Quark•Hunters Are Rewarded Corey the Logical Choice

Total Page:16

File Type:pdf, Size:1020Kb

Quark•Hunters Are Rewarded Corey the Logical Choice NEWS NOBEL PHYSICS------------------- NOBEL CHEMISTRY------ Quark•hunters are rewarded Corey the Washington Inelastic scattering produced, as ex­ THE Nobel physics prize committee this pected, a complex mess of new particles, logical choice year took what may be the final step in its but Friedman, Kendall and Taylor found London curiously unchronological recognition of that the statistical properties of this mess THIS year's Nobel prize in chemistry has the experimental discoveries that have behaved in a relatively simple way at been awarded to Elias Corey of Harvard established, over the past few decades, the higher energies. This 'scaling' of the University, Massachusetts, for his con­ generally accepted standard model of results of deep inelastic scattering ( deep tributions to synthetic organic chemistry. elementary particle physics. The winners, because the more energetic electrons were Corey is widely credited by chemists as Jerome Friedman and Henry Kendall of able to penetrate further into the proton) having played a key part in transforming the Massachusetts Institute of Technology did not have any immediate interpreta­ organic synthesis from something resemb­ and Richard Taylor of the Stanford Linear tion, but it struck some theoretical physi­ ling a 'black art' to a discipline founded Accelerator Center {SLAC), collaborated cists, in particular James Bjorken and firmly on logic. That he has won the prize in 1967 on electron-proton scattering Richard Feynmann, as a clue to some alone rather than sharing it is itself a testa­ studies at SLAC that demonstrated the underlying simplicity in proton structure. ment to his position in the field and the existence of smaller particles inside the Feynmann realized that scaling made pervasive influence of his ideas. proton. Murray Gell-Mann, a co-inventor sense if, at high energies, the electrons Over the past three decades, Corey has with George Zweig of these subparticles, were interacting with individual subunits devised synthetic routes to more than 100 named quarks, won the physics prize in of the proton rather than with its consti­ natural products, many of which have 1969, but, for reasons the secretive tuents as a whole. He called the subunits found wide use in medicine and industry. Swedes are unlikely to reveal, it has taken partons, and argued that the results of He is perhaps best known for leading the another 21 years for the experimental deep inelastic scattering showed that the group that in 1969 made the first synthetic work that substantiated Gell-Mann's partons moved rather freely inside the prostaglandins, molecules involved in the hypothesis to be similarly rewarded. protons. This seemed to be at odds with regulation of among other things blood Although the results obtained by Fried­ Gell-Mann's theory, because his quarks pressure and the heart. But it was not so man, Kendall and Taylor turned out to had to be strongly interacting. At the same much his prolific output that attracted the be of fundamental importance, their ex­ time, according to Bjorken, there were Nobel Committee as his strictly logical periment was originally seen as a long­ doubts about the reality of the scaling approach to complex syntheses. shot at best, a waste of accelerator time at laws, and also alternative explanations for In the 1950s, at the start of his career, worst. When it came on-line in 1966, the them that involved not proton substruc­ organic synthesis was largely a trial­ Stanford Linear Accelerator was mostly ture but new dynamical effects in the and-error pursuit. Progress was being devoted to studies of elastic electron electron-proton interaction. made in understanding the mechanisms of scattering, in which the aim was to record The programme of deep inelastic organic reactions and in developing useful the deflections and energy losses of elec­ scattering studies was to continue for reagents, but synthetic chemists still ana­ trons bounced off protons. Inelastic many years, accumulating results that lysed target molecules case by case. scattering experiments, which Friedman, allowed different explanations to be dis­ In the absence of general rules, the Kendall and Taylor decided to pursue, tinguished. On the theoretical front prevailing approach was to identify a poss­ were referred to by some as "beam it was eventually realized that, at suffici­ ible starting subunit (a readily available surveys": an electron was slammed into ently high energies, quarks could theoret­ reagent, for example) within the structure the protons at high energy to create a ically behave at close range as if they were of the target molecule. The problem then shower of new particles, and the debris free particles, but still be inextricably became how to manipulate the subunit so was examined to see if any useful second­ bound up inside the proton. as to generate the full structure. ary beams (of muons, for example) By the mid-1970s, quarks had become This approach led to some notable suc­ could be extracted. real particles, not abstractions. And in the cesses, such as Robert Woodward's heroic The standard wisdom at the time was long run the success of the quark model synthesis of chlorophyll, one of the that the mess of debris created by inelastic put physics on the road towards unification achievements that earned him the Nobel scattering was too complex to be under­ mania, the goal of which is to assemble all prize in chemistry in 1965. Yet by and stood in a way that would shed light on the forces of nature into some single, all­ large, chemical manipulations were still the inner structure, if there were any, of encompassing model . deployed in an ad hoc fashion , a practice the proton. Elastic scattering, the modern This year's physics award, in conjunc­ that remained the norm until the 1960s version of Rutherford's famous experi­ tion with that of two years ago, when when Corey began working on sesquiter­ ment in which he scattered alpha particles Leon Lederman, Melvin Schwartz and penes, a family of natural products whose off atoms to show the presence of small, Jack Steinberger were made Nobel laure­ structures were void of obvious starting dense, electrically charged atomic nuclei, ates for their discovery of neutrinos in subunits. was instead thought to be the way to probe the early 1960s, corrects an omission that Corey reasoned that to devise logical the proton. But the first round of results elementary particle physicists had long synthetic routes to such molecules, it was from elastic scattering experiments noted. In contrast, the 1983 discovery of necessary to work backwards from the end showed nothing of interest, indicating the W and Z particles, crucial to unifica­ product, disconnecting chemical structure only that the proton seemed to be a tion of the weak and electromagnetic for­ until one obtained a set of simple precur­ smooth, structureless distribution of ces, was promptly recognized when Carlo sors. In seminal papers published in 1967 charge. In retrospect, this was inevitable. Rubbia and Simon van der Meer won the and 1968, Corey wove his ideas into a Elastic scattering could have picked up the physics prize the following year. general synthetic strategy, coining the existence of a hard core to the proton, as With most notable particle discoveries term 'retrosynthetic' analysis to describe in the Rutherford experiment, but now rewarded, it may be that physicists it. charged quarks moving rapidly about will have to find the top quark or the Put crudely, the analysis involves sub­ inside the proton would, to the passing electroweak Higgs boson before the jecting the target molecule of the synthesis electron, be indistinguishable from a Nobel will come their way again. to a series of stepwise dissections, accord­ smooth charge distribution. David Lindley ing to a set of simple rules bearing on the 698 NATURE · VOL 34 7 · 25 OCTOBER 1990 © 1990 Nature Publishing Group.
Recommended publications
  • Unification of Nature's Fundamental Forces
    Unification of Nature’s Geoffrey B. West Fredrick M. Cooper Fundamental Forces Emil Mottola a continuing search Michael P. Mattis it was explicitly recognized at the time that basic research had an im- portant and seminal role to play even in the highly programmatic en- vironment of the Manhattan Project. Not surprisingly this mode of opera- tion evolved into the remarkable and unique admixture of pure, applied, programmatic, and technological re- search that is the hallmark of the present Laboratory structure. No- where in the world today can one find under one roof such diversity of talent dealing with such a broad range of scientific and technological challenges—from questions con- cerning the evolution of the universe and the nature of elementary parti- cles to the structure of new materi- als, the design and control of weapons, the mysteries of the gene, and the nature of AIDS! Many of the original scientists would have, in today’s parlance, identified themselves as nuclear or particle physicists. They explored the most basic laws of physics and continued the search for and under- standing of the “fundamental build- ing blocks of nature’’ and the princi- t is a well-known, and much- grappled with deep questions con- ples that govern their interactions. overworked, adage that the group cerning the consequences of quan- It is therefore fitting that this area of Iof scientists brought to Los tum mechanics, the structure of the science has remained a highly visi- Alamos to work on the Manhattan atom and its nucleus, and the devel- ble and active component of the Project constituted the greatest as- opment of quantum electrodynamics basic research activity at Los Alam- semblage of scientific talent ever (QED, the relativistic quantum field os.
    [Show full text]
  • People and Things
    People and things An irresistible photograph: at a StAC Christmas party. Laboratory Director Pief Panofsky was presented with a CERN T-shirt, which he promptly put on. With him in the picture are (left to right) Roger Gear hart playing a seasonal master of ceremonies role, J. J. Murray and Ed Seppi. On people Elected vice-president of the Amer­ ican Physical Society for this year is Robert E. Marshak of Virginia Polytechnic Institute and State Uni­ versity. He succeeds Maurice Goldhaberr who becomes president­ elect. The new APS president is Arthur Schawlow of Stanford. In the same elections, Columbia theorist Malvin Ruder man was elected to serve for four years as councillor-at-large. Gisbert zu Pulitz, Scientific Director of the Darmstadt Heavy Ion Linear Accelerator Laboratory and Profes­ sor of Physics at the University of Heidelberg, has been elected as the new Chairman of the Association of German Research Centres (Ar- beitsgemeinschaft der Grossfor- schungseinrichtungen in der Bun- desrepublik Deutschland), succeed­ ing Herwig Schopper. The Associa­ the American Association for the tion includes the Julich and Karls­ Advancement of Science. ruhe nuclear research centres, LEP optimization DESY, and the Max Planck Institute for Plasma Physics as well as other The detail of the LEP electron-posi­ centres in the technical and biome­ tron storage ring project continues dical fields. to be studied so as to optimize the Moves at Brookhaven machine parameters from the point of view of performance and of cost. Nick Samios, former chairman of This optimization stays within the Brookhaven's Physics Department, description of Phase I of LEP which becomes the Laboratory's Deputy was agreed by the Member States Director for High Energy and Nu­ at the CERN Council meeting in clear Physics.
    [Show full text]
  • Murray Gell-Mann Hadrons, Quarks And
    A Life of Symmetry Dennis Silverman Department of Physics and Astronomy UC Irvine Biographical Background Murray Gell-Mann was born in Manhattan on Sept. 15, 1929, to Jewish parents from the Austro-Hungarian empire. His father taught German to Americans. Gell-Mann was a child prodigy interested in nature and math. He started Yale at 15 and graduated at 18 with a bachelors in Physics. He then went to graduate school at MIT where he received his Ph. D. in physics at 21 in 1951. His thesis advisor was the famous Vicky Weisskopf. His life and work is documented in remarkable detail on videos that he recorded on webofstories, which can be found by just Google searching “webofstories Gell-Mann”. The Young Murray Gell-Mann Gell-Mann’s Academic Career (from Wikipedia) He was a postdoctoral fellow at the Institute for Advanced Study in 1951, and a visiting research professor at the University of Illinois at Urbana– Champaign from 1952 to 1953. He was a visiting associate professor at Columbia University and an associate professor at the University of Chicago in 1954-55, where he worked with Fermi. After Fermi’s death, he moved to the California Institute of Technology, where he taught from 1955 until he retired in 1993. Web of Stories video of Gell-Mann on Fermi and Weisskopf. The Weak Interactions: Feynman and Gell-Mann •Feynman and Gell-Mann proposed in 1957 and 1958 the theory of the weak interactions that acted with a current like that of the photon, minus a similar one that included parity violation.
    [Show full text]
  • A Peek Into Spin Physics
    A Peek into Spin Physics Dustin Keller University of Virginia Colloquium at Kent State Physics Outline ● What is Spin Physics ● How Do we Use It ● An Example Physics ● Instrumentation What is Spin Physics The Physics of exploiting spin - Spin in nuclear reactions - Nucleon helicity structure - 3D Structure of nucleons - Fundamental symmetries - Spin probes in beyond SM - Polarized Beams and Targets,... What is Spin Physics What is Spin Physics ● The Physics of exploiting spin : By using Polarized Observables Spin: The intrinsic form of angular momentum carried by elementary particles, composite particles, and atomic nuclei. The Spin quantum number is one of two types of angular momentum in quantum mechanics, the other being orbital angular momentum. What is Spin Physics What Quantum Numbers? What is Spin Physics What Quantum Numbers? Internal or intrinsic quantum properties of particles, which can be used to uniquely characterize What is Spin Physics What Quantum Numbers? Internal or intrinsic quantum properties of particles, which can be used to uniquely characterize These numbers describe values of conserved quantities in the dynamics of a quantum system What is Spin Physics But a particle is not a sphere and spin is solely a quantum-mechanical phenomena What is Spin Physics Stern-Gerlach: If spin had continuous values like the classical picture we would see it What is Spin Physics Stern-Gerlach: Instead we see spin has only two values in the field with opposite directions: or spin-up and spin-down What is Spin Physics W. Pauli (1925)
    [Show full text]
  • Lesson 49: Quarks
    Lesson 49: Quarks By 1960 physicists felt pretty much like you do right now... confused! • Leptons are really small, and there are only six of them (and their antiparticles), so it seems like they are probably fundamental particles. • The hadrons (mesons and baryons) are really big, and there are so many of them, that it seems like maybe they are made up of just a few other smaller fundamental particles. ◦ In 1963 Murray Gell-Mann and George Zweig independently suggested the properties of the fundamental particles that make up the hadrons, named quarks. To explain the two most important hadrons, protons and neutrons, we only need two of these quarks... 2 up quark with a e charge → symbol is u. ◦ 3 1 down quark with a − e charge → symbol is d. ◦ 3 • This bothered physicists, since it involved having charges that were a fraction of an elementary charge, which had never been seen. electrons ◦ By 1967 the Stanford Linear Accelerator was u u being used to shoot high energy electrons at protons. The electrons deflected around the d proton in an uneven pattern that suggested the electrons proton charge of a proton was not evenly spread out, just as the quark model suggested. Illustration 1: The electrons are deflected around • The quark model eventually built up to having six the proton because of the concentration of quarks and their antiparticles (wow! just like there positively charged quarks near the top and are six leptons and their antiparticles). negatively charged quarks near the bottom. ◦ With these six quarks and their antiquarks we can explain all the hadrons.
    [Show full text]
  • The Extraction of the ¯ D/¯U Ratio in Nuclear Media
    The Extraction of the d=¯ u¯ Ratio in Nuclear Media by Marshall Scott A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Applied Physics) in The University of Michigan 2020 Doctoral Committee: Professor Wolfgang Lorenzon, Chair Professor Christine Aidala Professor Jianming Qian Professor Gregory Tarle Marshall Scott [email protected] ORCID iD:0000-0003-1105-1033 c Marshall Scott 2020 Acknowledgments First and foremost I would like to thank my parents, Billy Scott and Alyce Coffey, and my brother Langston Scott for always being there for me and supporting me throughout my life. Words cannot describe how fortunate I am to have these three pillars in my life. I would also like to acknowledge my extended family. A heartfelt thank you goes out to Tristan Geis and Thu Huynh for your love, kindness, and for being my home away from home for all of these years. I would also like to thank Rachel Moss, Liz Lindly, Daniel and Laurelyn Leimer, Kathleen Stafford, Alan McCray, and Micheal and Lauren Baird for your deep, loving friendship. I don’t know where I would be without Erika Ellis, Amee´ ”A. J. Maloy” Hennig, Jazmin Berlanga Medina, and Amy Ireton. Your insight, thoughtfulness, and support has often been the light at the end of a very dark tunnel. I would also like to thank Jerry and Leete Kendrick for always making me feel like family and Anastasia Rumsey and Leta Woodruff for the warmth and love that you have shown me over the years. A great thanks goes to Anthony Della Pella and the burger group: Will and Jade Clark, Jonathan Guzman, Jay Barraza, Jenia Rousseva, and Jeremy Waters, for all laughs and good times in graduate school.
    [Show full text]
  • Quarks and Their Discovery
    Quarks and Their Discovery Parashu Ram Poudel Department of Physics, PN Campus, Pokhara Email: [email protected] Introduction charge (e) of one proton. The different fl avors of Quarks are the smallest building blocks of matter. quarks have different charges. The up (u), charm They are the fundamental constituents of all the (c) and top (t) quarks have electric charge +2e/3 hadrons. They have fractional electronic charge. and the down (d), strange (s) and bottom (b) quarks Quarks never exist alone in nature. They are always have charge -e/3; -e is the charge of an electron. The found in combination with other quarks or antiquark masses of these quarks vary greatly, and of the six, in larger particle of matter. By studying these larger only the up and down quarks, which are by far the particles, scientists have determined the properties lightest, appear to play a direct role in normal matter. of quarks. Protons and neutrons, the particles that make up the nuclei of the atoms consist of quarks. There are four forces that act between the quarks. Without quarks there would be no atoms, and without They are strong force, electromagnetic force, atoms, matter would not exist as we know it. Quarks weak force and gravitational force. The quantum only form triplets called baryons such as proton and of strong force is gluon. Gluons bind quarks or neutron or doublets called mesons such as Kaons and quark and antiquark together to form hadrons. The pi mesons. Quarks exist in six varieties: up (u), down electromagnetic force has photon as quantum that (d), charm (c), strange (s), bottom (b), and top (t) couples the quarks charge.
    [Show full text]
  • Spinorial Regge Trajectories and Hagedorn-Like Temperatures
    EPJ Web of Conferences will be set by the publisher DOI: will be set by the publisher c Owned by the authors, published by EDP Sciences, 2016 Spinorial Regge trajectories and Hagedorn-like temperatures Spinorial space-time and preons as an alternative to strings Luis Gonzalez-Mestres1;a 1Megatrend Cosmology Laboratory, John Naisbitt University, Belgrade and Paris Goce Delceva 8, 11070 Novi Beograd, Serbia Abstract. The development of the statistical bootstrap model for hadrons, quarks and nuclear matter occurred during the 1960s and the 1970s in a period of exceptional theo- retical creativity. And if the transition from hadrons to quarks and gluons as fundamental particles was then operated, a transition from standard particles to preons and from the standard space-time to a spinorial one may now be necessary, including related pre-Big Bang scenarios. We present here a brief historical analysis of the scientific problematic of the 1960s in Particle Physics and of its evolution until the end of the 1970s, including cos- mological issues. Particular attention is devoted to the exceptional role of Rolf Hagedorn and to the progress of the statisticak boostrap model until the experimental search for the quark-gluon plasma started being considered. In parallel, we simultaneously expose recent results and ideas concerning Particle Physics and in Cosmology, an discuss current open questions. Assuming preons to be constituents of the physical vacuum and the stan- dard particles excitations of this vacuum (the superbradyon hypothesis we introduced in 1995), together with a spinorial space-time (SST), a new kind of Regge trajectories is expected to arise where the angular momentum spacing will be of 1/2 instead of 1.
    [Show full text]
  • On the Nobel Prize in Physics, Controversies and Influences by C
    Global Journal of Science Frontier Research Physics and Space Science Volume 13 Issue 3 Version 1.0 Year 2013 Type : Double Blind Peer Reviewed International Research Journal Publisher: Global Journals Inc. (USA) Online ISSN: 2249-4626 & Print ISSN: 0975-5896 On the Nobel Prize in Physics, Controversies and Influences By C. Y. Lo Applied and Pure Research Institute Abstract - The Nobel Prizes were established by Alfred Bernhard Nobel for those who confer the "greatest benefit on mankind", and specifically in physics, chemistry, peace, physiology or medicine, and literature. In 1968 the Nobel Memorial Prize in Economic Sciences was established. However, the proceedings, nominations, awards, and exclusions have generated criticism and controversy. The controversies and influences related to the Nobel Physics Prize are discussed. The 1993 Nobel Prize in Physics was awarded to Hulse and Taylor, but the related theory was still incorrect as Gullstrand conjectured. The fact that Christodoulou received honors for related errors testified, “Unthinking respect for authority is the greatest enemy of truth” as Einstein asserted. The strategy based on the recognition time lag failed because of mathematical and logical errors. These errors were also the obstacles for later crucial progress. Also, it may be necessary to do follow up work after the awards years later since an awarded work may still be inadequately understood. Thus, it is suggested: 1) To implement the demands of Nobel’s will, the Nobel Committee should rectify their past errors in sciences. 2) To timely update the status of achievements of awarded Nobel Prizes in Physics, Chemistry, and Physiology or Medicine. 3) To strengthen the implementation of Nobel’s will, a Nobel Prize for Mathematics should be established.
    [Show full text]
  • Physics 30 Lesson 38 Quarks
    Physics 30 Lesson 38 Quarks Before or during the reading of this lesson you may want to visit the following websites: http://particleadventure.org/frameless/startstandard.html http://nobelprize.org/educational_games/physics/matter/1.html I. Development of quark theory (mostly optional) As more and more hadrons were discovered it became clear that they were not all elementary particles. This theoretical quandary was addressed independently in 1963 by two American physicists, Murray Gell-Mann and George Zweig. They proposed that all known hadrons were composite particles – i.e. hadrons were each made up of a cluster of two or more particles. While Zweig called the particles “aces”, Gell-Mann light-heartedly called them quarks from the phrase “Three quarks for Muster Mark” in James Joyce's novel Finnegans Wake. (Gell-Mann and other physicists, along with some high school physics teachers, mistakenly believe they have a sense of humour.) To account for every hadron known at the time, Gell-Mann and Zweig proposed the following quark properties: Quarks interact primarily via the strong nuclear force. There are three varieties, or flavours, of quarks and antiquarks. These quark flavours came to be called up (u), down (d), and sideways (s). Later, the sideways quark was renamed the strange (s) quark to describe particles that interact strangely – i.e. they interact primarily via the strong force yet decay only via the weak nuclear force. Each quark was assigned a baryon number of +⅓ and each antiquark a baryon number of –⅓. All baryons are composed of three quarks and all antibaryons are composed of three antiquarks.
    [Show full text]
  • Concrete Quarks
    Concrete Quarks George Zweig MIT, Research Laboratory of Electronics, 26-169 77 Massachusetts Ave, Cambridge, MA 02139 email: [email protected] Abstract A short history of the physics of strongly interacting particles is presented. Events leading to the discovery, and eventual acceptance, of concrete quarks are described.1 1 Introduction This year is the fiftieth anniversary of the discovery of quarks, and last year was the fortieth anniversary of the birth of QCD (Quantum Chromodynamics). QCD developed in two phases, the first involving the discovery of quarks, the second specifying the nature of their interactions. These phases arose from two very different traditions, that of Rutherford and Bohr, and that of Einstein. The first was grounded in observation, and the startling interpretation of what was observed, the second in a triumph of the imagination made possible by the power of quantum field theory. Here the first phase, culminating in the discovery and acceptance of concrete quarks, is described. 2 How it started The story of QCD begins with the discovery of spontaneous radioactivity by Henri Becquerel in 1896 who thought that X-rays, discovered just a few months earlier, might be emitted by phosphorescent substances. He noticed, quite by accident, that crystalline crusts of uranium salts created silhouettes of great intensity when left in a drawer next to a photographic plate wrapped in black paper, even though the salt had not been exposed to sunlight (Fig. 1). Figure 1: One of Becquerel's photographic plates fogged by exposure to radiation from potassium uranyl sulfate. The shadow of a metal Maltese Cross placed between the plate and the uranium salt is visible.
    [Show full text]
  • Murray Gell-Mann Hadrons, Quarks And
    A Life of Symmetry Dennis Silverman Department of Physics and Astronomy UC Irvine Biographical Background Murray Gell-Mann was born in Manhattan on Sept. 15, 1929, to Jewish parents from the Austro-Hungarian empire. His father taught German to Americans. Gell-Mann was a child prodigy interested in nature and math. He started Yale at 15 and graduated at 18 with a bachelors in Physics. He then went to graduate school at MIT where he received his Ph. D. in physics at 21 in 1951. His thesis advisor was the famous Vicky Weisskopf. His life and work is documented in remarkable detail on videos that he recorded on webofstories, which can be found by just Google searching “webofstories Gell-Mann”. The Young Murray Gell-Mann Gell-Mann’s Academic Career (from Wikipedia) He was a postdoctoral fellow at the Institute for Advanced Study in 1951, and a visiting research professor at the University of Illinois at Urbana– Champaign from 1952 to 1953. He was a visiting associate professor at Columbia University and an associate professor at the University of Chicago in 1954-55, where he worked with Fermi. After Fermi’s death, he moved to the California Institute of Technology, where he taught from 1955 until he retired in 1993. Web of Stories video of Gell-Mann on Fermi and Weisskopf. The Weak Interactions: Feynman and Gell-Mann •Feynman and Gell-Mann proposed in 1957 and 1958 the theory of the weak interactions that acted with a current like that of the photon, minus a similar one that included parity violation.
    [Show full text]