agriculture Article Effects of Phosphorus on Nitrification Process in a Fertile Soil Amended with Urea Jianfeng Ning 1,2,*, Yuji Arai 2 , Jian Shen 1, Ronghui Wang 1 and Shaoying Ai 1,* 1 Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangzhou 510640, China;
[email protected] (J.S.);
[email protected] (R.W.) 2 Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
[email protected] * Correspondence:
[email protected] (J.N.);
[email protected] (S.A.) Abstract: While the effects of carbon on soil nitrogen (N) cycle have been extensively studied, it is not clearly understood how co-existing macronutrients, such as phosphorus (P), affect the N cycle in agroecosystems. In this study, P amendment effects on nitrification in a fertile agricultural soil were investigated under a typical N-P amendment rate. In a laboratory incubation study, soils were amended with urea, monopotassium phosphate and a mixture of urea and monopotassium phosphate at the same rate. In soils that received no amendments (control), P only, urea only, and urea plus P amendment, nitrification occurred within the first five days, with an average net nitrification rate of 5.30, 5.77, 16.66 and 9.00 mg N kg−1d−1, respectively. Interestingly, nitrification in urea-treated soils was retarded by P addition where a N:P ratio seemed to be a key factor impeding nitrification.