Fenchel Duality Theory and a Primal-Dual Algorithm on Riemannian Manifolds Ronny Bergmann∗ Roland Herzog∗ Maurício Silva Louzeiro∗ Daniel Tenbrinck† José Vidal-Núñez‡ This paper introduces a new notion of a Fenchel conjugate, which generalizes the classical Fenchel conjugation to functions dened on Riemannian manifolds. We investigate its properties, e.g., the Fenchel–Young inequality and the characterization of the convex subdierential using the analogue of the Fenchel–Moreau Theorem. These properties of the Fenchel conjugate are employed to derive a Riemannian primal-dual optimization algorithm, and to prove its convergence for the case of Hadamard manifolds under appropriate assumptions. Numerical results illustrate the performance of the algorithm, which competes with the recently derived Douglas–Rachford algorithm on manifolds of nonpositive curvature. Furthermore, we show numerically that our novel algorithm even converges on manifolds of positive curvature. Keywords. convex analysis, Fenchel conjugate function, Riemannian manifold, Hadamard manifold, primal-dual algorithm, Chambolle–Pock algorithm, total variation AMS subject classications (MSC2010). 49N15, 49M29, 90C26, 49Q99 1 Introduction Convex analysis plays an important role in optimization, and an elaborate theory on convex analysis and conjugate duality is available on locally convex vector spaces. Among the vast references on this topic, we mention Bauschke, Combettes, 2011 for convex analysis and monotone operator techniques, Ekeland, ∗Technische Universität Chemnitz, Faculty of Mathematics, 09107 Chemnitz, Germany (
[email protected] arXiv:1908.02022v4 [math.NA] 9 Oct 2020 chemnitz.de, https://www.tu-chemnitz.de/mathematik/part dgl/people/bergmann, ORCID 0000-0001-8342- 7218,
[email protected], https://www.tu-chemnitz.de/mathematik/part dgl/people/herzog, ORCID 0000-0003-2164-6575,
[email protected], https://www.tu-chemnitz.de/ mathematik/part dgl/people/louzeiro, ORCID 0000-0002-4755-3505).