Conjugate Duality

Total Page:16

File Type:pdf, Size:1020Kb

Conjugate Duality LECTURE 5: CONJUGATE DUALITY 1. Primal problem and its conjugate dual 2. Duality theory and optimality conditions 3. Relation to other type of dual problems 4. Linear conic programming problems Motivation of conjugate duality Min f(x) (over R) = Max g(y) (over R) and h(y) = - g(y) • f(x) + h(y) = f(x) – g(y) can be viewed as “duality gap” • Would like to have (i) weak duality 0 (ii) strong duality 0 = f(x*) + h(y*) Where is the duality information • Recall the fundamental result of Fenchel’s conjugate inequality • Need a structure such that in general and at optimal solutions 0 = <x*, y*> = f(x*) + h(y*) Concept of dual cone • Let X be a cone in • Define its dual cone • Properties: (i) Y is a cone. (ii) Y is a convex set. (iii) Y is a closed set. Observations Conjugate (Geometric) duality Dual side information • Conjugate dual function • Dual cone Properties: 1. Y is a cone in 2. Y is closed and convex 3. both are closed and convex. Conjugate (Geometric) dual problem Observations Conjugate duality theory Conjugate duality theory Proof Conjugate duality theory Example – Standard form LP Conjugate dual problem Dual LP Example – Karmarkar form LP Example – Karmarkar form LP Example – Karmarkar form LP • Conjugate dual problem becomes which is an unconstrained convex programming problem. Illustration Example – Posynomial programming • Nonconvex programming problem • Transformation Posynomial programming • Primal problem: Conjugate dual problem: Dual Posynomial Programming h(y) , supx2En [< x; y > −f (x)] < +1 Pn Pn xj Let g(x) = j=1 xj yj − log j=1 cj e ∗ xj @g cj e = 0 ) yj = x∗ @xj Pn j j=1 cj e Pn ) yj > 0 and j=1 yj = 1: ) Ω is closed. n Pn ) Ω = fy 2 E jyj > 0 and j=1 yj = 1g: ∗ ∗ xj Pn xj log(yj ) = log(cj e ) − log j=1 cj e ∗ ∗ Pn xj = log(cj ) + xj − log j=1 cj e ∗ yj n x ) log( ) + log P c e j = x∗ cj j=1 j j ∗ h(y) = supx2 n [< x; y > −f (x)] = g(x ) E ∗ Pn ∗ Pn xj = j=1 xj yj − log j=1 cj e ∗ ∗ n yj n x n x = P y [log( ) + log P c e j ] − log P c e j j=1 j cj j=1 j j=1 j ∗ ∗ n yj n n x n x = P y log( ) + P y log P c e j − log P c e j j=1 j cj j=1 j j=1 j j=1 j ∗ ∗ n yj n n x n x = P y log( ) + (P y )log P c e j − log P c e j j=1 j cj j=1 j j=1 j j=1 j = Pn y log( yj ) j=1 j cj Conjugate dual problem Degree of difficulties • When degree of difficulty = 0, we have a system of linear equations: • When degree of difficulty = k, we have Duality gap • Definition: • Observation: Extremality conditions • Definition: • Corollary: Proof of Corollary Necessary and sufficient conditions • Corollary • Observation When will the duality gap vanish? Nonlinear complementarity problem Lagrangian Function and Saddle Point T T I Let f (x): S X and h(y):Ω Y be a known conjugate pair with X being closed and convex and f 2 C0(S). I The lagrangian function is defined as L(x; y) , f (x)− < x; y > : I A point pair (x¯; y¯) 2 S × Y is called a saddle point of L(x; y) if L(x; y¯) > L(x¯; y¯) > L(x¯; y); 8x 2 S; y 2 Y ; or inf L(x; y¯) = L(x¯; y¯) = sup L(x¯; y): x2S y2Y Saddle Point and Optimality Theorem: (saddle point ) Optimality) If (x¯; y¯) 2 S × Y is a saddle point of L(x; y), then x¯ 2 S ∗ and y¯ 2 T ∗. Proof: By definition, inf L(x; y¯) = L(x¯; y¯) = sup L(x¯; y) x2S y2Y 1 L(x¯; y¯) = infx2S L(x; y¯) = infx2S[f (x)− < x; y¯ >] = − supx2S[< x; y¯ > −f (x)] Hence y¯ 2 Ω and L(x¯; y¯) = −h(y), (now, y¯ 2 Y T Ω = T ) 2 L(x¯; y¯) = supy2Y L(x¯; y) = supy2Y [f (x¯)− < x¯; y >] = f (x¯) + supy2Y [− < x¯; y >] = f (x¯) − infy2Y [< x¯; y >] Since Y is a cone, x¯ 2 dual(Y ) = X and infy2Y [< x¯; y >] = 0. Hence L(x¯; y¯) = f (x¯). (Now, x¯ 2 S T X = S ) 3 Putting 1 and 2 together, we have f (x¯) = L(x¯; y¯) = −h(y¯): Hence f (x¯) + h(y¯) = 0, and x¯ 2 S ∗; y¯ 2 T ∗: Saddle Point and Optimality Theorem (Convex Optimality with No Gap ) Saddle Point) Let f : S T X and h :Ω T Y be a closed convex conjugate dual pair with no duality gap. Then (x¯; y¯) is a saddle point of L(x; y) if and only if x¯ 2 S ∗ and y¯ 2 T ∗: Proof: We need only to prove that “If x¯ 2 S ∗ and y¯ 2 T ∗, then (x¯; y¯) is a saddle point of L(x; y).” When x¯ 2 S ∗ and y¯ 2 T ∗, we have < x¯; y¯ >= 0. Since there is no duality gap, L(x¯; y¯) = f (x¯)− < x¯; y¯ >= −h(y¯). Hence, −h(y¯) = L(x¯; y¯) = f (x¯) | {z } |{z} infx2S L(x;y¯) supy2Y L(x¯;y) Observations 1. If x¯ 2 S ∗ is known, then y¯ 2 T ∗ can be found by solving max L(x¯; y) = f (x¯)− < x¯; y > s. t. y 2 Y When Y is linearly structures, then it is a linearly programming problem. 2. If y¯ 2 T ∗ is known, then x¯ 2 S ∗ can be found by solving min L(x; y¯) = f (x)− < x; y¯ > s. t. x 2 S Linear conic programming problems • Linear Conic Programming (LCoP) A general conic optimization problem is as follows: (P) minimize cx subject to Ax = b x ∈ where is a closed and convex cone and " " is a linear operator like "inner product." Dual linear conic dual problem Duality theorems for Linear CP Duality theorems for linear CP • Theorem 3 (Conic Duality Theorem): (i) If problems (CP) and (CD) are both feasible, then they have optimal solutions. (ii) If one of the two problems has an interior feasible solution with a finite optimal objective value, then the other one is feasible and has the same optimal objective value. (iii) If one of the two problems is unbounded, then the other has no feasible solution. (iv) If (CP) and (CD) both have interior feasible solutions, then they have optimal solutions with zero duality gap. Examples of conic programs Example of conic programs Example of conic programs Semi-definite Programming (SDP) Duality theorems for SDP Quadratic programming problem Conjugate dual QP Conjugate dual QP Conjugate dual QP .
Recommended publications
  • Lecture 7: Convex Analysis and Fenchel-Moreau Theorem
    Lecture 7: Convex Analysis and Fenchel-Moreau Theorem The main tools in mathematical finance are from theory of stochastic processes because things are random. However, many objects are convex as well, e.g. collections of probability measures or trading strategies, utility functions, risk measures, etc.. Convex duality methods often lead to new insight, computa- tional techniques and optimality conditions; for instance, pricing formulas for financial instruments and characterizations of different types of no-arbitrage conditions. Convex sets Let X be a real topological vector space, and X∗ denote the topological (or algebraic) dual of X. Throughout, we assume that subsets and functionals are proper, i.e., ;= 6 C 6= X and −∞ < f 6≡ 1. Definition 1. Let C ⊂ X. We call C affine if λx + (1 − λ)y 2 C 8x; y 2 C; λ 2] − 1; 1[; convex if λx + (1 − λ)y 2 C 8x; y 2 C; λ 2 [0; 1]; cone if λx 2 C 8x 2 C; λ 2]0; 1]: Recall that a set A is called algebraic open, if the sets ft : x + tvg are open in R for every x; v 2 X. In particular, open sets are algebraically open. Theorem 1. (Separating Hyperplane Theorem) Let A; B be convex subsets of X, A (algebraic) open. Then the following are equal: 1. A and B are disjoint. 2. There exists an affine set fx 2 X : f(x) = cg, f 2 X∗, c 2 R; such that A ⊂ fx 2 X : f(x) < cg and B ⊂ fx 2 X : f(x) ≥ cg.
    [Show full text]
  • Lagrangian Duality in Convex Optimization
    Lagrangian Duality in Convex Optimization LI, Xing A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Philosophy in Mathematics The Chinese University of Hong Kong July 2009 ^'^'^xLIBRARr SYSTEf^N^J Thesis/Assessment Committee Professor LEUNG, Chi Wai (Chair) Professor NG, Kung Fu (Thesis Supervisor) Professor LUK Hing Sun (Committee Member) Professor HUANG, Li Ren (External Examiner) Abstract of thesis entitled: Lagrangian Duality in Convex Optimization Submitted by: LI, Xing for the degree of Master of Philosophy in Mathematics at the Chinese University of Hong Kong in July, 2009. Abstract In convex optimization, a strong duality theory which states that the optimal values of the primal problem and the Lagrangian dual problem are equal and the dual problem attains its maximum plays an important role. With easily visualized physical meanings, the strong duality theories have also been wildly used in the study of economical phenomenon and operation research. In this thesis, we reserve the first chapter for an introduction on the basic principles and some preliminary results on convex analysis ; in the second chapter, we will study various regularity conditions that could lead to strong duality, from the classical ones to recent developments; in the third chapter, we will present stable Lagrangian duality results for cone-convex optimization problems under continuous linear perturbations of the objective function . In the last chapter, Lagrange multiplier conditions without constraint qualifications will be discussed. 摘要 拉格朗日對偶理論主要探討原問題與拉格朗日對偶問題的 最優值之間“零對偶間隙”成立的條件以及對偶問題存在 最優解的條件,其在解決凸規劃問題中扮演著重要角色, 並在經濟學運籌學領域有著廣泛的應用。 本文將系統地介紹凸錐規劃中的拉格朗日對偶理論,包括 基本規範條件,閉凸錐規範條件等,亦會涉及無規範條件 的序列拉格朗日乘子。 ACKNOWLEDGMENTS I wish to express my gratitude to my supervisor Professor Kung Fu Ng and also to Professor Li Ren Huang, Professor Chi Wai Leung, and Professor Hing Sun Luk for their guidance and valuable suggestions.
    [Show full text]
  • Arxiv:2011.09194V1 [Math.OC]
    Noname manuscript No. (will be inserted by the editor) Lagrangian duality for nonconvex optimization problems with abstract convex functions Ewa M. Bednarczuk · Monika Syga Received: date / Accepted: date Abstract We investigate Lagrangian duality for nonconvex optimization prob- lems. To this aim we use the Φ-convexity theory and minimax theorem for Φ-convex functions. We provide conditions for zero duality gap and strong duality. Among the classes of functions, to which our duality results can be applied, are prox-bounded functions, DC functions, weakly convex functions and paraconvex functions. Keywords Abstract convexity · Minimax theorem · Lagrangian duality · Nonconvex optimization · Zero duality gap · Weak duality · Strong duality · Prox-regular functions · Paraconvex and weakly convex functions 1 Introduction Lagrangian and conjugate dualities have far reaching consequences for solution methods and theory in convex optimization in finite and infinite dimensional spaces. For recent state-of the-art of the topic of convex conjugate duality we refer the reader to the monograph by Radu Bot¸[5]. There exist numerous attempts to construct pairs of dual problems in non- convex optimization e.g., for DC functions [19], [34], for composite functions [8], DC and composite functions [30], [31] and for prox-bounded functions [15]. In the present paper we investigate Lagrange duality for general optimiza- tion problems within the framework of abstract convexity, namely, within the theory of Φ-convexity. The class Φ-convex functions encompasses convex l.s.c. Ewa M. Bednarczuk Systems Research Institute, Polish Academy of Sciences, Newelska 6, 01–447 Warsaw Warsaw University of Technology, Faculty of Mathematics and Information Science, ul.
    [Show full text]
  • Conjugate of Some Rational Functions and Convex Envelope of Quadratic Functions Over a Polytope
    Conjugate of some Rational functions and Convex Envelope of Quadratic functions over a Polytope by Deepak Kumar Bachelor of Technology, Indian Institute of Information Technology, Design and Manufacturing, Jabalpur, 2012 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in THE COLLEGE OF GRADUATE STUDIES (Computer Science) THE UNIVERSITY OF BRITISH COLUMBIA (Okanagan) January 2019 c Deepak Kumar, 2019 The following individuals certify that they have read, and recommend to the College of Graduate Studies for acceptance, a thesis/dissertation en- titled: Conjugate of some Rational functions and Convex Envelope of Quadratic functions over a Polytope submitted by Deepak Kumar in partial fulfilment of the requirements of the degree of Master of Science. Dr. Yves Lucet, I. K. Barber School of Arts & Sciences Supervisor Dr. Heinz Bauschke, I. K. Barber School of Arts & Sciences Supervisory Committee Member Dr. Warren Hare, I. K. Barber School of Arts & Sciences Supervisory Committee Member Dr. Homayoun Najjaran, School of Engineering University Examiner ii Abstract Computing the convex envelope or biconjugate is the core operation that bridges the domain of nonconvex analysis with convex analysis. For a bi- variate PLQ function defined over a polytope, we start with computing the convex envelope of each piece. This convex envelope is characterized by a polyhedral subdivision such that over each member of the subdivision, it has an implicitly defined rational form(square of a linear function over a linear function). Computing this convex envelope involves solving an expo- nential number of subproblems which, in turn, leads to an exponential time algorithm.
    [Show full text]
  • Log-Concave Duality in Estimation and Control Arxiv:1607.02522V1
    Log-Concave Duality in Estimation and Control Robert Bassett,˚ Michael Casey,: and Roger J-B Wets; Department of Mathematics, Univ. California Davis Abstract In this paper we generalize the estimation-control duality that exists in the linear- quadratic-Gaussian setting. We extend this duality to maximum a posteriori estimation of the system's state, where the measurement and dynamical system noise are inde- pendent log-concave random variables. More generally, we show that a problem which induces a convex penalty on noise terms will have a dual control problem. We provide conditions for strong duality to hold, and then prove relaxed conditions for the piece- wise linear-quadratic case. The results have applications in estimation problems with nonsmooth densities, such as log-concave maximum likelihood densities. We conclude with an example reconstructing optimal estimates from solutions to the dual control problem, which has implications for sharing solution methods between the two types of problems. 1 Introduction We consider the problem of estimating the state of a noisy dynamical system based only on noisy measurements of the system. In this paper, we assume linear dynamics, so that the progression of state variables is Xt`1 “FtpXtq ` Wt`1; t “ 0; :::; T ´ 1 (1) X0 “W0 (2) arXiv:1607.02522v1 [math.OC] 8 Jul 2016 Xt is the state variable{a random vector indexed by a discrete time-step t which ranges from 0 to some final time T . All of the results in this paper still hold in the case that the dimension nx of Xt is time-dependent, but for notational convenience we will assume that Xt P R for t “ 0; :::; T .
    [Show full text]
  • Lecture 11: October 8 11.1 Primal and Dual Problems
    10-725/36-725: Convex Optimization Fall 2015 Lecture 11: October 8 Lecturer: Ryan Tibshirani Scribes: Tian Tong Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor. 11.1 Primal and dual problems 11.1.1 Lagrangian Consider a general optimization problem (called as primal problem) min f(x) (11.1) x subject to hi(x) ≤ 0; i = 1; ··· ; m `j(x) = 0; j = 1; ··· ; r: We define its Lagrangian as m r X X L(x; u; v) = f(x) + uihi(x) + vj`j(x): i=1 j=1 Lagrange multipliers u 2 Rm; v 2 Rr. Lemma 11.1 At each feasible x, f(x) = supu≥0;v L(x; u; v), and the supremum is taken iff u ≥ 0 satisfying uihi(x) = 0; i = 1; ··· ; m. Pm Proof: At each feasible x, we have hi(x) ≤ 0 and `(x) = 0, thus L(x; u; v) = f(x) + i=1 uihi(x) + Pr j=1 vj`j(x) ≤ f(x). The last inequality becomes equality iff uihi(x) = 0; i = 1; ··· ; m. Proposition 11.2 The optimal value of the primal problem, named as f ?, satisfies: f ? = inf sup L(x; u; v): x u≥0;v ? Proof: First considering feasible x (marked as x 2 C), we have f = infx2C f(x) = infx2C supu≥0;v L(x; u; v). Second considering non-feasible x, since supu≥0;v L(x; u; v) = 1 for any x2 = C, infx=2C supu≥0;v L(x; u; v) = ? 1.
    [Show full text]
  • Epsilon Solutions and Duality in Vector Optimization
    NOT FOR QUOTATION WITHOUT THE PERMISSION OF THE AUTHOR EPSILON SOLUTIONS AND DUALITY IN VECTOR OPTIMIZATION Istvdn VdLyi May 1987 WP-87-43 Working Papers are interim reports on work of the International Institute for Applied Systems Analysis and have received only limited review. Views or opinions expressed herein do not necessarily represent those of the Institute or of its National Member Organizations. INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS 2361 Laxenburg, Austria PREFACE This paper is a continuation of the author's previous investigations in the theory of epsilon-solutions in convex vector optimization and serves as a theoretical background for the research of SDS in the field of multicriteria optimization. With the stress laid on duality theory, the results presented here give some insight into the problems arising when exact solutions have to be substituted by approximate ones. Just like in the scalar case, the available computational techniques fre- quently lead to such a situation in multicriteria optimization. Alexander B. Kurzhanski Chairman Systems and Decision Sciences Area CONTENTS 1. Introduction 2. Epsilon Optimal Elements 3. Perturbation Map and Duality 4. Conical Supports 5. Conclusion 6. References EPSILON SOLUTIONS AND DUALITY IN VECTOR OF'TIMIZATION Istv&n V&lyi The study of epsilon solutions in vector optimization problems was started in 1979 by S. S. Kutateladze [I]. These types of solutions are interesting because of their relation to nondifferentiable optimization and the vector valued extensions of Ekeland's variational principle as considered by P. Loridan [2] and I. Vdlyi [3], but computational aspects are perhaps even more important. In practical situations, namely, we often stop the calculations at values that we consider sufficiently close to the optimal solution, or use algorithms that result in some approximates of the Pareto set.
    [Show full text]
  • CONJUGATE DUALITY for GENERALIZED CONVEX OPTIMIZATION PROBLEMS Anulekha Dhara and Aparna Mehra
    JOURNAL OF INDUSTRIAL AND Website: http://AIMsciences.org MANAGEMENT OPTIMIZATION Volume 3, Number 3, August 2007 pp. 415–427 CONJUGATE DUALITY FOR GENERALIZED CONVEX OPTIMIZATION PROBLEMS Anulekha Dhara and Aparna Mehra Department of Mathematics Indian Institute of Technology Delhi Hauz Khas, New Delhi-110016, India (Communicated by M. Mathirajan) Abstract. Equivalence between a constrained scalar optimization problem and its three conjugate dual models is established for the class of general- ized C-subconvex functions. Applying these equivalent relations, optimality conditions in terms of conjugate functions are obtained for the constrained multiobjective optimization problem. 1. Introduction and preliminaries. Two basic approaches have emerged in lit- erature for studying nonlinear programming duality namely the Lagrangian ap- proach and the Conjugate Function approach. The latter approach is based on the perturbation theory which in turn helps to study stability of the optimization prob- lem with respect to variations in the data parameters. That is, the optimal solution of the problem can be considered as a function of the perturbed parameters and the effect of the changes in the parameters on the objective value of the problem can be investigated. In this context, conjugate duality helps to analyze the geometric and the economic aspects of the problem. It is because of this reason that since its early inception conjugate duality has been extensively studied by several authors for convex programming problems (see, [1, 6] and references therein). The class of convex functions possess rich geometrical properties that enable us to examine the conjugation theory. However, in non convex case, many of these properties fail to hold thus making it difficult to develop conjugate duality for such classes of functions.
    [Show full text]
  • EECS 127/227AT Fall 2020 Homework 5 Homework 5 Is Due on Gradescope by Friday 10/09 at 11.59 P.M
    EECS 127/227AT Fall 2020 Homework 5 Homework 5 is due on Gradescope by Friday 10/09 at 11.59 p.m. 1 A combinatorial problem formulated as a convex optimization problem. In this question we will see how combinatorial optimization problems can also sometimes be solved via related convex optimization problems. We also saw this in a different context in problem 5 on Homework 3 when we related λ2 to φ(G) for a graph. This problem does not have any connection with the earlier problem in Homework 3. The relevant sections of the textbooks are Sec. 8.3 of the textbook of Calafiore and El Ghaoui and Secs. 4.1 and 4.2 (except 4.2.5) of the textbook of Boyd and Vandenberghe. We have to decide which items to sell among a collection of n items. The items have given selling prices si > 0, i = 1; : : : ; n, so selling the item i results in revenue si. Selling item i also implies a transaction cost ci > 0. The total transaction cost is the sum of transaction costs of the items sold, plus a fixed amount, which we normalize to 1. We are interested in the following decision problem: decide which items to sell, with the aim of maximizing the margin, i.e. the ratio of the total revenue to the total transaction cost. Note that this is a combinatorial optimization problem, because the set of choices is a discrete set (here it is the set of all subsets of f1; : : : ; ng). In this question we will see that, nevertheless, it is possible to pose this combinatorial optimization problem as a convex optimization problem.
    [Show full text]
  • Lecture Slides on Convex Analysis And
    LECTURE SLIDES ON CONVEX ANALYSIS AND OPTIMIZATION BASED ON 6.253 CLASS LECTURES AT THE MASS. INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASS SPRING 2014 BY DIMITRI P. BERTSEKAS http://web.mit.edu/dimitrib/www/home.html Based on the books 1) “Convex Optimization Theory,” Athena Scien- tific, 2009 2) “Convex Optimization Algorithms,” Athena Sci- entific, 2014 (in press) Supplementary material (solved exercises, etc) at http://www.athenasc.com/convexduality.html LECTURE 1 AN INTRODUCTION TO THE COURSE LECTURE OUTLINE The Role of Convexity in Optimization • Duality Theory • Algorithms and Duality • Course Organization • HISTORY AND PREHISTORY Prehistory: Early 1900s - 1949. • Caratheodory, Minkowski, Steinitz, Farkas. − Properties of convex sets and functions. − Fenchel - Rockafellar era: 1949 - mid 1980s. • Duality theory. − Minimax/game theory (von Neumann). − (Sub)differentiability, optimality conditions, − sensitivity. Modern era - Paradigm shift: Mid 1980s - present. • Nonsmooth analysis (a theoretical/esoteric − direction). Algorithms (a practical/high impact direc- − tion). A change in the assumptions underlying the − field. OPTIMIZATION PROBLEMS Generic form: • minimize f(x) subject to x C ∈ Cost function f : n , constraint set C, e.g., ℜ 7→ ℜ C = X x h1(x) = 0,...,hm(x) = 0 ∩ | x g1(x) 0,...,gr(x) 0 ∩ | ≤ ≤ Continuous vs discrete problem distinction • Convex programming problems are those for which• f and C are convex They are continuous problems − They are nice, and have beautiful and intu- − itive structure However, convexity permeates
    [Show full text]
  • OPTIMIZATION and VARIATIONAL INEQUALITIES Basic Statements and Constructions
    1 OPTIMIZATION and VARIATIONAL INEQUALITIES Basic statements and constructions Bernd Kummer; [email protected] ; May 2011 Abstract. This paper summarizes basic facts in both finite and infinite dimensional optimization and for variational inequalities. In addition, partially new results (concerning methods and stability) are included. They were elaborated in joint work with D. Klatte, Univ. Z¨urich and J. Heerda, HU-Berlin. Key words. Existence of solutions, (strong) duality, Karush-Kuhn-Tucker points, Kojima-function, generalized equation, (quasi -) variational inequality, multifunctions, Kakutani Theo- rem, MFCQ, subgradient, subdifferential, conjugate function, vector-optimization, Pareto- optimality, solution methods, penalization, barriers, non-smooth Newton method, per- turbed solutions, stability, Ekeland's variational principle, Lyusternik theorem, modified successive approximation, Aubin property, metric regularity, calmness, upper and lower Lipschitz, inverse and implicit functions, generalized Jacobian @cf, generalized derivatives TF , CF , D∗F , Clarkes directional derivative, limiting normals and subdifferentials, strict differentiability. Bemerkung. Das Material wird st¨andigaktualisiert. Es soll Vorlesungen zur Optimierung und zu Vari- ationsungleichungen (glatt, nichtglatt) unterst¨utzen. Es entstand aus Scripten, die teils in englisch teils in deutsch aufgeschrieben wurden. Daher gibt es noch Passagen in beiden Sprachen sowie z.T. verschiedene Schreibweisen wie etwa cT x und hc; xi f¨urdas Skalarpro- dukt und die kanonische Bilinearform. Hinweise auf Fehler sind willkommen. 2 Contents 1 Introduction 7 1.1 The intentions of this script . .7 1.2 Notations . .7 1.3 Was ist (mathematische) Optimierung ? . .8 1.4 Particular classes of problems . 10 1.5 Crucial questions . 11 2 Lineare Optimierung 13 2.1 Dualit¨atund Existenzsatz f¨urLOP . 15 2.2 Die Simplexmethode .
    [Show full text]
  • On Strong and Total Lagrange Duality for Convex Optimization Problems
    On strong and total Lagrange duality for convex optimization problems Radu Ioan Bot¸ ∗ Sorin-Mihai Grad y Gert Wanka z Abstract. We give some necessary and sufficient conditions which completely characterize the strong and total Lagrange duality, respectively, for convex op- timization problems in separated locally convex spaces. We also prove similar statements for the problems obtained by perturbing the objective functions of the primal problems by arbitrary linear functionals. In the particular case when we deal with convex optimization problems having infinitely many convex in- equalities as constraints, the conditions we work with turn into the so-called Farkas-Minkowski and locally Farkas-Minkowski conditions for systems of convex inequalities, recently used in the literature. Moreover, we show that our new ∗Faculty of Mathematics, Chemnitz University of Technology, D-09107 Chemnitz, Germany, e-mail: [email protected]. yFaculty of Mathematics, Chemnitz University of Technology, D-09107 Chemnitz, Germany, e-mail: [email protected]. zFaculty of Mathematics, Chemnitz University of Technology, D-09107 Chemnitz, Germany, e-mail: [email protected] 1 results extend some existing ones in the literature. Keywords. Conjugate functions, Lagrange dual problem, basic constraint qualification, (locally) Farkas-Minkowski condition, stable strong duality AMS subject classification (2000). 49N15, 90C25, 90C34 1 Introduction Consider a convex optimization problem (P ) inf f(x), x2U; g(x)∈−C where X and Y are separated locally convex vector spaces, U is a non-empty closed convex subset of X, C is a non-empty closed convex cone in Y , f : X ! R is a proper convex lower semicontinuous function and g : X ! Y • is a proper C-convex function.
    [Show full text]