Some Ore Textures Involving Sphalerite from the Furutobe Mine, Akita Prefecture, Japan*

Total Page:16

File Type:pdf, Size:1020Kb

Some Ore Textures Involving Sphalerite from the Furutobe Mine, Akita Prefecture, Japan* MINING GEOLOGY, 28, 293•`300, 1978 Some Ore Textures Involving Sphalerite from the Furutobe Mine, Akita Prefecture, Japan* Paul B. BARTON,Jr.** Abstract: Observations of doubly-polished, uncovered thin sections of Kuroko from Furutobe reveal a paragenesis of great complexity. Sphalerite crystals up to 2 mm across show finely detailed growth banding, and the crystals occur both as broken fragments in "moved" ore and as later fillings between clasts. The "moved" ore exhibits a variety of sphalerite types (including coarse crystals as well as fine-grained aggregates) as clasts showing that coarse crystals did exist prior to the synsedimentary slumping. Growth of large crystals seems incompatible with rapid deposition on the sea floor, therefore an alternative model is suggested. The initial deposits were derived from submarine hot springs and consisted of very fine-grained sulfides with silica and barite. With con- tinued supply of hot fluid the lower part of the sulfide deposit covering the vent became heated, and solution and reprecipitation occurred below an upper, less permeable "blanket." Deposits formed on slopes slumped repeatedly yielding graded beds with coarse sphalerite and other sulfides incorporated in a melange of finer ore and gangue fragments. Much of the sphalerite exhibits a fine "dusting" of chalcopyrite that appears to have developed subsequent to the growth of the host sphalerite, probably by a process of replacement, not of exsolution. revealed in my small collection , are startling Introduction and, even more surprising, apparently have not In recent years the Miocene Kuroko deposits been described in the voluminous and other- of Japan have become recognized almost wise comprehensive Japanese literature. universally as synsedimentary, hydrothermal Perhaps the reason for this lack is that most, deposits formed essentially at the seawater- if not all, previous workers relied entirely on sediment interface (TATSUMIand WATANABE, standard thin sections, polished sections, and 1971; ISHIHARA,1974; LAMBERTand SATO, hand specimens, whereas I used uncovered, 1974). They appear to be prototypes for doubly-polished thin sections. Sphalerite has an many stratabound massive sulfide ores found index of refraction of about 2.4, but bonding in older rocks throughout the world. Many media for thin sections usually have indices careful studies of the Kuroko deposits have of refraction in the 1.5 to 1.6 range. There- revealed significant features regarding these fore, unless both the upper and lower surfaces fascinating ores, but not all questions are yet are polished, so much light is scattered from satisfactorily answered. Previous studies specifi- the rough sphalerite surfaces that very im- cally of the Furutobe mine include: TAGUCHI portant features go undetected. In our labora- and LU (1966). TANAKA and LU (1969), tory we use a single microscope set up for and TANAKAet al. (1974). simultaneous reflected and transmitted light, In 1970 I had the opportunity, through and control the illumination by means of the kindness of the Mitsubishi Metal Corpora- separate, foot-operated switches. The color tion, to visit briefly and collect a few specimens plates show typical kuroko from Furutobe as from the Furutobe mine. Some of the textures paired reflected and transmitted light photo- graphs. The wealth of information available * Received April 7, 1978. to viewers of doubly polished sections is ** U .S. Geological Survey, National Center, Reston, apparent from the figures. I will discuss here Virginia, U.S.A. 22092 Keywords: Sphalerite, Ore textures, Kuroko deposits, only some of the more spectacular textures Diagenesis, Chalcopyritization revealed in these samples. 293 28(4), 1978 Some Ore Textures Involving Sphalerite from the Furutobe Mine 295 discontinuous record that would be far more Description of Textures tedious to reconstruct than my collection of The observations described below were specimens warrants. Another potential diffi- made principally on sphalerite. Other minerals culty is the probability that any single stratum may also possess informative textures, but of sphalerite may undergo facies changes as only sphalerite has the broad range of chemical it is traced through the ore zone. and optical properties that make a study The different varieties of sphalerite can such as this one possible. occur in close juxtaposition in such a way The crystal size of sphalerite can be large. that they must have originated separately Plates I-1 and II-1 show crystals as much as and been brought together physically by the a millimeter across, and other crystals as slumping process after crystallization (note much as 2 millimeters across are present in especially Plate I-2). A very significant fact my samples. Considerably larger crystals have is that coarse, well-crystallized sphalerite been reported (see ISHIHARA, 1974). occurs both in clastic fragments (Plate I-4) A wide variety of sphalerite is present, as is and as open-space fillings between fragments. shown in the illustrations. In particular, the The coarse sphalerite in the clastic fragments transmitted-light photographs reveal strikingly presumably formed in some earlier open contrasting characteristics, even for materials space. that appear superficially similar in reflected Some of the sphalerite clasts appear to be "primitive" (Plates I light. -1 and I-2) because Many previous studies (see ISHIHARA, 1974) they show little growth morphology, appear have clearly recognized extensive intradeposi- to be made up of many small crystals, and tional slumping that creates the clastic contain numerous ragged inclusions of galena, "moved" ore and also develops the widespread pyrite, chalcopyrite, and tetrahedrite. These graded beds of ore and gangue, with or without may be the closest thing to the initial, wallrock components. When viewed at even sphalerite-bearing sediment preserved in my lower magnification than illustrated, e.g., samples. 10 •~ or less, the different types of sphalerite Although no new measurements have been serve to identify different clasts of sulfide ore. made in the course of this study, it is likely Many of the clasts are also recognizable by that many of the fluid inclusion studies reported distinctive mineral associations with or with- in the literature for the black ore (for an out sphalerite. A complex, fragmented excellent summary see TOKUNAGAand HONMA, "stratigraphy" of intricately banded sphalerite 1974) were based on the coarse, recrystallized is displayed in the Furutobe samples, but the sphalerite and that the coarse sphalerite in clastic nature of the samples produces a the clasts was not distinguished from the Plate I. Photomicrographs of sphalerite from the Furutobe mine. Each microscope field is shown in transmitted (A) and reflected light (B). Sphalerite is medium grey in reflected light and is colorless to yellow to brown to red in transmitted light. In transmitted light chalcopyrite is yellow, pyrite is pale yellow, galena is white, and tetrahedrite is an intermediate grey between galena and sphalerite. Barite and quartz are dark grey in reflected light and colorless in transmitted light. Plate I-1 : Two stages of sphalerite; on the left is an example of the 'primitive' type (width 2 mm). Plate I-2 : Two additional stages of sphalerite; on the left is an example of the 'primitive' type. The crystal on the right is intensely altered along its edges by the 'chalcopyrite disease' (width 0.5 mm). Plate 1-3 : Multiple generations of sphalerite. The grain in the upper-right-center shows complex development of the 'chalcopyrite disease' that may be related to regrowth of a fractured crystal prior to the addition of chalcopyrite (width 2 mm). Plate I-4 : A fractured fragment of growth-banded sphalerite is overgrown by sphalerite that is so full of inclusions of other sulfides that it is opaque. The red banding is typical of that associated with fine tetrahedrite (width 0.5 mm). 28(4), 1978 Some Ore Textures Involving Sphalerite from the Furutobe Mine 297 coarse sphalerite filling vugs between clasts. under attack. It appears to be a reaction of It would be surprising if any of the "primitive" copper in solution with FeS in sphalerite and sphalerite had been studied for inclusions, as may be associated in time with the replacement such sphalerite is usually too fine grained and of pyrite by chalcopyrite, but documentation too opaque for good optical examination (see of this relation requires more work. Some of Plates I-1 and 1-2). the sphalerite-chalcopyrite features are alll Much of the sphalerite suffers from the too easily confused with exsolution textures, "chalcopyrite disease" , a feature common but I have found no chalcopyrite exsolved from to many hydrothermal deposits (P. M. BETAKE sphalerite at Furutobe. and P. B. BARTON, Jr., unpublished research). Another significant feature is the presence This malady has several symptoms, the most of hydrothermal leaching and regrowth of common of which is the development of a fine sphalerite (Plates II-1, II-2). This phenom- "dusting" of •… 1 micrometer-sized chalcopyrite enon is common in conventional hydrothermal inclusions in solid sphalerite. It begins along ores, but was a surprise in the black ore part grain boundaries and cracks and spreads into of a Kuroko deposit because its mode of the adjacent crystals (Plates I-2, II-1, II-2). deposition (TATSUMIand WATANABE,1971; Eventually, it may spread sufficiently to make SATO,1972) suggests rapid, irreversible precipi- the entire grain appear
Recommended publications
  • Editorial for Special Issue “Ore Genesis and Metamorphism: Geochemistry, Mineralogy, and Isotopes”
    minerals Editorial Editorial for Special Issue “Ore Genesis and Metamorphism: Geochemistry, Mineralogy, and Isotopes” Pavel A. Serov Geological Institute of the Kola Science Centre, Russian Academy of Sciences, 184209 Apatity, Russia; [email protected] Magmatism, ore genesis and metamorphism are commonly associated processes that define fundamental features of the Earth’s crustal evolution from the earliest Precambrian to Phanerozoic. Basically, the need and importance of studying the role of metamorphic processes in formation and transformation of deposits is of great value when discussing the origin of deposits confined to varied geological settings. In synthesis, the signatures imprinted by metamorphic episodes during the evolution largely indicate complicated and multistage patterns of ore-forming processes, as well as the polygenic nature of the mineralization generated by magmatic, postmagmatic, and metamorphic processes. Rapid industrialization and expanding demand for various types of mineral raw ma- terials require increasing rates of mining operations. The current Special Issue is dedicated to the latest achievements in geochemistry, mineralogy, and geochronology of ore and metamorphic complexes, their interrelation, and the potential for further prospecting. The issue contains six practical and theoretical studies that provide for a better understanding of the age and nature of metamorphic and metasomatic transformations, as well as their contribution to mineralization in various geological complexes. The first article, by Jiang et al. [1], reports results of the first mineralogical–geochemical Citation: Serov, P.A. Editorial for studies of gem-quality nephrite from the major Yinggelike deposit (Xinjiang, NW China). Special Issue “Ore Genesis and The authors used a set of advanced analytical techniques, that is, electron probe microanaly- Metamorphism: Geochemistry, sis, X-ray fluorescence (XRF) spectrometry, inductively coupled plasma mass spectrometry Mineralogy, and Isotopes”.
    [Show full text]
  • A Review of Flotation Separation of Mg Carbonates (Dolomite and Magnesite)
    minerals Review A Review of Flotation Separation of Mg Carbonates (Dolomite and Magnesite) Darius G. Wonyen 1,†, Varney Kromah 1,†, Borbor Gibson 1,† ID , Solomon Nah 1,† and Saeed Chehreh Chelgani 1,2,* ID 1 Department of Geology and Mining Engineering, Faculty of Engineering, University of Liberia, P.O. Box 9020 Monrovia, Liberia; [email protected] (D.G.W.); [email protected] (Y.K.); [email protected] (B.G.); [email protected] (S.N.) 2 Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, USA * Correspondence: [email protected]; Tel.: +1-41-6830-9356 † These authors contributed equally to the study. Received: 24 July 2018; Accepted: 13 August 2018; Published: 15 August 2018 Abstract: It is well documented that flotation has high economic viability for the beneficiation of valuable minerals when their main ore bodies contain magnesium (Mg) carbonates such as dolomite and magnesite. Flotation separation of Mg carbonates from their associated valuable minerals (AVMs) presents several challenges, and Mg carbonates have high levels of adverse effects on separation efficiency. These complexities can be attributed to various reasons: Mg carbonates are naturally hydrophilic, soluble, and exhibit similar surface characteristics as their AVMs. This study presents a compilation of various parameters, including zeta potential, pH, particle size, reagents (collectors, depressant, and modifiers), and bio-flotation, which were examined in several investigations into separating Mg carbonates from their AVMs by froth flotation. Keywords: dolomite; magnesite; flotation; bio-flotation 1. Introduction Magnesium (Mg) carbonates (salt-type minerals) are typical gangue phases associated with several valuable minerals, and have complicated processing [1,2].
    [Show full text]
  • Sedimentary Exhalative Deposits (SEDEX)
    Sedimentary Exhalative Deposits (SEDEX) Main charactersitcs:SEDEX deposits are stratiform, massive sulphide lenses formed in local basins on the sea floor. This is usually as a result of hydrothermal activity in areas of continental rifting. They represent major sources of lead and zinc with minor amounts of gold, barium and copper. Alteration is common especially in the form of silicification. Sedex deposits have many similarities with VMS deposits. Idealised SEDEX Deposit Model e.g. Mount Isa, Broken Hill (Australia), Sullivan (Canada), Silvermines (Ireland) Adapted from Evans 1997: Ore Geology and Industrial Minerals The stratiform lenses formed in Sedex deposits can be up to 40km thick and have a lateral extent of 100km's. Stockwork or vein mineralisation may occur beneath this. Host rock lithology varies from shales, siltstones and carbonates (low energy environment) to debris flows, conglomerates and breccias (high energy environments). Sedex deposits have been categorised in terms of a sedimentary basin hierachy. First order basins have lateral extents of hundreds of km's and maybe represented by epicratonic embayments ot intracratonic basins. Second order basins which can be up to tens of km's in size occur within the first order basins and contain third order basins, less than 10km in diameter, where the stratiform sulphide lenses tend to develop. There are several ideas for the formation of these deposits but one contention is that they were formed by the convection of sea water as shown above. As the sea water traverses through the crust it would dissolve base metals from the host rock, which would eventually lead to their collection and precipitation near the surface.
    [Show full text]
  • Depositional Setting of Algoma-Type Banded Iron Formation Blandine Gourcerol, P Thurston, D Kontak, O Côté-Mantha, J Biczok
    Depositional Setting of Algoma-type Banded Iron Formation Blandine Gourcerol, P Thurston, D Kontak, O Côté-Mantha, J Biczok To cite this version: Blandine Gourcerol, P Thurston, D Kontak, O Côté-Mantha, J Biczok. Depositional Setting of Algoma-type Banded Iron Formation. Precambrian Research, Elsevier, 2016. hal-02283951 HAL Id: hal-02283951 https://hal-brgm.archives-ouvertes.fr/hal-02283951 Submitted on 11 Sep 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Accepted Manuscript Depositional Setting of Algoma-type Banded Iron Formation B. Gourcerol, P.C. Thurston, D.J. Kontak, O. Côté-Mantha, J. Biczok PII: S0301-9268(16)30108-5 DOI: http://dx.doi.org/10.1016/j.precamres.2016.04.019 Reference: PRECAM 4501 To appear in: Precambrian Research Received Date: 26 September 2015 Revised Date: 21 January 2016 Accepted Date: 30 April 2016 Please cite this article as: B. Gourcerol, P.C. Thurston, D.J. Kontak, O. Côté-Mantha, J. Biczok, Depositional Setting of Algoma-type Banded Iron Formation, Precambrian Research (2016), doi: http://dx.doi.org/10.1016/j.precamres. 2016.04.019 This is a PDF file of an unedited manuscript that has been accepted for publication.
    [Show full text]
  • Tungsten Ore Concentrates from the People's Republic of China
    TUNGSTEN ORE CONCENTRATES FROM THE PEOPLE'S REPUBLIC OF CHINA Determination of the Commission in Investigation No. 731—TA-497 (Preliminary) Under the Tariff Act of 1930, Together With the Information Obtained in the Investigation USITC PUBLICATION 2367 MARCH 1991 United States International Trade Commission Washington, DC 20436 UNITED STATES INTERNATIONAL TRADE COMMISSION COMMISSIONERS Anne E. Brunsdale, Acting Chairman Seeley G. Lodwick David B. Rohr Don E. Newquist Charles Ervin, Director of Operations Staff assigned: Mary Trimble, Investigator Jeffrey Anspacher, Economist Vincent DeSapio, Industry Analyst Marshall Wade, Accountant/Financial Analyst Craig McKee, Attorney George Deyman, Supervisory Investigator Address all communications to Kenneth R. Mason, Secretary to the Commission United States International Trade Commission Washington, DC 20436 CONTENTS Page Determination 1 Views of the Commission 3 Information obtained in the investigation A-1 Introduction A-1 The product A-2 Description and uses A-2 Manufacturing process A-3 Substitute products A-4 U.S. tariff treatment A-4 The nature and extent of alleged sales at LTFV A-5 The world market A-5 The U.S. market A-7 Apparent U.S. consumption A-7 U.S. producers A-9 Curtis Tungsten, Inc A-9 U.S. Tungsten Corp A-11 U.S. importers A-11 U.S. traders/brokers A-12 U.S. consumers of imported tungsten ore concentrates A-12 U.S. Government stockpiles A-13 Toll production A-13 Channels of distribution A-13 Consideration of alleged material injury A-14 U.S. production, capacity, and capacity utilization A-14 U.S. producers' U.S. shipments (commercial and captive) and export shipments A-17 Commercial U.S.
    [Show full text]
  • Standard Reference Materials
    MBS 0F STAND PUBLICATIONS iffiJIimTk & TECH IIIIIII A 11 10 7 E57&&y NBS SPECIAL PUBLICATION 260-97 /?e AU o* U.S. DEPARTMENT OF COMMERCE/National Bureau of Standards Standard Reference Materials: Summary of the Coal, Ore, Mineral, Rock, and Refractory Standards Issued by the National Bureau of Standards 100 Radu Mavrodineanu and Thomas E. Gills • U57 260-97 1985 c2 . Tm he National Bureau of Standards was established by an act of Congress on March 3, 1901. The m Bureau's overall goal is to strengthen and advance the nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a basis for the nation's physical measurement system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau's technical work is performed by the National Measurement Laboratory, the National Engineering Laboratory, the Institute for Computer Sciences and Technology, and the Institute for Materials Science and Engineering The National Measurement Laboratory 2 Provides the national system of physical and chemical measurement; • Basic Standards coordinates the system with measurement systems of other nations and • Radiation Research furnishes essential services leading to accurate and uniform physical and • Chemical Physics chemical measurement throughout the Nation's scientific community, in- • Analytical Chemistry dustry, and commerce; provides advisory
    [Show full text]
  • Banded Iron Formations
    Banded Iron Formations Cover Slide 1 What are Banded Iron Formations (BIFs)? • Large sedimentary structures Kalmina gorge banded iron (Gypsy Denise 2013, Creative Commons) BIFs were deposited in shallow marine troughs or basins. Deposits are tens of km long, several km wide and 150 – 600 m thick. Photo is of Kalmina gorge in the Pilbara (Karijini National Park, Hamersley Ranges) 2 What are Banded Iron Formations (BIFs)? • Large sedimentary structures • Bands of iron rich and iron poor rock Iron rich bands: hematite (Fe2O3), magnetite (Fe3O4), siderite (FeCO3) or pyrite (FeS2). Iron poor bands: chert (fine‐grained quartz) and low iron oxide levels Rock sample from a BIF (Woudloper 2009, Creative Commons 1.0) Iron rich bands are composed of hematitie (Fe2O3), magnetite (Fe3O4), siderite (FeCO3) or pyrite (FeS2). The iron poor bands contain chert (fine‐grained quartz) with lesser amounts of iron oxide. 3 What are Banded Iron Formations (BIFs)? • Large sedimentary structures • Bands of iron rich and iron poor rock • Archaean and Proterozoic in age BIF formation through time (KG Budge 2020, public domain) BIFs were deposited for 2 billion years during the Archaean and Proterozoic. There was another short time of deposition during a Snowball Earth event. 4 Why are BIFs important? • Iron ore exports are Australia’s top earner, worth $61 billion in 2017‐2018 • Iron ore comes from enriched BIF deposits Rio Tinto iron ore shiploader in the Pilbara (C Hargrave, CSIRO Science Image) Australia is consistently the leading iron ore exporter in the world. We have large deposits where the iron‐poor chert bands have been leached away, leaving 40%‐60% iron.
    [Show full text]
  • Extraction of Lead from Galena Concentrates Using Fluosilicic Acid and Peroxide
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Jurnal Puslitbang tekMira (Teknologi Mineral dan Batubara) INDONESIAN MINING JOURNAL Vol. 20, No. 1, April 2017 : 69 - 80 EXTRACTION OF LEAD FROM GALENA CONCENTRATES USING FLUOSILICIC ACID AND PEROXIDE EKSTRAKSI TIMBAL DARI KONSENTRAT GALENA MENGGUNAKAN ASAM FLUOSILIKAT DAN PEROKSIDA DESSY AMALIA, YUNITA RAMANDA and MARYONO Research & Development Centre for Mineral and Coal Technology Jalan Jenderal Sudirman 623 Bandung 40211 Ph. (+6222) 6030483, Fax. (+6222) 6003373 e-mail: [email protected] ABSTRACT A study on lead extraction from lead concentrate had been conducted. Galena is usually associated with other sulfide ores such as sphalerite.The lead concentrate was able to be extracted and purified into its metal through a leaching process using a selective solvent of fluosilicic acid (H2SiF6). Parameters used in this process include ratio (dose) of reactant (H2SiF6:H2O2), temperature (without heating; 30; 50; 70; 80; and 90°C) and particle size (-100+150#, -150+200#, -200+325, dan -325#).The best extraction was achieved using the particle size of -325 mesh. The amount of extracted lead was increased due to the rise of temperature and dose of fluosilicic. The amount of peroxide addition was determined by its optimum influence on the lead extraction because its excess would produce PbSO4. The influence of H2SiF6 and H2O2 doses was calculated using ANOVA. Keywords: galena, leaching, fluosilicic acid, peroxide, precipitation. ABSTRAK Pemrosesan konsentrat Pb telah dilakukan untuk memperoleh logamnya. Galena pada umumnya berasosiasi dengan mineral sulfida lainnya seperti sphalerit. Konsentrat tersebut dapat diekstraksi dan dimurnikan untuk memperoleh logam melalui proses pelindian menggunakan pelarut selektif seperti asam fluosilikat (H2SiF6).
    [Show full text]
  • Dolomite Resources of Washington
    State of Washington ARTHUR B. LANGLIE, Governor Department of Conservation and Development ED DAVIS, Director DIVISION OF GEOLOGY HAROLD E. CULVER, Supervisor Report of Investigations No.13 Dolomite Resources of Washington Part I PRELIMINARY REPORT ON • OKANOGAN, LINCOLN, AND STEVENS COUNTIES By W. A. G. BENNETT OLYMPIA STATE PRINTlNG PLANT 1944 For sale by Department of Conservation and Development, Olympia, Washington. Price, 25 cents. CONTENTS Page Foreword . 5 Introduction . 6 Field work and acknowledgments................................. .... 8 Riverside district . 8 General statement . 8 Geology ................................ .......................... 10 Late Paleozoic rocks. 10 The limestone-dolomite series .................................. 10 Igneous rocks . 11 Structure ................................... ................ 11 Dolomite deposits ................................................ 11 Deposit 1 .................. ................................. 11 Deposit 2 . 12 Deposit 3 . 13 Deposit 4 ............ ........................ ... .......... 14 Deposit 5 . 16 Deposit 6 . 17 Deposit 7 . 17 Deposit 8 . 20 Deposit 9 . 22 Deposit 10 ............................ ...................... 23 Other deposits .............................. ..... .......... 24 Summary of tonnage. 25 Old Fort Spokane area. 25 General statement . 25 Geology ........................... ................. ............. 25 Metasedimentary rocks ....................... ................ 25 Igneous rocks . 26 Structure . 26 The dolomite deposit ...................................
    [Show full text]
  • Metals and Society: an Introduction to Economic Geology
    Metals and Society: an Introduction to Economic Geology . Nicholas Arndt l Cle´ment Ganino Metals and Society: an Introduction to Economic Geology Nicholas Arndt Cle´ment Ganino University of Grenoble University of Nice Grenoble Nice 38031 06103 France France [email protected] [email protected] Nicholas T. Arndt, Cle´ment Ganino: Ressources mine´rales: Cours et exercices corrige´s Originally published: # Dunod, Paris, 2010 ISBN 978-3- 642-22995-4 e-ISBN 978-3- 642-22996-1 DOI 10.1007/978-3-642-22996-1 Springer Heidelberg Dordrecht London New York Library of Congress Control Number: 2011942416 # Springer-Verlag Berlin Heidelberg 2012 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in other ways, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law. The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) Preface Thousands of years ago European’s were transporting tin from Cornwall in southwest England to Crete in the eastern Mediterranean to create bronze by alloying tin and copper to create a new and more useful metal allow.
    [Show full text]
  • Tungsten Minerals and Deposits
    DEPARTMENT OF THE INTERIOR FRANKLIN K. LANE, Secretary UNITED STATES GEOLOGICAL SURVEY GEORGE OTIS SMITH, Director Bulletin 652 4"^ TUNGSTEN MINERALS AND DEPOSITS BY FRANK L. HESS WASHINGTON GOVERNMENT PRINTING OFFICE 1917 ADDITIONAL COPIES OF THIS PUBLICATION MAY BE PROCURED FROM THE SUPERINTENDENT OF DOCUMENTS GOVERNMENT PRINTING OFFICE WASHINGTON, D. C. AT 25 CENTS PER COPY CONTENTS. Page. Introduction.............................................................. , 7 Inquiries concerning tungsten......................................... 7 Survey publications on tungsten........................................ 7 Scope of this report.................................................... 9 Technical terms...................................................... 9 Tungsten................................................................. H Characteristics and properties........................................... n Uses................................................................. 15 Forms in which tungsten is found...................................... 18 Tungsten minerals........................................................ 19 Chemical and physical features......................................... 19 The wolframites...................................................... 21 Composition...................................................... 21 Ferberite......................................................... 22 Physical features.............................................. 22 Minerals of similar appearance.................................
    [Show full text]
  • The Iron-Ore Resources of Europe
    DEPARTMENT OF THE INTERIOR ALBERT B. FALL, Secretary UNITED STATES GEOLOGICAL SURVEY GEORGE OTIS SMITH, Director Bulletin 706 THE IRON-ORE RESOURCES OF EUROPE BY MAX ROESLER WASHINGTON GOVERNMENT PRINTING OFFICE 1921 CONTENTS. Page. Preface, by J. B. Umpleby................................................. 9 Introduction.............................................................. 11 Object and scope of report............................................. 11 Limitations of the work............................................... 11 Definitions.........................:................................. 12 Geology of iron-ore deposits............................................ 13 The utilization of iron ores............................................ 15 Acknowledgments...................................................... 16 Summary................................................................ 17 Geographic distribution of iron-ore deposits within the countries of new E urope............................................................. 17 Geologic distribution................................................... 22 Production and consumption.......................................... 25 Comparison of continents.............................................. 29 Spain..................................................................... 31 Distribution, character, and extent of the deposits....................... 31 Cantabrian Cordillera............................................. 31 The Pyrenees....................................................
    [Show full text]