https://doi.org/10.5194/acp-2019-618 Preprint. Discussion started: 1 August 2019 c Author(s) 2019. CC BY 4.0 License. Mitigation of PM2.5 and Ozone Pollution in Delhi: A Sensitivity Study during the Pre-monsoon period Ying Chen1,2*, Oliver Wild1,2, Edmund Ryan1,9, Saroj Kumar Sahu4, Douglas Lowe5, Scott Archer-Nicholls6, Yu Wang5, Gordon McFiggans5, Tabish Ansari1, Vikas Singh7, Ranjeet S. 5 Sokhi8, Alex Archibald6, Gufran Beig3 1Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK 2Data Science Institute, Lancaster University, Lancaster, LA1 4YW, UK 3Indian Institute of Tropical Meteorology, Pune, India 4Environmental Science, Dept. of Botany, Utkal University, Bhubaneswar, India 10 5Centre for Atmospheric Sciences, School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Manchester, UK 6NCAS-Climate, Department of Chemistry, University of Cambridge, Cambridge, UK 7National Atmospheric Research Laboratory, Gadanki, AP, India 8Centre for Atmospheric and Climate Physics Research, University of Hertfordshire, Hatfield, 15 Hertfordshire, UK 9School of Mathematics, University of Manchester, Manchester, UK Correspondence to: Ying Chen (
[email protected]) 20 1 https://doi.org/10.5194/acp-2019-618 Preprint. Discussion started: 1 August 2019 c Author(s) 2019. CC BY 4.0 License. Abstract: Fine particulate matter (PM2.5) and surface ozone (O3) are major air pollutants in megacities such as Delhi, but the design of suitable mitigation strategies is challenging. Some strategies for reducing PM2.5 may have the notable side-effect of increasing O3. Here, we demonstrate a numerical framework for 25 investigating the impacts of mitigation strategies on both PM2.5 and O3 in Delhi.