This Is a Postprint of the Monotonicity of the Apsidal Angle in Power-Law
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Utilization of Halo Orbit§ in Advanced Lunar Operation§
NASA TECHNICAL NOTE NASA TN 0-6365 VI *o M *o d a THE UTILIZATION OF HALO ORBIT§ IN ADVANCED LUNAR OPERATION§ by Robert W. Fmqcbar Godddrd Spctce Flight Center P Greenbelt, Md. 20771 NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON, D. C. JULY 1971 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. NASA TN D-6365 5. Report Date Jul;v 1971. 6. Performing Organization Code 8. Performing Organization Report No, G-1025 10. Work Unit No. Goddard Space Flight Center 11. Contract or Grant No. Greenbelt, Maryland 20 771 13. Type of Report and Period Covered 2. Sponsoring Agency Name and Address Technical Note J National Aeronautics and Space Administration Washington, D. C. 20546 14. Sponsoring Agency Code 5. Supplementary Notes 6. Abstract Flight mechanics and control problems associated with the stationing of space- craft in halo orbits about the translunar libration point are discussed in some detail. Practical procedures for the implementation of the control techniques are described, and it is shown that these procedures can be carried out with very small AV costs. The possibility of using a relay satellite in.a halo orbit to obtain a continuous com- munications link between the earth and the far side of the moon is also discussed. Several advantages of this type of lunar far-side data link over more conventional relay-satellite systems are cited. It is shown that, with a halo relay satellite, it would be possible to continuously control an unmanned lunar roving vehicle on the moon's far side. Backside tracking of lunar orbiters could also be realized. -
Self-Intersection of the Fallback Stream in Tidal Disruption Events
Mon. Not. R. Astron. Soc. 000, 000–000 (0000) Printed 11 December 2019 (MN LATEX style file v2.2) Self-intersection of the Fallback Stream in Tidal Disruption Events Wenbin Lu1? and Clement´ Bonnerot1y 1TAPIR, Mail Code 350-17, California Institute of Technology, Pasadena, CA 91125, USA 11 December 2019 ABSTRACT We propose a semi-analytical model for the self-intersection of the fallback stream in tidal disruption events (TDEs). When the initial periapsis is less than about 15 gravitational radii, a large fraction of the shocked gas is unbound in the form of a collision-induced outflow (CIO). This is because large apsidal precession causes the stream to self-intersect near the local escape speed at radius much below the apocenter. The rest of the fallback gas is left in more tightly bound orbits and quickly joins the accretion flow. We propose that the CIO is responsible for reprocessing the hard emission from the accretion flow into the optical band. This picture naturally explains the large photospheric radius (or low blackbody temperature) and typical line widths for optical TDEs. We predict the CIO-reprocessed spectrum in the ∼0:5 infrared to be Lν / ν , shallower than a blackbody. The partial sky coverage of the CIO also provides a unification of the diverse X-ray behaviors of optical TDEs. According to this picture, optical surveys filter out a large fraction of TDEs with low-mass blackholes due to lack of a reprocessing layer, and the volumetric rate of optical TDEs is nearly flat wrt. the 7 blackhole mass in the range M . -
Habitability of Planets on Eccentric Orbits: Limits of the Mean Flux Approximation
A&A 591, A106 (2016) Astronomy DOI: 10.1051/0004-6361/201628073 & c ESO 2016 Astrophysics Habitability of planets on eccentric orbits: Limits of the mean flux approximation Emeline Bolmont1, Anne-Sophie Libert1, Jeremy Leconte2; 3; 4, and Franck Selsis5; 6 1 NaXys, Department of Mathematics, University of Namur, 8 Rempart de la Vierge, 5000 Namur, Belgium e-mail: [email protected] 2 Canadian Institute for Theoretical Astrophysics, 60st St George Street, University of Toronto, Toronto, ON, M5S3H8, Canada 3 Banting Fellow 4 Center for Planetary Sciences, Department of Physical & Environmental Sciences, University of Toronto Scarborough, Toronto, ON, M1C 1A4, Canada 5 Univ. Bordeaux, LAB, UMR 5804, 33270 Floirac, France 6 CNRS, LAB, UMR 5804, 33270 Floirac, France Received 4 January 2016 / Accepted 28 April 2016 ABSTRACT Unlike the Earth, which has a small orbital eccentricity, some exoplanets discovered in the insolation habitable zone (HZ) have high orbital eccentricities (e.g., up to an eccentricity of ∼0.97 for HD 20782 b). This raises the question of whether these planets have surface conditions favorable to liquid water. In order to assess the habitability of an eccentric planet, the mean flux approximation is often used. It states that a planet on an eccentric orbit is called habitable if it receives on average a flux compatible with the presence of surface liquid water. However, because the planets experience important insolation variations over one orbit and even spend some time outside the HZ for high eccentricities, the question of their habitability might not be as straightforward. We performed a set of simulations using the global climate model LMDZ to explore the limits of the mean flux approximation when varying the luminosity of the host star and the eccentricity of the planet. -
1961Apj. . .133. .6575 PHYSICAL and ORBITAL BEHAVIOR OF
.6575 PHYSICAL AND ORBITAL BEHAVIOR OF COMETS* .133. Roy E. Squires University of California, Davis, California, and the Aerojet-General Corporation, Sacramento, California 1961ApJ. AND DaVid B. Beard University of California, Davis, California Received August 11, I960; revised October 14, 1960 ABSTRACT As a comet approaches perihelion and the surface facing the sun is warmed, there is evaporation of the surface material in the solar direction The effect of this unidirectional rapid mass loss on the orbits of the parabolic comets has been investigated, and the resulting corrections to the observed aphelion distances, a, and eccentricities have been calculated. Comet surface temperature has been calculated as a function of solar distance, and estimates have been made of the masses and radii of cometary nuclei. It was found that parabolic comets with perihelia of 1 a u. may experience an apparent shift in 1/a of as much as +0.0005 au-1 and that the apparent shift in 1/a is positive for every comet, thereby increas- ing the apparent orbital eccentricity over the true eccentricity in all cases. For a comet with a perihelion of 1 a u , the correction to the observed eccentricity may be as much as —0.0005. The comet surface tem- perature at 1 a.u. is roughly 180° K, and representative values for the masses and radii of cometary nuclei are 6 X 10" gm and 300 meters. I. INTRODUCTION Since most comets are observed to move in nearly parabolic orbits, questions concern- ing their origin and whether or not they are permanent members of the solar system are not clearly resolved. -
Orbital Stability Zones About Asteroids
ICARUS 92, 118-131 (1991) Orbital Stability Zones about Asteroids DOUGLAS P. HAMILTON AND JOSEPH A. BURNS Cornell University, Ithaca, New York, 14853-6801 Received October 5, 1990; revised March 1, 1991 exploration program should be remedied when the Galileo We have numerically investigated a three-body problem con- spacecraft, launched in October 1989, encounters the as- sisting of the Sun, an asteroid, and an infinitesimal particle initially teroid 951 Gaspra on October 29, 1991. It is expected placed about the asteroid. We assume that the asteroid has the that the asteroid's surroundings will be almost devoid of following properties: a circular heliocentric orbit at R -- 2.55 AU, material and therefore benign since, in the analogous case an asteroid/Sun mass ratio of/~ -- 5 x 10-12, and a spherical of the satellites of the giant planets, significant debris has shape with radius R A -- 100 km; these values are close to those of never been detected. The analogy is imperfect, however, the minor planet 29 Amphitrite. In order to describe the zone in and so the possibility that interplanetary debris may be which circum-asteroidal debris could be stably trapped, we pay particular attention to the orbits of particles that are on the verge enhanced in the gravitational well of the asteroid must be of escape. We consider particles to be stable or trapped if they considered. If this is the case, the danger of collision with remain in the asteroid's vicinity for at least 5 asteroid orbits about orbiting debris may increase as the asteroid is approached. -
Orbital Inclination and Eccentricity Oscillations in Our Solar
Long term orbital inclination and eccentricity oscillations of the planets in our solar system Abstract The orbits of the planets in our solar system are not in the same plane, therefore natural torques stemming from Newton’s gravitational forces exist to pull them all back to the same plane. This causes the inclinations of the planet orbits to oscillate with potentially long periods and very small damping, because the friction in space is very small. Orbital inclination changes are known for some planets in terms of current rates of change, but the oscillation periods are not well published. They can however be predicted with proper dynamic simulations of the solar system. A three-dimensional dynamic simulation was developed for our solar system capable of handling 12 objects, where all objects affect all other objects. Each object was considered to be a point mass which proved to be an adequate approximation for this study. Initial orbital radii, eccentricities and speeds were set according to known values. The validity of the simulation was demonstrated in terms of short term characteristics such as sidereal periods of planets as well as long term characteristics such as the orbital inclination and eccentricity oscillation periods of Jupiter and Saturn. A significantly more accurate result, than given on approximate analytical grounds in a well-known solar system dynamics textbook, was found for the latter period. Empirical formulas were developed from the simulation results for both these periods for three-object solar type systems. They are very accurate for the Sun, Jupiter and Saturn as well as for some other comparable systems. -
Probing the Interiors of Very Hot Jupiters Using Transit Light Curves
Accepted by the Astrophysical Journal A Preprint typeset using LTEX style emulateapj v. 08/22/09 PROBING THE INTERIORS OF VERY HOT JUPITERS USING TRANSIT LIGHT CURVES Darin Ragozzine & Aaron S. Wolf∗ Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 Accepted by the Astrophysical Journal ABSTRACT Accurately understanding the interior structure of extra-solar planets is critical for inferring their formation and evolution. The internal density distribution of a planet has a direct effect on the star- planet orbit through the gravitational quadrupole field created by the rotational and tidal bulges. These quadrupoles induce apsidal precession that is proportional to the planetary Love number (k2p, twice the apsidal motion constant), a bulk physical characteristic of the planet that depends on the internal density distribution, including the presence or absence of a massive solid core. We find that the quadrupole of the planetary tidal bulge is the dominant source of apsidal precession for very hot Jupiters (a . 0.025 AU), exceeding the effects of general relativity and the stellar quadrupole by more than an order of magnitude. For the shortest-period planets, the planetary interior induces precession of a few degrees per year. By investigating the full photometric signal of apsidal precession, we find that changes in transit shapes are much more important than transit timing variations. With its long baseline of ultra-precise photometry, the space-based Kepler mission can realistically detect apsidal precession with the accuracy necessary to infer the presence or absence of a massive core in very hot Jupiters with orbital eccentricities as low as e 0.003. -
Exoplanet Orbital Eccentricity: Multiplicity Relation and the Solar System
Exoplanet orbital eccentricity: Multiplicity relation and the Solar System Mary Anne Limbacha,b and Edwin L. Turnera,c,1 Departments of aAstrophysical Sciences and bMechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544; and cThe Kavli Institute for the Physics and Mathematics of the Universe, The University of Tokyo, Kashiwa 227-8568, Japan Edited by Neta A. Bahcall, Princeton University, Princeton, NJ, and approved November 11, 2014 (received for review April 10, 2014) The known population of exoplanets exhibits a much wider range of The dataset is discussed in the next section. We then show the orbital eccentricities than Solar System planets and has a much higher trend in eccentricity with multiplicity and comment on possible average eccentricity. These facts have been widely interpreted to sources of error and bias. Next we measure the mean, median, indicate that the Solar System is an atypical member of the overall and probability density distribution of eccentricities for various population of planetary systems. We report here on a strong anti- multiplicities and fit them to a simple power-law model for correlation of orbital eccentricity with multiplicity (number of planets multiplicities greater than two. This fit is used to make a rough in the system) among cataloged radial velocity (RV) systems. The estimate of the number of higher-multiplicity systems likely to be mean, median, and rough distribution of eccentricities of Solar System contaminating the one- and two-planet system samples due to as planets fits an extrapolation of this anticorrelation to the eight-planet yet undiscovered members under plausible, but far from certain, case rather precisely despite the fact that no more than two Solar assumptions. -
The Rotating Reference Frame and the Precession of the Equinoxes
The rotating reference frame and the precession of the equinoxes Adrián G. Cornejo Electronics and Communications Engineering from Universidad Iberoamericana, Calle Santa Rosa 719, CP 76138, Col. Santa Mónica, Querétaro, Querétaro, Mexico. E-mail: [email protected] (Received 7 August 2013, accepted 27 December 2013) Abstract In this paper, angular frequency of a rotating reference frame is derived, where a given body orbiting and rotating around a fixed axis describes a periodical rosette path completing a periodical “circular motion”. Thus, by the analogy between a rotating frame of reference and the whole Solar System, angular frequency and period of a possible planetary circular motion are calculated. For the Earth's case, the circular period is calculated from motion of the orbit by the rotation effect, together with the advancing caused by the apsidal precession, which results the same amount than the period of precession of the equinoxes. This coincidence could provide an alternative explanation for this observed effect. Keywords: Rotating reference frame, Lagranian mechanics, Angular frequency, Precession of the equinoxes. Resumen En este trabajo, se deriva la frecuencia angular de un marco de referencia rotante, donde un cuerpo dado orbitando y rotando alrededor de un eje fijo describe una trayectoria en forma de una roseta periódica completando un “movimiento circular” periódico. Así, por la analogía entre un marco de referencia rotacional y el Sistema Solar como un todo, se calculan la frecuencia angular y el periodo de un posible movimiento circular planetario. Para el caso de la Tierra, el periodo circular es calculado a partir del movimiento de la órbita por el efecto de la rotación, junto con el avance causado por la precesión absidal, resultando el mismo valor que el periodo de la precesión de los equinoccios. -
Earth-Moon Libration Stationkeeping: Theory, Modeling, and Operations
IAA-AAS-DyCoSS1-05-10 EARTH-MOON LIBRATION STATIONKEEPING: THEORY, MODELING, AND OPERATIONS David C. Folta*, Mark Woodard * & Tom Pavlak§, Amanda Haapala§, Kathleen Howell‡ Abstract Collinear Earth-Moon libration points have emerged as locations with immediate applications. These libration point orbits are inherently unstable and must be controlled at a rapid frequency which constrains operations and maneuver locations. Stationkeeping is challenging due to short time scales of divergence, effects of large orbital eccentricity of the secondary body, and third-body perturbations. Using the Acceleration Reconnection and Turbulence and Electrodynamics of the Moon's Interaction with the Sun (ARTEMIS) mission orbit as our platform (hypothesis), we contrast and compare promising stationkeeping strategies including Optimal Continuation and Mode Analysis that achieved consistent and reasonable operational stationkeeping costs. Background on the fundamental structure and the dynamical models to achieve these demonstrated results are discussed along with their mathematical development. INTRODUCTION Earth-Moon collinear libration points have emerged as locations with immediate applications. To fully understand the selection of Earth-Moon (EM) libration orbit orientations and amplitudes as well as the inherent problems of stationkeeping, this paper offers the following: the originating theory of EM libration orbit evolution, the use of Poincaré maps to define and select orbit characteristics, the required modeling of the libration point orbits, the -
Perturbations in Lower Uranian Orbit Review
Perturbations in Lower Uranian Orbit Review a project presented to The Faculty of the Department of Aerospace Engineering San José State University in partial fulfillment of the requirements for the degree Master of Science in Aerospace Engineering by Zaid Karajeh December 2017 approved by Dr. Jeanine Hunter Faculty Advisor Perturbations in Lower Uranian orbit Review Karajeh Z.1 San Jose State University, San Jose, California, 95116 Uranus is almost a mystery to many of the scientists and engineers on Earth today. Its existence has been known for centuries, yet the planet has been largely unexplored and thus misunderstood. This paper describes two methods for sending a spacecraft from Earth to Uranus. First, a simple Hohmann transfer from LEO to LUO. Second, a flyby assist at Jupiter via two Hohmann transfers. The results of this paper describe why a flyby assist is the ideal option for a mission to Uranus and how it optimizes the Delta V requirement, in comparison to the more expensive single Hohmann. This paper also describes the tradeoff for conducting a flyby maneuver. The methods used to produce these results are explained in detail. The N-body analysis portion of this investigation also found that propagation did occur on the a spacecraft, the size of Voyager 2. The MATLAB script developed for this analysis has been verified and the results are acceptable. Nomenclature � = semi-major axis � = eccentricity �� = standard gravitational parameter � = mass � = radius �! = distance to apoapsis �! = distance to periapsis � = time � = velocity �! = hyperbolic excess velocity ∀ = volume of a sphere � = asymptote angle � = aim radius � = phase angle � = density � = period of orbit � = angular velocity I. -
Dynamical Measurements of the Interior Structure of Exoplanets
The Astrophysical Journal, 778:100 (11pp), 2013 December 1 doi:10.1088/0004-637X/778/2/100 C 2013. The American Astronomical Society. All rights reserved. Printed in the U.S.A. DYNAMICAL MEASUREMENTS OF THE INTERIOR STRUCTURE OF EXOPLANETS Juliette C. Becker1 and Konstantin Batygin2 1 Cahill Center for Astronomy and Astrophysics, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125, USA; [email protected] 2 Institute for Theory and Computation, Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA, USA Received 2013 January 3; accepted 2013 September 11; published 2013 November 8 ABSTRACT Giant gaseous planets often reside on orbits in sufficient proximity to their host stars for the planetary quadrupole gravitational field to become non-negligible. In presence of an additional planetary companion, a precise characterization of the system’s orbital state can yield meaningful constraints on the transiting planet’s interior structure. However, such methods can require a very specific type of system. This paper explores the dynamic range of applicability of these methods and shows that interior structure calculations are possible for a wide array of orbital architectures. The HAT-P-13 system is used as a case study, and the implications of perturbations arising from a third distant companion on the feasibility of an interior calculation are discussed. We find that the method discussed here is likely to be useful in studying other planetary systems, allowing the possibility of an expanded survey of the interiors of exoplanets. Key words: planets and satellites: dynamical evolution and stability – planets and satellites: interiors Online-only material: color figures 1.