The Genomics Journey

Total Page:16

File Type:pdf, Size:1020Kb

The Genomics Journey The genomics journey DYGEVO Professor Bernard Dujon discusses his research on yeasts and the usefulness of this family as model organisms in cutting-edge genetic manipulation experiments With such hypotheses, detailed knowledge has indicate that structural genome alterations been gained about the effect of population (segmental duplications, inversions, segmental size. But yeasts are unicellular fungi adapted insertion and deletion, gene loss) occur much to phases of very rapid clonal expansion under more rapidly than anticipated by classical favourable conditions, intermingled with phases methods. They tend to create more genetic of massive cell death. A glass of beer contains variations on a limited timescale than the more yeast individuals than the world’s human classically considered changes based on population. This abundance allows us to work sequence evolution. In addition, structural on rare genetic events without having to wait genome alterations create an abrupt, stepwise very long periods of time. pattern of evolution instead of a seemingly continuous spectrum of variation, more in line For what reasons do unicellular eukaryotic with original Hugo de Vries principles proposed genomes often prefer clonal expansions back in 1909 than with neo-Darwinian ideas on over regular reproduction cycles? gradual, permanent optimisation of the fittest. Many organisms seem to favour clonal How can the flexibility of yeast genomes expansion over sexual reproduction as be exploited to increase cell fitness when soon as conditions are appropriate. During simple nucleotide changes have a low Could you provide some context to your the sunny season, some insects engage in probability of accomplishing such a task? current project examining yeast genome parthenogenesis, and many plants propagate diversity – DYGEVO? What are your clonally. But it is true that unicellular organisms Both mechanisms can, in principle, contribute main objectives? do employ clonal expansion widely. The to evolutionary changes, but we did not reasons are probably numerous. One of them is observe simple nucleotide changes in our I started sequencing DNA in 1978. Back then, that they have a hard time identifying cells of experiments. This is in agreement with the people were sequencing pieces of genes, not the same species. Therefore, if they participate now precisely established mutation rates in genomes! I was interested in the dynamics in genetic exchange, they cannot easily limit yeast. To obtain a sufficient number of single of genomes from my early years of research, those exchanges to their own species. nucleotide changes to expect that one would, and always applied the newest methods by chance, alter fitness would take a much to study these questions (what a change in Unicellular fungi are highly viable models larger number of generations. Changing gene three decades!). for laboratory experiments. What is your copy number is much more rapid. trial methodology and why you have The complete sequencing of the genome of chosen to examine the basic mechanism of Do you intend to continue your research on Saccharomyces cerevisiae back in 1996 was eukaryotic genome dynamics? eukaryotic unicellular models? regarded as a scientific milestone, and I was involved in this achievement. At that time, There are many advantages of yeasts for genetic My lab is ageing, like myself, but during the nearly all scientists were moving to what experimentations. They are eukaryotic cells and time left we will continue to work in parallel they called ‘post-genomics’. Very few like phylogenetically related to the animal world, on comparisons of as large a number of yeast myself were interested in exploring genome including ourselves. Any genetic manipulation species as possible to learn from nature, and diversity. The DYGEVO project emerged in this can be controlled with extreme precision by to simultaneously run experiments on our context – I have always been keen to explore complete resequencing of the entire genome. developed model systems to check hypotheses. unconventional routes. Over 85 per cent of the S. cerevisiae genes have been functionally characterised, offering an The general functional organisation of unparalleled wealth of information for genetic eukaryotic genomes indicates that common analysis. There are no ethical constraints (except mechanistic and evolutionary principles are keeping our genetically engineered yeasts shared. Yet unicellular eukaryotic genomes strictly within the laboratory). are largely diverse, with different origins. Could you explain the effects of population What role is played by eukaryotic genome size and modes of reproduction on aetiology? dynamics in the evolution of these unicellular organisms? Classical population genetics usually considers sexual populations, and in many cases assume Our present data, based on comparative that they are panmictic and at equilibrium. genomics of many distinct yeast species, WWW.RESEARCHMEDIA.EU 53 DYGEVO Insights from yeasts Yeast continues to be one of the most important model organisms in modern biology. Today, a group at the Institut Pasteur in Paris, France, is using yeast to conduct a trio of novel experiments designed to deepen our understanding of the eukaryotic genome and possibly even challenge the accepted model of speciation SINCE WATSON AND CRICK first described that over 100,000 published research papers Dujon and his colleagues to experimentally the structure of DNA, the field of genetics concern its biology. simulate genetic events which would be very has expanded exponentially. Today, scientists rare in a wild population. The challenge for the have sequenced the entire human genome, Despite the huge amount of attention it has Pasteur team is to then ascertain the abundance cloned animals and illustrated the fundamental received, Dujon is confident that yeast still and importance of these laboratory-simulated principles of molecular evolution. Alongside has information to reveal: “I believe that this behaviours in the real world. these milestones was one of the most important is a topic in which much has yet to be learned, feats in modern biology – the sequencing of the given the power of novel technologies”. With DYGEVO Saccharomyces cerevisiae genome in 1996, an the development of genomic techniques, achievement in which Professor Bernard Dujon scientists now have the ability to artificially Dujon has recently embarked upon a new project from the Institut Pasteur in Paris, France, was engineer yeast genomes. Dujon’s current work called DYGEVO consisting of three distinct heavily involved. utilises this ability to explore how the dynamics research objectives: to quantify the impact of of genomic change affect evolution and flexibility in the yeast genome on cell fitness Dujon, who began his biological career in the population dynamics. and survival; to analyse the function of the late 1960s, now heads the Yeasts Molecular Genetics Unit at the Institut and is Professor of TO CLONE OR NOT TO CLONE? Molecular Genetics both there and at Université Pierre et Marie Curie. Throughout his career, One of the most interesting behaviours observed Dujon has focused on some of the central in yeasts is the ability to switch between sexual questions of genetics and evolutionary biology. and clonal reproduction. This behaviour is not unique to yeasts – also being seen in other organisms such as aphids – but remains rare. THE BENEFITS OF YEAST Given the correct environmental conditions, Yeast has been and continues to be one of yeast is capable of cloning itself, allowing one the most important experimental subjects in cell to form the basis of an entire colony. biology – it is a unicellular eukaryote capable of rapid population expansion, fits of evolutionary In many species, this type of reproduction change and subsequent adaptation: would render a population genetically ‘poor’ “Theoretically, a single yeast cell placed under and extremely susceptible to environmental favourable conditions would be able to produce, change, but not yeast: “Yeasts have developed Colonies of yeast cells with normal (large) and in a week, a clonal progeny capable of covering mechanisms to produce diversified populations genetically altered (small) genomes after incubation the globe with a crust several kilometres thick,” even after clonal expansion from a unique cell,” on a rich medium. Size difference illustrates the severe highlights Dujon. These characteristics have explains Dujon. This ability to undergo self- growth rate reduction due to controlled genetic made yeast such a popular model organism motivated genetic diversification has inspired alterations used for experiments. Yeast has been and continues to be one of the most important experimental subjects in biology – it is a unicellular eukaryote capable of rapid population expansion, fits of evolutionary change and subsequent adaptation 54 INTERNATIONAL INNOVATION BEYOND SACCHAROMYCETACEAE INTELLIGENCE Almost half of all sequenced yeast species today DYNAMICS AND EVOLUTION OF THE GENOMES OF YEAST, UNICELLULAR belong to the Saccharomycetaceae family, EUKARYOTIC MODELS meaning their genomes share a common global architecture with that of S. cerevisiae. Not only OBJECTIVES attractive for fermenting alcohol and leavening To combine the power of yeast genetics with bread, S. cerevisiae is also extremely well-suited new results from comparative genomics for experimental studies. to study the mechanisms underlying Flocculating yeast cells obtained after experimental
Recommended publications
  • 2010-Rolland Et Al.Pdf
    Dynamic evolution of megasatellites in yeasts. Thomas Rolland, Bernard Dujon, Guy-Franck Richard To cite this version: Thomas Rolland, Bernard Dujon, Guy-Franck Richard. Dynamic evolution of megasatellites in yeasts.. Nucleic Acids Research, Oxford University Press, 2010, 38 (14), pp.4731-9. 10.1093/nar/gkq207. pasteur-01370686 HAL Id: pasteur-01370686 https://hal-pasteur.archives-ouvertes.fr/pasteur-01370686 Submitted on 23 Sep 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial| 4.0 International License Published online 31 March 2010 Nucleic Acids Research, 2010, Vol. 38, No. 14 4731–4739 doi:10.1093/nar/gkq207 Dynamic evolution of megasatellites in yeasts Thomas Rolland1,2,3, Bernard Dujon1,2,3 and Guy-Franck Richard1,2,3,* 1Institut Pasteur, Unite´ de Ge´ ne´ tique Mole´ culaire des Levures, Department ‘Genomes and Genetics’, 25 rue du Dr Roux, 2CNRS, URA2171 and 3Universite´ Pierre et Marie Curie, UFR 927, F-75015 Paris, France Received January 13, 2010; Revised March 10, 2010; Accepted March 12, 2010 ABSTRACT homology with any other tandem repeat or gene sequenced so far. Among the 84 minisatellites previously Megasatellites are a new family of long tandem reported in Saccharomyces cerevisiae (3), four harbor a repeats, recently discovered in the yeast Candida tandemly repeated motif of 135 bp or larger, and may glabrata.
    [Show full text]
  • Rolland and Dujon, 2011
    C. R. Biologies 334 (2011) 620–628 Contents lists available at ScienceDirect Comptes Rendus Biologies www.sciencedirect.com Evolution/E´ volution Yeasty clocks: Dating genomic changes in yeasts Horloges tremblantes : datation des changements ge´nomiques chez les levures Thomas Rolland, Bernard Dujon * Unite´ de ge´ne´tique mole´culaire des levures (CNRS URA2171 and University P.-M.-Curie UFR927), Institut Pasteur, 25, rue du Docteur-Roux, 75724 Paris cedex 15, France ARTICLE INFO ABSTRACT Article history: Calibration of clocks to date evolutionary changes is of primary importance for Received 12 November 2010 comparative genomics. In the absence of fossil records, the dating of changes during Accepted after revision 17 March 2011 yeast genome evolution can only rely on the properties of the genomes themselves, given Available online 1 July 2011 the uncertainty of extrapolations using clocks from other organisms. In this work, we use the experimentally determined mutational rate of Saccharomyces cerevisiae to calculate Keywords: the numbers of successive generations corresponding to observed sequence polymor- Evolution phism between strains or species of other yeasts. We then examine synteny conservation Mutational rate Polymorphism across the entire subphylum of Saccharomycotina yeasts, and compare this second clock Divergence times based on chromosomal rearrangements with the first one based on sequence divergence. A Synteny conservation non-linear relationship is observed, that interestingly also applies to insects although, for equivalent sequence divergence, their rate of chromosomal rearrangements is higher than that of yeasts. ß 2011 Acade´mie des sciences. Published by Elsevier Masson SAS. All rights reserved. RE´ SUME´ Mots cle´s: L’e´talonnage d’horloges mole´culaires pour dater les changements e´volutifs a une grande E´ volution importance pour la ge´nomique comparative.
    [Show full text]
  • A New Class of Large Tandem Repeats Discovered in the Pathogenic Yeast Candida Glabrata Guy-Franck Richard, Agnès Thierry, Bernard Dujon
    Megasatellites: a new class of large tandem repeats discovered in the pathogenic yeast Candida glabrata Guy-Franck Richard, Agnès Thierry, Bernard Dujon To cite this version: Guy-Franck Richard, Agnès Thierry, Bernard Dujon. Megasatellites: a new class of large tandem repeats discovered in the pathogenic yeast Candida glabrata. Cellular and Molecular Life Sciences, Springer Verlag, 2010, 67 (5), pp.671-6. 10.1007/s00018-009-0216-y. pasteur-01370699 HAL Id: pasteur-01370699 https://hal-pasteur.archives-ouvertes.fr/pasteur-01370699 Submitted on 23 Sep 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Cellular and Molecular Life Sciences For Review Only MEGASATELLITES: A NEW CLASS OF LARGE TANDEM REPEATS DISCOVERED IN THE PATHOGENIC YEAST CANDIDA GLABRATA Journal: Cellular and Molecular Life Sciences Manuscript ID: Draft Manuscript Type: Visions and Reflections Yeast, Minisatellite, Cell wall, Megasatellite, Genome, Replication, Key Words: Recombination Page 1 of 13 Cellular and Molecular Life Sciences Cellular and Molecular Life Sciences (2009)
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 6,610,545 B2 Dujon Et Al
    USOO66 10545B2 (12) United States Patent (10) Patent No.: US 6,610,545 B2 Dujon et al. (45) Date of Patent: *Aug. 26, 2003 (54) NUCLEOTIDE SEQUENCE ENCODING THE Michel F, and Dujon B., Conservation of RNA Secondary ENZYME-SCE AND THE USES THEREOF Structure in Two Intron Families Including Mitochondrial-, Chloroplast- and Nuclear-Encloded Members, Embo Jour (75) Inventors: Bernard Dujon, Gif sur Yvette (FR); nal, vol. 2(1), pp. 33–38 (1983). Andre Choulika, Paris (FR); Laurence Dujon, B., and Jacquier, A., Mitochondria, 1983, Walter de Colleaux, Edinburgh (GB); Cecile Gruyter & Co., pp. 389-403. Fairhead, Malakoff (FR); Arnaud Jacquier, A. and Dujon, B., An Intron-Encoded Protein is Perrin, Paris (FR); Anne Plessis, Paris Active in a Gene Conversion Process that Spreads an Intron (FR); Agnes Thierry, Paris (FR) into a Mitochondrial Gene, Cell, vol. 41, pp. 383-394 (1985). (73) Assignees: Institut Pasteur, Paris (FR); University Dujon et al., “In Achievements and Perspective of Mito Paris VI, Paris (FR) chondrial Research', Biogenesis, vol. II, Elsevier Science Publishers, pp. 215-225 (1985). (*) Notice: Subject to any disclaimer, the term of this Colleaux, L. et al., Universal Code Equivalent of a Yeast patent is extended or adjusted under 35 Mitochondrial Intron Reading Frame is Expressed into E. U.S.C. 154(b) by 0 days. Coli as a Specific Double Strand Endonuclease, Cell, vol. 44:521-533 (1986). This patent is Subject to a terminal dis Michel, F. and Dujon, B., “Genetic Exchanges Between claimer. Bacteriophage T4 and Filamentous Fungi'?”, Cell, vol. 46, p. 323 (1986). (21) Appl.
    [Show full text]
  • Two Different but Related Mechanisms Are Used in Plants for the Repair Of
    Proc. Natl. Acad. Sci. USA Vol. 93, pp. 5055–5060, May 1996 Genetics Two different but related mechanisms are used in plants for the repair of genomic double-strand breaks by homologous recombination (site-specific integrationyone-sided invasionyI-Sce IyDNA polymerase slippageyAgrobacterium) HOLGER PUCHTA*†‡,BERNARD DUJON§, AND BARBARA HOHN* *Friedrich Miescher-Institut, P.O. Box 2543, CH-4002 Basel, Switzerland; †Institut fu¨r Pflanzengenetik und Kulturpflanzenforschung, Corrensstrasse 3, D-06466 Gatersleben, Germany; and §Unite´deGe´ne´tique Mole´culaire des Levures, De´partement des Biotechnologies (Unite´ de Recherche Associe´e 1149yCentre National de la Recherche Scientifique), Institut Pasteur, 25 rue du Dr. Roux, F-75724 Paris Cedex 15, France Communicated by Diter von Wettstein, Carlsberg Laboratory, Gamle Carlsberg, Copenhagen, Denmark, January 2, 1996 (received for review September 1, 1995) ABSTRACT Genomic double-strand breaks (DSBs) are mologous recombination. Factors that introduce unspecific key intermediates in recombination reactions of living organ- DSBs in DNA, such as x-rays (15, 16) or methyl methanesul- isms. We studied the repair of genomic DSBs by homologous fonate (17), were shown to enhance intrachromosomal homol- sequences in plants. Tobacco plants containing a site for the ogous recombination in plants. Excision of transposable ele- highly specific restriction enzyme I-Sce I were cotransformed ments was correlated with increased frequencies of recombi- with Agrobacterium strains carrying sequences homologous to nation at the donor site between repeats flanking the element the transgene locus and, separately, containing the gene (18, 19) or between repeats at ectopic sites (A. Levy, personal coding for the enzyme. We show that the induction of a DSB communication).
    [Show full text]
  • Yeast Mitochondrial Genomes Consisting of Only at Base Pairs
    Proc. Natl. Acad. Sci. USA Vol. 81, pp. 7156-7160, November 1984 Genetics Yeast mitochondrial genomes consisting of only AT base pairs replicate and exhibit suppressiveness (Saccharomyces cerevisiae/replication origins/DNA excision) WALTON L. FANGMAN* AND BERNARD DUJON Centre de Gdndtique Moldculaire, Centre National de la Recherche Scientifique, 91190 Gif-sur-Yvette, France Communicated by Herschel L. Roman, July 16, 1984 ABSTRACT Mutants, called p-, that result from exten- genome in the zygote. The p- genome, in a fraction of the sive deletions of the 75-kilobase Saccharomyces cerevisiae zygotes, monopolizes the mitochondrial replication or segre- mitochondrial genome arise at high frequency. The remaining gation apparatus, excluding the p+ genome, which is ulti- mitochondrial DNA is amplified in the p- cells, often as head- mately destroyed or diluted out. [Recombination between to-tail multimers, producing a cell with the normal amount of the p- and the p+ genomes resulting in destruction of respi- mitochondrial DNA. In matings, some of these p- mutants ex- ratory competence has also been postulated as a mechanism hibit zygotic hypersuppressiveness, excluding the wild-type for suppressiveness. This mechanism is ruled out because mitochondrial genome (p+) from all the diploids that are pro- the p- mitochondrial DNA of the zygotic progeny is the duced. From a hypersuppressive p- strain, we isolated two same as the p- parent (7, 8).] p- mutants that exhibit >95% mutants with reduced suppressiveness. These mutants, one zygotic suppressiveness have been called hypersuppressives moderately suppressive and one nonsuppressive, retain only (9). Hypersuppressive p- mutants retain a short [usually 89 and 70 base pairs, respectively, of the wild-type mitochon- s2500 base pairs (bp)] tandemly repeated segment that drial genome.
    [Show full text]
  • Mitochondrial Genetics Vii. Allelism and Mapping Studies of Ribosomal Mutants Resistant to Chloramphenicol, Erythromycin and Spiramycin in S
    MITOCHONDRIAL GENETICS VII. ALLELISM AND MAPPING STUDIES OF RIBOSOMAL MUTANTS RESISTANT TO CHLORAMPHENICOL, ERYTHROMYCIN AND SPIRAMYCIN IN S. CEREVISIAE PIERRE NETTER, ERIC PETROCHILO, PIOTR P. SLONlMSKI, MONIQUE BOLOTIN-FUKUHARA, DARIO COEN, JEAN DEUTSCH AND BERNARD DUJON Centre de Ginitique Moculmre du C.N.R.S.,91190 GIF-sur-YVETTE, France Manuscript received November 25, 1973 Revised copy received July 29,1974 ABSTRACT We have isolated 15 spontaneous mutants resistant to one or several anti- biotics like chloramphenicol, erythromycin and spiramycin. We have shown by several criteria that all of them result from mutations localized in the mito- chondrial DNA. The mutations have been mapped by allelism tests and by two- and three-factor crosses involving various configurations of resistant and sensitive alleles associated in cis or in trans with the mitochondrial locus w which governs the polarity of genetic recombination. A general mapping pro- cedure based on results of heterosexual (.+ x w-) crosses and applicable to mutations localized in the polar segment is described and shown to be more resolving than that based on results of homosexual crosses. Mutations fall into three loci which are all linked and map in the following order: w-R,-R,~R,,,. The first locus is very tightly linked with w while the second is less linked to the first. Mutations of similar resistance phenotype can belong to different loci and different phenotypes to the same locus. Mutations confer antibiotic resistance on isolated mitochondrial ribosomes and delineate a ribosomal seg- ment of the mitochondrial DNA. Homo- and hetero-sexual crosses between mutants of the ribosomal segment and those belonging to the genetically unlinked ATPase locus, 0,, have been performed in various allele configura- tions.
    [Show full text]
  • Normalized Histograms of the Evolutionary Distance D for Proteins Cliques
    Supporting Information for Proteomics DOI 10.1002/pmic.200401138 Massimo Vergassola, Alessandro Vespignani and Bernard Dujon Cooperative evolution in protein complexes of yeast from comparative analyses of its interaction network ã 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.proteomics-journal.de Supplementary Material for the manuscript “Cooperative evolution in protein complexes of yeast from comparative analyses of its protein interaction network” Massimo Vergassola, Alessandro Vespignani and Bernard Dujon 1. Phylogenetic relationships among selected hemiascomycetes yeasts The cartoon is a scheme of the evolutive relationships among hemiascomycetes yeasts which have been sequenced. The orders are inferred from the cladogram of 25S rDNA sequences, computed (courtesy of P. Durrens) from the Tajima-Nei distance method (Tajima, F. and Nei, M. Estimation of evolutionary distance between nucleotide sequences Mol. Biol. and Evol. 17, 269-285, (1984)) and maximum parsimony by the MEGA2 software (Kumar, S. et al. MEGA2: Molecular Evolutionary Genetics Analysis software Bioinformatics 17, 1244-1245, (2001)). The S. pombe sequence is taken as an outgroup. The length of the lines should not be taken as indicative of evolutive distances. The order within the stricto sensu group, S. paradoxus, S. mikatae and S. kudriavzevii, sequenced in (Kellis, M. et al. Sequencing and comparison of yeast species to identify genes and regulatory elements Nature 423, 241-254 (2003)), has low bootstrap values due to the very strong similarity of their genomic sequences to S. cerevisiae. The couple S. kluyveri and S. castellii was sequenced in (Cliften, P. et al. Finding functional features in Saccharomyces genomes by phylogenetic footprinting Science 301, 71-76 (2003)).
    [Show full text]
  • Preprint Also Includes the Original Introductory Remarks by Hans-Jörg Rheinberger, As Well As the Program of the Conference
    INTERNATIONAL CONFERENCE POSTGENOMICS? HISTORICAL, TECHNO-EPISTEMIC AND CULTURAL ASPECTS OF GENOME PROJECTS JULY 8-11, 1998 BERLIN FOREWORD The present volume brings together several documents encapsulating the presentations and discussions made on the occasion of the international conference on "Postgenomics? Historical, Techno-Epistemic and Cultural Aspects of Genome Projects," held in July 1998 at the Max Planck Institute for the History of Science in Berlin and funded by the German Human Genome Project. Two reports have been included covering the conference material in very different ways. Whereas the first report gives a day by day account of all contributions, including panel discussions, the second deals mainly with an overview of current scientific issues and related epistemological critiques. To complement these reports, this preprint also includes the original introductory remarks by Hans-Jörg Rheinberger, as well as the program of the conference. - 2 - CONTENTS Hans-Jörg Rheinberger: Introduction.............................................. 5 Program................................................. 11 List of Participants..................................... 14 Lily Kay: Report to the Human Genome Project............... 17 Denis Thieffry and Sahotra Sarkar: Report for BioScience ................................ 27 - 3 - - 4 - INTRODUCTION Hans-Jörg Rheinberger Max Planck Institute for the History of Science There is an inevitable dilemma to interdisciplinary conferences such as this one. Professional identities and corresponding
    [Show full text]
  • IIIHIII IIII US005474896A United States Patent (19) 11) Patent Number: 5,474,896 Dujon Et Al
    IIIHIII IIII US005474896A United States Patent (19) 11) Patent Number: 5,474,896 Dujon et al. (45. Date of Patent: Dec. 12, 1995 54 NUCLEOTIDE SEQUENCE ENCODING THE 185-187 (1980). ENZYME-SCE AND THE USES THEREOF Michel, F. et al., Comparison of fungal mitochondrial introns reveals extensive homologies in RNA secondary 75) Inventors: Bernard Dujon, Gif sur Yvette; Andre structure, Biochimie, vol. 64: 867-881 (1982). Choulika, Paris, both of France; Michel, F. and Dujon, B., Conservation of RNA secondary Laurence Colleaux, Edinburgh, structures in two intron families including mitochondrial-, Scotland; Cecile Fairhead, Malakoff, chloroplast- and nuclear-encoded members, EMBO Jour France; Arnaud Perrin, Paris, France; nal, vol. 2(1): 33-38 (1983). Anne Plessis, Paris, France; Agnes Jacquier, A. and Dujon, B., The Intron of the Mitochondrial Thierry, Paris, France 21s rRNA Gene: Distribution in Different Yeast Species and Sequence Comparison Between Kluyveromyces thermotol 73 Assignees: Institut Pasteur; Université Paris-VI, erans and Saccharomyces cerevisiae, Mol. Gen. Genet., both of France 192: 487-499 (1983). Dujon, B. and Jacquier, A., Mitochondria 1983, Walter de (21) Appl. No.: 971,160 Gruyter & Co., pp. 389-403. Jacquier, A. and Dujon, B., An Intron-Encoded Protein is 22 Filed: Nov. 5, 1992 Active in a Gene Conversion Process That Spreads an Intron into a Mitochondrial Gene, CELL, vol. 41: 383-394 (1985). Related U.S. Application Data Dujon, B. et al., in Achievements and Perspectives of 63 Continuation-in-part of Ser. No. 879,689, May 5, 1992, Mitochondrial Research, vol. II: Biogenesis, Elsevier Sci abandoned. ence Publishers, pp. 215-225 (1985).
    [Show full text]
  • Interstitial Telomere Sequences Disrupt Break Induced Replication
    Interstitial Telomere Sequences Disrupt Break Induced Replication Elizabeth Anne Stivison Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy under the Executive Committee of the Graduate School of Arts and Science COLUMBIA UNIVERSITY 2019 © 2019 Elizabeth Anne Stivison All Rights Reserved ABSTRACT Interstitial Telomere Sequences Disrupt Break Induced Replication Elizabeth Anne Stivison Break Induced Replication (BIR), a mechanism by which cells heal one-ended double- strand breaks, involves the invasion of a broken strand of DNA into a homologous template, and the copying of tens to hundreds of kilobases from the site of invasion to the telomere using a migrating D-loop. Here we show that if BIR encounters an interstitial telomere sequence (ITS) placed in its path, BIR terminates at the ITS 12% of the time, with the formation of a new telomere at this location. We find that the ITS can be converted to a functional telomere by either direct addition of telomeric repeats by telomerase, or by homology-directed repair using natural telomeres. This termination and creation of a new telomere is promoted by Mph1 helicase, which is known to disassemble D-loops. We also show that other sequences that have the potential to form new telomeres, but lack the unique features of a perfect telomere sequence, do not terminate BIR at a significant frequency in wild-type cells. However, these sequences can cause chromosome truncations if BIR is made less processive by loss of Pol32 or Pif1. These findings together indicate that features of the ITS itself, such as secondary structures and telomeric protein binding, pose a challenge to BIR and increase the vulnerability of the D-loop to dissociation by Mph1, promoting telomere formation at the site.
    [Show full text]
  • Bernard Dujon
    Bernard Dujon Élu Membre le 15 octobre 2002 dans la section de Biologie moléculaire et cellulaire, génomique Bernard Dujon, né en 1947, ancien élève de l'École normale supérieure (ENS) (1970), docteur ès sciences (1976), est professeur de génétique à l'université Paris 6 depuis 1983 et à l'Institut Pasteur où il dirige l'unité "Génétique moléculaire des levures" depuis 1993. Œuvre scientifique Les travaux de Bernard Dujon ont été consacrés à l'étude du génome en utilisant comme modèle les levures, dont certaines pathogènes pour l'homme, principalement la levure de boulangerie, Saccharomyces cerevisiae. L'utilisation de mutants mitochondriaux et de croisements de levures a permis à Bernard Dujon de décrire les règles de l'hérédité mitochondriale, qui ont montré plus tard leur intérêt dans les phénomènes d'hérédité mitochondriale chez l'homme et l'étude des pathologies associées. Grâce à une anomalie héréditaire repérée lors des croisements, il a étudié les introns mitochondriaux et a décrit le phénomène de l'"intron-homing". Certains introns codent pour des endonucléases très spécifiques de séquences d'ADN qui sont responsables de leur propagation génétique dans les génomes. Aujourd'hui, on connaît plusieurs dizaines de homing-endonucleases qui, dans le prolongement des premiers essais de Bernard Dujon, servent à l'ingénierie des génomes in vivo. De plus, il a été démontré que les introns, que Bernard Dujon avait contribué à identifier et avait appelés "groupes I et II", ont joué un grand rôle dans l'analyse des mécanismes moléculaires d'épissage de l'ARN. Les tout premiers programmes européens de recherche de la fin des années 1980 ont permis à Bernard Dujon de participer au déchiffrage du génome de la levure qui, grâce à une large coopération internationale, a été le premier génome eucaryote entièrement séquencé.
    [Show full text]