of Medicine, MR4 Building, Room 3134, Lane Road, Charlottesville, VA 22908, USA. endemic area, travelers to or expatriates in an endemic E-mail: [email protected] area, and food- or water-borne outbreaks in a nonendemic Current Infectious Disease Reports 2009, 11:108–112 area. In tropical and subtropical countries (especially Current Medicine Group LLC ISSN 1523-3847 Haiti, Guatemala, Peru, and Nepal) where C. cayetanen- Copyright © 2009 by Current Medicine Group LLC sis infection is endemic, attack rates appear higher in the nonimmune population (ie, travelers, expatriates, and immunocompromised individuals). Cyclosporiasis was a Cyclosporiasis is a food- and water-borne infection leading cause of persistent diarrhea among travelers to that affects healthy and immunocompromised indi- Nepal in spring and summer and continues to be reported viduals. Awareness of the disease has increased, and among travelers in Latin America and Southeast Asia outbreaks continue to be reported among vulnera- [8–10]. Almost half (14/29) the investigated Dutch attend- ble hosts and now among local residents in endemic ees of a scientifi c meeting of microbiologists held in 2001 areas. Advances in molecular techniques have in Indonesia had C. cayetanensis in stool, confi rmed by improved identifi cation of infection, but detecting microscopy and/or polymerase chain reaction (PCR), and food and water contamination remains diffi cult.
    [Show full text]
  • Cyclospora Cayetanensis and Cyclosporiasis: an Update
    microorganisms Review Cyclospora cayetanensis and Cyclosporiasis: An Update Sonia Almeria 1 , Hediye N. Cinar 1 and Jitender P. Dubey 2,* 1 Department of Health and Human Services, Food and Drug Administration, Center for Food Safety and Nutrition (CFSAN), Office of Applied Research and Safety Assessment (OARSA), Division of Virulence Assessment, Laurel, MD 20708, USA 2 Animal Parasitic Disease Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Building 1001, BARC-East, Beltsville, MD 20705-2350, USA * Correspondence: [email protected] Received: 19 July 2019; Accepted: 2 September 2019; Published: 4 September 2019 Abstract: Cyclospora cayetanensis is a coccidian parasite of humans, with a direct fecal–oral transmission cycle. It is globally distributed and an important cause of foodborne outbreaks of enteric disease in many developed countries, mostly associated with the consumption of contaminated fresh produce. Because oocysts are excreted unsporulated and need to sporulate in the environment, direct person-to-person transmission is unlikely. Infection by C. cayetanensis is remarkably seasonal worldwide, although it varies by geographical regions. Most susceptible populations are children, foreigners, and immunocompromised patients in endemic countries, while in industrialized countries, C. cayetanensis affects people of any age. The risk of infection in developed countries is associated with travel to endemic areas and the domestic consumption of contaminated food, mainly fresh produce imported from endemic regions. Water and soil contaminated with fecal matter may act as a vehicle of transmission for C. cayetanensis infection. The disease is self-limiting in most immunocompetent patients, but it may present as a severe, protracted or chronic diarrhea in some cases, and may colonize extra-intestinal organs in immunocompromised patients.
    [Show full text]
  • Cyclosporiasis and Fresh Produce
    FDA FACT SHEET Produce Safety Rule (21 CFR 112) Cyclosporiasis and Fresh Produce Fast Facts for Farmers: • Cyclosporiasis is an intestinal illness caused by the parasite Cyclospora cayetanensis (C. cayetanensis), which only occurs in humans, and the most common symptom is diarrhea. • Infected people shed the parasite in their feces. • When the parasite is found in water or food, it means that the water or food has been contaminated with human feces. • Other people may become sick by ingesting water or food contaminated with the parasite. • Good hygiene (including proper handwashing) is a critical component of ensuring the safety of fresh produce, but by itself it may not be enough to prevent infected employees from contaminating fresh produce. • The FSMA Produce Safety Rule requires that personnel on farms use hygienic practices (§ 112.32) and that ill employees are excluded from handling fresh produce and food contact surfaces (§ 112.31). What is Cyclospora cayetanensis? C. cayetanensis is a human parasite, which means it must live inside a human host to survive and multiply. The parasite can cause an infection, called cyclosporiasis. A person may become infected after ingesting food or water contaminated with the parasite. Infected people, even if showing no symptoms of infection, may shed the parasite in their feces, which can contaminate food and water, leading to the infection of other people. Cyclosporiasis outbreaks have been associated with the consumption of fresh fruits and vegetables around the world, including in the U.S. What are the symptoms of cyclosporiasis? Most people infected with C. cayetanensis develop diarrhea, with frequent, sometimes explosive, bowel movements.
    [Show full text]
  • (PAD) and Post-Translational Protein Deimination—Novel Insights Into Alveolata Metabolism, Epigenetic Regulation and Host–Pathogen Interactions
    biology Article Peptidylarginine Deiminase (PAD) and Post-Translational Protein Deimination—Novel Insights into Alveolata Metabolism, Epigenetic Regulation and Host–Pathogen Interactions Árni Kristmundsson 1,*, Ásthildur Erlingsdóttir 1 and Sigrun Lange 2,* 1 Institute for Experimental Pathology at Keldur, University of Iceland, Keldnavegur 3, 112 Reykjavik, Iceland; [email protected] 2 Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK * Correspondence: [email protected] (Á.K.); [email protected] (S.L.) Simple Summary: Alveolates are a major group of free living and parasitic organisms; some of which are serious pathogens of animals and humans. Apicomplexans and chromerids are two phyla belonging to the alveolates. Apicomplexans are obligate intracellular parasites; that cannot complete their life cycle without exploiting a suitable host. Chromerids are mostly photoautotrophs as they can obtain energy from sunlight; and are considered ancestors of the apicomplexans. The pathogenicity and life cycle strategies differ significantly between parasitic alveolates; with some causing major losses in host populations while others seem harmless to the host. As the life cycles of Citation: Kristmundsson, Á.; Erlingsdóttir, Á.; Lange, S. some are still poorly understood, a better understanding of the factors which can affect the parasitic Peptidylarginine Deiminase (PAD) alveolates’ life cycles and survival is of great importance and may aid in new biomarker discovery. and Post-Translational Protein This study assessed new mechanisms relating to changes in protein structure and function (so-called Deimination—Novel Insights into “deimination” or “citrullination”) in two key parasites—an apicomplexan and a chromerid—to Alveolata Metabolism, Epigenetic assess the pathways affected by this protein modification.
    [Show full text]