WO 2017/190020 Al 02 November 2017 (02.11.2017) W !P O PCT

Total Page:16

File Type:pdf, Size:1020Kb

WO 2017/190020 Al 02 November 2017 (02.11.2017) W !P O PCT (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2017/190020 Al 02 November 2017 (02.11.2017) W !P O PCT (51) International Patent Classification: SCHORK, Nicholas Joseph [US/US]; 567 South Sierra C12Q 1/68 (2006.01) G01N 33/53 (2006.01) #87, Solana Beach, California 92075 (US). (21) International Application Number: (72) Inventors: CAYER, Devon Michael; 1019 Loring Street, PCT/US20 17/030 146 Unit A, San Diego, California 92 109 (US). GHADIRI, Mo¬ hammad Reza; 5133 Seagrove Court, San Diego, Califor (22) International Filing Date: nia 92130 (US). 28 April 2017 (28.04.2017) (74) Agent: MCNAMARA, Laurie et al; WILSON SONSINI (25) Filing Language: English GOODRICH & ROSATI, 650 Page Mill Road, Palo Alto, (26) Publication Language: English California 94304 (US). (30) Priority Data: (81) Designated States (unless otherwise indicated, for every 62/329,138 28 April 2016 (28.04.2016) US kind of national protection available): AE, AG, AL, AM, 62/329,143 28 April 2016 (28.04.2016) US AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, (71) Applicant: THE SCRIPPS RESEARCH INSTITUTE DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, [US/US]; 10550 North Torrey Pines Road, La Jolla, Cali HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KH, KN, KP, KR, fornia 92037 (US). KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, (72) Inventors; and MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (71) Applicants: NAZOR, Kristopher Lancaster [US/US]; PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, 10607 Porto Court, San Diego, California 92124 (US). (54) Title: OLIGONUCLEOTIDE CONJUGATES AND USES THEREOF universal s universal s 2 (reverse GS primer] (forward NGS primer} FIG. 12A © o o (57) Abstract: Oligonucleotide conjugates and uses thereof are provided. Aspects of the subject oligonucleotide conjugates include a targeting component, a linker component, a cleavage component, and an oligonucleotide component. The oligonucleotide comprises an identifier sequence or a first and second identifier sequence, allowing for detection and quantification of a target using methods such as next generation sequence and quantitative PCR. Methods of making and using the oligonucleotide conjugates in the diagnosis, © prevention and/or treatment of cancer and other diseases are also provided. o [Continued on nextpage] WO 2017/190020 Al llll II II 11III I II I II I II II 11II III II I II SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG). Published: — with international search report (Art. 21(3)) — before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h)) — with sequence listing part of description (Rule 5.2(a)) OLIGONUCLEOTIDE CONJUGATES AND USES THEREOF CROSS-REFERENCE [0001] This application claims the benefit of U.S. Provisional Application No. 62/329,138, filed April 28, 2016, and U.S. Provisional Application No. 62/329,143, filed April 28, 2016, both of which are incorporated herein by reference. REFERENCE TO A SEQUENCE LISTING [0002] The instant application contains a Sequence Listing which has been filed electronically in ASCII format and is hereby incorporated by reference in its entirety. Said ASCII copy, created on April 27, 2017, is named 52184-702_601_SL.txt and is 68,942 bytes in size. STATEMENT AS TO FEDERALLY SPONSORED RESEARCH [0003] This invention was made with the support of the United States government under Contract number GM067170 by the National Institute of General Medical Sciences. BACKGROUND [0004] Malignant tumors (cancers) are the second leading cause of death in the United States, after heart disease (Boring et al., CA Cancel J. Clin. 43:7 (1993)). Cancer is characterized by the increase in the number of abnormal, or neoplastic, cells derived from a normal tissue that proliferate to form a tumor mass, the invasion of adjacent tissues by these neoplastic tumor cells, and the generation of malignant cells which eventually spread via the blood or lymphatic system to regional lymph nodes and to distant sites via a process called metastasis. In a cancerous state, a cell proliferates under conditions in which normal cells would not grow. Cancer manifests itself in a wide variety of forms, characterized by different degrees of invasiveness and aggressiveness. [0005] In attempts to discover effective cellular targets for cancer therapy, researchers have sought to identify transmembrane or otherwise membrane-associated polypeptides that are specifically expressed on the surface of one or more particular types of cancer cells as compared to normal, non-cancerous cells. Often, such membrane-associated polypeptides are more abundantly expressed on the surface of the cancer cells as compared to non-cancerous cells, and thus provide a mechanism for identifying and distinguishing cancer cells from non-cancerous cells. The identification of such tumor-associated cell surface antigen polypeptides has given rise to the ability to specifically target cancer cells for destruction. [0006] Every cancer is unique, with a subset of mutations that give rise to a tumorigenic phenotype. As such, the cell surfaces of cancerous cells are highly variable, making treatment of cancer highly dependent on the ability of targeted therapeutic agents to bind tumorigenic tissue. The ability to probe cancerous cells with all currently available targeted therapies (antibody- drug-conjugates, CAR T-cells, or bispecific antibodies) and to quickly determine which treatment comprising these targeted therapies is able to bind cancerous cells would be highly desirable. In addition, the ability to quickly and cost-effectively track and adjust therapy depending on how cancerous cells mutate and gain resistance to particular therapies would allow for maximal treatment efficacy with minimal side effects. In addition, the ability to determine whether circulating cancerous cells are present in a patient prior to manifestation of cancer with metastatic potential would enable early-treatment of cancer that is isolated in select tissues. The present disclosure addresses these and other needs. SUMMARY [0007] Oligonucleotide conjugates and uses thereof are provided. An aspect of the subject oligonucleotide conjugates includes a targeting component, a linker component, a cleavage component, and an oligonucleotide component. Methods of making and using the subject oligonucleotide conjugates in the diagnosis, prevention and/or treatment of cancer and other diseases are also provided. [0008] An aspect of the disclosure includes an oligonucleotide conjugate, comprising: a) a targeting component, b) a linker component, c) a cleavage component, and d) an oligonucleotide component. In one aspect, the targeting component comprises a polymer. In one aspect, the polymer comprises an amino acid, a nucleic acid, or a polysaccharide. In one aspect, the nucleic acid is selected from the group consisting of: a morpholino, a peptide nucleic acid (PNA), a thioester peptide nucleic acid (tPNA), a locked nucleic acid (LNA), a phosphorothioate, a phosphonoacetate (PACE) phosphoramidite, a ribonucleic acid (RNA), and a deoxyribonucleic acid (DNA). In one aspect, the targeting component is selected from the group consisting of: an antibody, an antibody fragment, an enzyme, a small molecule, a lectin, and a carbohydrate. In one aspect, the linker component comprises a polypeptide. In one aspect, the linker component does not comprise a polypeptide. In one aspect, the linker component is selected from the group consisting of: a tetrazine ligation linker, a strain-promoted-azide-alkylene (SPAAC) linker, a maleimide linker, a succinimide linker, a tyrosine linker, a chemoenzymatic linker, a hydrazone linker, and a hydrazine linker. In one aspect, the cleavage component comprises a light- cleavable cleavage component. In one aspect, the cleavage component comprises a chemically- cleavable cleavage component. In one aspect, the cleavage component comprises an oligonucleotide. In one aspect, the oligonucleotide of the cleavable component comprises a restriction site. In one aspect, the restriction site comprises a number of nucleic acid residues ranging from about 6 to about 12. In one aspect, the length of the oligonucleotide component comprises a number of nucleic acid residues ranging from about 16 to about 120. [0009] In one aspect, the oligonucleotide component comprises a first universal sequence, a second universal sequence, and an identifier sequence, and wherein the identifier sequence identifies a binding target of the targeting component. In one aspect, the targeting component binds to a protein, a lipid, a carbohydrate, or a small molecule. In one aspect, the small molecule is a folate molecule. In one aspect, the targeting component binds to a protein. In one aspect, the protein is a lectin or a cytokine. In one aspect, the protein is an intracellular protein, an extracellular protein, or a cell surface protein. In one aspect, the protein is a cell surface protein. In one aspect, the cell surface protein is HER2, FOLR1, NCAM1 (CD56), CD274 (PD-L2), CD278 (ICOS), CD9, CD 104 or CD1 19. In one aspect, the first and the second universal sequences are different.
Recommended publications
  • Spider-Venom Peptides As Therapeutics
    Toxins 2010, 2, 2851-2871; doi:10.3390/toxins2122851 OPEN ACCESS toxins ISSN 2072-6651 www.mdpi.com/journal/toxins Review Spider-Venom Peptides as Therapeutics Natalie J. Saez, Sebastian Senff, Jonas E. Jensen, Sing Yan Er, Volker Herzig, Lachlan D. Rash and Glenn F. King * Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, 4072, Australia; E-Mails: [email protected] (N.J.S.); [email protected] (S.S.); [email protected] (J.E.J.); [email protected] (S.Y.E.); [email protected] (V.H.); [email protected] (L.D.R.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: 61-7-3346-2025; Fax: 61-7-3346-2021. Received: 16 November 2010; in revised form: 17 December 2010 / Accepted: 17 December 2010 / Published: 20 December 2010 Abstract: Spiders are the most successful venomous animals and the most abundant terrestrial predators. Their remarkable success is due in large part to their ingenious exploitation of silk and the evolution of pharmacologically complex venoms that ensure rapid subjugation of prey. Most spider venoms are dominated by disulfide-rich peptides that typically have high affinity and specificity for particular subtypes of ion channels and receptors. Spider venoms are conservatively predicted to contain more than 10 million bioactive peptides, making them a valuable resource for drug discovery. Here we review the structure and pharmacology of spider-venom peptides that are being used as leads for the development of therapeutics against a wide range of pathophysiological conditions including cardiovascular disorders, chronic pain, inflammation, and erectile dysfunction.
    [Show full text]
  • The Food Poisoning Toxins of Bacillus Cereus
    toxins Review The Food Poisoning Toxins of Bacillus cereus Richard Dietrich 1,†, Nadja Jessberger 1,*,†, Monika Ehling-Schulz 2 , Erwin Märtlbauer 1 and Per Einar Granum 3 1 Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig Maximilian University of Munich, Schönleutnerstr. 8, 85764 Oberschleißheim, Germany; [email protected] (R.D.); [email protected] (E.M.) 2 Department of Pathobiology, Functional Microbiology, Institute of Microbiology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; [email protected] 3 Department of Food Safety and Infection Biology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. Box 5003 NMBU, 1432 Ås, Norway; [email protected] * Correspondence: [email protected] † These authors have contributed equally to this work. Abstract: Bacillus cereus is a ubiquitous soil bacterium responsible for two types of food-associated gastrointestinal diseases. While the emetic type, a food intoxication, manifests in nausea and vomiting, food infections with enteropathogenic strains cause diarrhea and abdominal pain. Causative toxins are the cyclic dodecadepsipeptide cereulide, and the proteinaceous enterotoxins hemolysin BL (Hbl), nonhemolytic enterotoxin (Nhe) and cytotoxin K (CytK), respectively. This review covers the current knowledge on distribution and genetic organization of the toxin genes, as well as mechanisms of enterotoxin gene regulation and toxin secretion. In this context, the exceptionally high variability of toxin production between single strains is highlighted. In addition, the mode of action of the pore-forming enterotoxins and their effect on target cells is described in detail. The main focus of this review are the two tripartite enterotoxin complexes Hbl and Nhe, but the latest findings on cereulide and CytK are also presented, as well as methods for toxin detection, and the contribution of further putative virulence factors to the diarrheal disease.
    [Show full text]
  • Evaluation of the Individual and Combined Toxicity of Fumonisin Mycotoxins in Human Gastric Epithelial Cells
    International Journal of Molecular Sciences Article Evaluation of the Individual and Combined Toxicity of Fumonisin Mycotoxins in Human Gastric Epithelial Cells Song Yu, Bingxuan Jia, Na Liu, Dianzhen Yu and Aibo Wu * SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; [email protected] (S.Y.); [email protected] (B.J.); [email protected] (N.L.); [email protected] (D.Y.) * Correspondence: [email protected]; Tel.: +86-21-54920716 Received: 23 July 2020; Accepted: 14 August 2020; Published: 18 August 2020 Abstract: Fumonisin contaminates food and feed extensively throughout the world, causing chronic and acute toxicity in human and animals. Currently, studies on the toxicology of fumonisins mainly focus on fumonisin B1 (FB1). Considering that FB1, fumonisin B2 (FB2) and fumonisin B3 (FB3) could coexist in food and feed, a study regarding a single toxin, FB1, may not completely reflect the toxicity of fumonisin. The gastrointestinal tract is usually exposed to these dietary toxins. In our study, the human gastric epithelial cell line (GES-1) was used as in vitro model to evaluate the toxicity of fumonisin. Firstly, we found that they could cause a decrease in cell viability, and increase in membrane leakage, cell death and the induction of expression of markers for endoplasmic reticulum (ER) stress. Their toxicity potency rank is FB1 > FB2 >> FB3. The results also showed that the synergistic effect appeared in the combinations of FB1 + FB2 and FB1 + FB3.
    [Show full text]
  • Targeting Ion Channels in Cancer: a Novel Frontier in Antineoplastic Therapy A
    66 Current Medicinal Chemistry, 2009, 16, 66-93 Targeting Ion Channels in Cancer: A Novel Frontier in Antineoplastic Therapy A. Arcangeli*,1, O. Crociani1, E. Lastraioli1, A. Masi1, S. Pillozzi1 and A. Becchetti2 1Department of Experimental Pathology and Oncology, University of Firenze, Italy; 2Department of Biotechnology and Biosciences, University of Milano-Bicocca, Italy Abstract: Targeted therapy is considerably changing the treatment and prognosis of cancer. Progressive understanding of the molecular mechanisms that regulate the establishment and progression of different tumors is leading to ever more spe- cific and efficacious pharmacological approaches. In this picture, ion channels represent an unexpected, but very promising, player. The expression and activity of different channel types mark and regulate specific stages of cancer progression. Their contribution to the neoplastic phenotype ranges from control of cell proliferation and apoptosis, to regulation of invasiveness and metastatic spread. As is being in- creasingly recognized, some of these roles can be attributed to signaling mechanisms independent of ion flow. Evidence is particularly extensive for K+ channels. Their expression is altered in many primary human cancers, especially in early stages, and they frequently exert pleiotropic effects on the neoplastic cell physiology. For instance, by regulating membrane potential they can control Ca2+ fluxes and thus the cell cycle machinery. Their effects on mitosis can also de- pend on regulation of cell volume, usually in cooperation with chloride channels. However, ion channels are also impli- cated in late neoplastic stages, by stimulating angiogenesis, mediating the cell-matrix interaction and regulating cell motil- ity. Not surprisingly, the mechanisms of these effects are manifold.
    [Show full text]
  • Potent Neuroprotection After Stroke Afforded by a Double-Knot Spider-Venom Peptide That Inhibits Acid-Sensing Ion Channel 1A
    Potent neuroprotection after stroke afforded by a double-knot spider-venom peptide that inhibits acid-sensing ion channel 1a Irène R. Chassagnona, Claudia A. McCarthyb,c, Yanni K.-Y. China, Sandy S. Pinedaa, Angelo Keramidasd, Mehdi Moblie, Vi Phamb,c, T. Michael De Silvab,c, Joseph W. Lynchd, Robert E. Widdopb,c, Lachlan D. Rasha,f,1, and Glenn F. Kinga,1 aInstitute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia; bBiomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; cDepartment of Pharmacology, Monash University, Clayton, VIC 3800, Australia; dQueensland Brain Institute, The University of Queensland, St. Lucia, QLD 4072, Australia; eCentre for Advanced Imaging, The University of Queensland, St. Lucia, QLD 4072, Australia; and fSchool of Biomedical Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia Edited by Solomon H. Snyder, Johns Hopkins University School of Medicine, Baltimore, MD, and approved February 6, 2017 (received for review September 1, 2016) Stroke is the second-leading cause of death worldwide, yet there are extracellular pH that occurs during cerebral ischemia. ASIC1a is the no drugs available to protect the brain from stroke-induced neuronal primary acid sensor in mammalian brain (9, 10) and a key mediator of injury. Acid-sensing ion channel 1a (ASIC1a) is the primary acid sensor stroke-induced neuronal damage. Genetic ablation of ASIC1a reduces in mammalian brain and a key mediator of acidosis-induced neuronal infarct size by ∼60% after transient middle cerebral artery occlusion damage following cerebral ischemia. Genetic ablation and selective (MCAO) in mice (7), whereas pharmacologic blockade with modestly pharmacologic inhibition of ASIC1a reduces neuronal death follow- potent ASIC1a inhibitors, such as amiloride (7) and nonsteroidal anti- ing ischemic stroke in rodents.
    [Show full text]
  • Single Kernel Analysis of Fumonisins and Other Fungal Metabolites In
    Single kernel analysis of fumonisins and other fungal metabolites in maize from South African subsistence farmers Jesper Mølgaard Mogensen, Stine Mørcholdt Sørensen, Michael Sulyok, Liana van der Westhuizen, Gordon Shephard, Jens Christian Frisvad, Ulf Thrane, Rudolf Krska, Kristian Fog Nielsen To cite this version: Jesper Mølgaard Mogensen, Stine Mørcholdt Sørensen, Michael Sulyok, Liana van der Westhuizen, Gordon Shephard, et al.. Single kernel analysis of fumonisins and other fungal metabolites in maize from South African subsistence farmers. Food Additives and Contaminants, 2011, pp.1. 10.1080/19440049.2011.611823. hal-00744827 HAL Id: hal-00744827 https://hal.archives-ouvertes.fr/hal-00744827 Submitted on 24 Oct 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Food Additives and Contaminants For Peer Review Only Single kernel analysis of fumonisins and other fungal metabolites in maize from South African subsistence farmers Journal: Food Additives and Contaminants Manuscript ID: TFAC-2011-122.R2 Manuscript Type: Original Research Paper Date
    [Show full text]
  • ION CHANNELS S72 Acid-Sensing (Proton-Gated) Ion Channels (Asics) Alexander Et Al
    ION CHANNELS S72 Acid-sensing (proton-gated) ion channels (ASICs) Alexander et al Acid-sensing (proton-gated) ion channels (ASICs) Overview: Acid-sensing ion channels (ASICs, provisional nomenclature) are members of a Na þ channel superfamily that includes the epithelial Na channel, ENaC, the FMRF-amide activated channel of Helix aspersa, the degenerins (DEG) of Caenorhabitis elegans (see Waldmann & Lazdunski, 1998; Mano & Discoll, 1999) and ‘orphan’ channels that include BLINaC (Sakai et al., 1999) and INaC (Schaefer et al., 2000). ASIC subunits contain two putative TM domains and assemble as homo- or heterotetramers to form proton-gated, Na þ permeable channels. Splice variants of ASIC1 (provisionally termed ASIC1a (ASIC-a) (Waldmann et al., 1997a) and ASIC1b (ASIC-b) (Chen et al., 1998)) and ASIC2 (provisionally termed ASIC2a (MDEG1) and ASIC2b (MDEG2); Lingueglia et al., 1997) have been cloned. Unlike ASIC2a (listed in table), heterologous expression of ASIC2b alone does not support H þ -gated currents. Transcripts encoding a fourth member of the ASIC family (ASIC4/SPASIC) do not produce a proton-gated channel in heterologous expression systems (Akopian et al., 2000; Grunder et al., 2000). ASIC channels are expressed in central and peripheral neurons and particularly in nociceptors where they participate in neuronal sensitivity to acidosis. The relationship of the cloned ASICs to endogenously expressed proton-gated ion channels is becoming established (Escoubas et al., 2000; Sutherland et al., 2001; Wemmie et al., 2002; 2003). Heterologously expressed heteromutimers of ASIC1/ASIC2a, ASIC2a/ASIC2b, ASIC2a/ASIC3 ASIC2b/ASIC3 and ASIC1a/ASIC3 form ion channels with altered kinetics, ion selectivity, pH-sensitivity and sensitivity to block by Gd3 þ (Bassilana et al., 1997; Lingueglia et al., 1997; Babinski et al., 2000; Escoubas et al., 2000).
    [Show full text]
  • Aflatoxin, Fumonisin and Shiga Toxin-Producing Escherichia Coli
    Toxins 2013, 5, 1872-1895; doi:10.3390/toxins5101872 OPEN ACCESS toxins ISSN 2072-6651 www.mdpi.com/journal/toxins Article Aflatoxin, Fumonisin and Shiga Toxin-Producing Escherichia coli Infections in Calves and the Effectiveness of Celmanax®/Dairyman’s Choice™ Applications to Eliminate Morbidity and Mortality Losses Danica Baines 1,*, Mark Sumarah 2, Gretchen Kuldau 3, Jean Juba 4, Alberto Mazza 5 and Luke Masson 5 1 Lethbridge Research Centre, Agriculture and Agri-Food Canada, 5403 1 Avenue South, Lethbridge, AB T1J 4B1, Canada 2 Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3, Canada; E-Mail: [email protected] 3 PENNSTATE, 321 Buckhout Laboratory, University Park, PA 16802, USA; E-Mail: [email protected] 4 PENNSTATE, Fusarium Research Center, 216 Buckhout Laboratory, University Park, PA 16802, USA; E-Mail: [email protected] 5 National Research Council of Canada, Montréal, QC H4P 2R2, Canada; E-Mails: [email protected] (A.M.); [email protected] (L.M.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-403-320-8690; Fax: +1-403-382-3156. Received: 9 September 2013; in revised form: 8 October 2013 / Accepted: 11 October 2013 / Published: 23 October 2013 Abstract: Mycotoxin mixtures are associated with Shiga toxin-producing Escherichia coli (STEC) infections in mature cattle. STEC are considered commensal bacteria in mature cattle suggesting that mycotoxins provide a mechanism that converts this bacterium to an opportunistic pathogen. In this study, we assessed the mycotoxin content of hemorrhaged mucosa in dairy calves during natural disease outbreaks, compared the virulence genes of the STECs, evaluated the effect of the mucosal mycotoxins on STEC toxin expression and evaluated a Celmanax®/Dairyman’s Choice™ application to alleviate disease.
    [Show full text]
  • Fumonisin Content in Conventional Versus Bt Maize and Implications Of
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2013 Fumonisin content in conventional versus Bt maize and implications of fumonisin contamination on fuel ethanol yield and DDGS quality Erin Louise Bowers Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Agriculture Commons, and the Toxicology Commons Recommended Citation Bowers, Erin Louise, "Fumonisin content in conventional versus Bt maize and implications of fumonisin contamination on fuel ethanol yield and DDGS quality" (2013). Graduate Theses and Dissertations. 13596. https://lib.dr.iastate.edu/etd/13596 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Fumonisin content in conventional versus Bt maize and implications of fumonisin contamination on fuel ethanol yield and DDGS quality by Erin Louise Bowers A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Toxicology Program of Study Committee: Gary P. Munkvold, Major Professor Patricia A. Murphy Richard L. Hellmich Steve M. Ensley Lawrence A. Johnson Felicia Wu Anthony L. Pometto III Iowa State University Ames, Iowa 2013 Copyright
    [Show full text]
  • ADP-Ribosylation with Clostridium Perfringens Iota Toxin
    Biochem. J. (1990) 266, 335-339 (Printed in Great Britain) 335 Inhibition of cytochalasin D-stimulated G-actin ATPase by ADP-ribosylation with Clostridium perfringens iota toxin Udo GEIPEL, Ingo JUST and Klaus AKTORIES* Rudolf-Buchheim-Institut fur Pharmakologie der Universitat GieBen, Frankfurterstr. 107, D-6300 GieBen, Federal Republic of Germany Clostridium perfringens iota toxin belongs to a novel family of actin-ADP-ribosylating toxins. The effects of ADP-ribosylation of skeletal muscle actin by Clostridium perfringens iota toxin on cytochalasin D- stimulated actin ATPase activity was studied. Cytochalasin D stimulated actin-catalysed ATP hydrolysis maximally by about 30-fold. ADP-ribosylation of actin completely inhibited cytochalasin D-stimulated ATP hydrolysis. Inhibition of ATPase activity occurred at actin concentrations below the critical concentration (0.1 /iM), at low concentrations of Mg2" (50 ItM) and even in the actin-DNAase I complex, indicating that ADP-ribosylation of actin blocks the ATPase activity of monomeric actin and -that the inhibitory effect is not due to inhibition of the polymerization of actin. INTRODUCTION perfringens type E strain CN5063, which was kindly donated by Dr. S. Thorley (Wellcome Biotech, Various bacterial ADP-ribosylating toxins modify Beckenham, Kent, U.K.) essentially according to the pro- regulatory GTP-binding proteins, thereby affecting cedure described (Stiles & Wilkens, 1986). Cytochalasin eukaryotic cell function. Pertussis toxin and cholera D was obtained from Sigma (Deisenhofen, Germany). toxin ADP-ribosylate GTP-binding proteins involved in DNAase I was a gift from Dr. H. G. Mannherz transmembrane signal transduction (for a review, see (Marburg, Germany). [oc-32P]ATP, [y-32P]ATP and Pfeuffer & Helmreich, 1988).
    [Show full text]
  • Pain Research Product Guide | Edition 2
    Pain Research Product Guide | Edition 2 Chili plant Capsicum annuum A source of Capsaicin Contents by Research Area: • Nociception • Ion Channels • G-Protein-Coupled Receptors • Intracellular Signaling Tocris Product Guide Series Pain Research Contents Page Nociception 3 Ion Channels 4 G-Protein-Coupled Receptors 12 Intracellular Signaling 18 List of Acronyms 21 Related Literature 22 Pain Research Products 23 Further Reading 34 Introduction Pain is a major public health problem with studies suggesting one fifth of the general population in both the USA and Europe are affected by long term pain. The International Association for the Study of Pain (IASP) defines pain as ‘an unpleasant sensory and emotional experience associated with actual or potential tissue damage, or described in terms of such damage’. Management of chronic pain in the clinic has seen only limited progress in recent decades. Treatment of pain has been reliant on, and is still dominated by two classical medications: opioids and non-steroidal anti-inflammatory drugs (NSAIDs). However, side effects such as dependence associated with opioids and gastric ulceration associated with NSAIDs demonstrates the need for new drug targets and novel compounds that will bring in a new era of pain therapeutics. Pain has been classified into three major types: nociceptive pain, inflammatory pain and neuropathic or pathological pain. Nociceptive pain involves the transduction of painful stimuli by peripheral sensory nerve fibers called nociceptors. Neuropathic pain results from damage or disease affecting the sensory system, and inflammatory pain represents the immunological response to injury through inflammatory mediators that contribute to pain. Our latest pain research guide focuses on nociception and the transduction of pain to the spinal cord, examining some of the main classical targets as well as emerging pain targets.
    [Show full text]
  • The Effects of Fumonisin B1 Toxicity Upon Neuronal Tissue
    THE EFFECTS OF FUMONISIN B1 TOXICITY UPON NEURONAL TISSUE by MARCIN FILIP OSUCHOWSKI (Under the Direction of Raghubir P. Sharma) ABSTRACT Fumonisin B1 (FB1) is mycotoxin produced by Fusarium verticillioides (formerly F. moniliforme), a fungal contaminant of corn and other cereals found worldwide. Fumonisin B1 causes number of diseases in farm animals including the species-specific disorder, equine leukoencephalomalacia (ELEM). FB1 inhibits ceramide synthase and as a consequence disrupts metabolism of sphingolipids. Deregulation of sphingolipid metabolism results in accumulation of free sphingoid bases, activation of cytokine expression and depletion of complex sphingolipids. We hypothesized that lack of neurotoxic effects in species other than equine following systemic administration of FB1 is due to the restricted availability of this mycotoxin in the brain. The pre-exposure to the lipopolysaccharide (LPS) resulted in the disruption of blood brain barrier (BBB). When mice were treated concurrently with FB1 an accumulation of sphinganine, a biomarker for FB1 availability to the tissue, was observed in brain. The combined administration of LPS and FB1 caused modulation of proinflammatory cytokines in brain and liver after repeated FB1 treatment. These results indicate that sphingolipid metabolism in the adult brain is vulnerable to the exposure of FB1 when accompanied by the endotoxin-related damage to the BBB. The intracerebroventricular (icv) infusion of FB1 led to the neuronal degeneration in cortex. The icv treatment caused regional accumulation of free sphingoid bases but sphingomyelin and complex sphingolipids were not depleted. Potent FB1-induced activation of proinflammatory signaling was observed in cortex. These results show that adult murine brain is vulnerable to the direct exposure of FB1 when the protective BBB barrier is bypassed.
    [Show full text]