Atmos. Chem. Phys., 20, 499–514, 2020 https://doi.org/10.5194/acp-20-499-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Mitigation of PM2:5 and ozone pollution in Delhi: a sensitivity study during the pre-monsoon period Ying Chen1,2, Oliver Wild1,2, Edmund Ryan1,9, Saroj Kumar Sahu4, Douglas Lowe5, Scott Archer-Nicholls6, Yu Wang5, Gordon McFiggans5, Tabish Ansari1, Vikas Singh7, Ranjeet S. Sokhi8, Alex Archibald6, and Gufran Beig3 1Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK 2Data Science Institute, Lancaster University, Lancaster, LA1 4YW, UK 3Indian Institute of Tropical Meteorology, Pune, India 4Environmental Science, Department of Botany, Utkal University, Bhubaneswar, India 5Centre for Atmospheric Sciences, School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Manchester, M13 9PL, UK 6NCAS Climate, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK 7National Atmospheric Research Laboratory, Gadanki, Andhra Pradesh, India 8Centre for Atmospheric and Climate Physics Research, University of Hertfordshire, Hatfield, Hertfordshire, UK 9Department of Mathematics, University of Manchester, Manchester, M13 9PL, UK Correspondence: Ying Chen (
[email protected]) Received: 30 June 2019 – Discussion started: 1 August 2019 Revised: 6 November 2019 – Accepted: 22 November 2019 – Published: 14 January 2020 Abstract. Fine particulate matter (PM2:5) and surface 20 %–25 % increase in O3. However, we show that reduc- ozone (O3) are major air pollutants in megacities such as ing NCR regional emissions by 25 %–30 % at the same time Delhi, but the design of suitable mitigation strategies is chal- would further reduce PM2:5 by 5 %–10 % in Delhi and avoid lenging.