Identification of Potential PBT/Vpvb-Substances by QSAR
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Design for the Environment Toolkit: a Competitive Edge for the Future
Design for the Environment A Competitive Edge for the Future Toolkit Design for Environment Toolkit(DfE) Minnesota Office of Environmental Assistance Minnesota Technical Assistance Program (MnTAP) Table of Contents vAbout the Authors...2 vAcknowledgments...3 vPreface...4 vPart One: Introduction to Design for the Environment (DfE)...6 What is DfE?...6 Why DfE?...10 Success in DfE...12 Implementing DfE...13 vPart Two: DfE Matrices and Questions...17 Explanation of the DfE Matrix System..17 Figure: Product DfE Matrix...18 Instructions For Using the DfE Matrix...19 Interpretation of Results...28 Matrix Questions...20 Definitions...30 vPart Three: Reference Information...32 Index of Hazardous Chemical Pollutants (alphabetical listing)...32 Plastics Environmental Risk Information...57 Figure: Recycling Rates and Commodity Price Information....58 Index of Climate Altering Chemicals...59 Polymers....61 Degradable Polymers - Vendor List...62 Part/Materials Suppliers Environmental Survey...65 Additional Resources...66 Works Cited....68 Summary of References...69 Other Vendor Lists Checklist of Printed Resources for Minnesota Businesses Outlets for Industrial Scrap Pallets Alternative Solvent Degreasers Manufacturers of Aqueous Cleaning Equipment Aqueous and Semi-Aqueous Cleaners for Metal Part Degreasing Safer Stripping and Cleaning Chemicals for Coatings and Polymers Page 1 About the Authors Jeremy M. Yarwood - Research Specialist, Minnesota Technical Assistance Program (MnTAP) Mr. Yarwood has previously worked with MnTAP advising Minnesota companies in developing environmentally responsible processes. He received his B.S. Civil (Environmental) Engineering summa cum laude from the University of Minnesota. Mr. Yarwood is currently a graduate fellow in the Department of Civil Engineering at the University of Minnesota and plans to obtain a M.S. -
Iodomethane Safety Data Sheet 1100H01 According to Federal Register / Vol
Iodomethane Safety Data Sheet 1100H01 according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations Date of issue: 08/18/2016 Version: 1.0 SECTION 1: Identification 1.1. Identification Product form : Substance Substance name : Iodomethane CAS No : 74-88-4 Product code : 1100-H-01 Formula : CH3I Synonyms : Methyl iodide Other means of identification : MFCD00001073 1.2. Relevant identified uses of the substance or mixture and uses advised against Use of the substance/mixture : Laboratory chemicals Manufacture of substances Scientific research and development 1.3. Details of the supplier of the safety data sheet SynQuest Laboratories, Inc. P.O. Box 309 Alachua, FL 32615 - United States of America T (386) 462-0788 - F (386) 462-7097 [email protected] - www.synquestlabs.com 1.4. Emergency telephone number Emergency number : (844) 523-4086 (3E Company - Account 10069) SECTION 2: Hazard(s) identification 2.1. Classification of the substance or mixture Classification (GHS-US) Acute Tox. 3 (Oral) H301 - Toxic if swallowed Acute Tox. 3 (Dermal) H311 - Toxic in contact with skin Acute Tox. 2 (Inhalation) H330 - Fatal if inhaled Acute Tox. 3 (Inhalation:vapour) H331 - Toxic if inhaled Skin Irrit. 2 H315 - Causes skin irritation Eye Dam. 1 H318 - Causes serious eye damage Resp. Sens. 1 H334 - May cause allergy or asthma symptoms or breathing difficulties if inhaled Skin Sens. 1 H317 - May cause an allergic skin reaction Carc. 2 H351 - Suspected of causing cancer STOT SE 3 H335 - May cause respiratory irritation -
METHYL IODIDE 1. Exposure Data
METHYL IODIDE Data were last reviewed in IARC (1986) and the compound was classified in IARC Monographs Supplement 7 (1987). 1. Exposure Data 1.1 Chemical and physical data 1.1.1 Nomenclature Chem. Abstr. Serv. Reg. No.: 74-88-4 Chem. Abstr. Name: Iodomethane IUPAC Systematic Name: Iodomethane 1.1.2 Structural and molecular formulae and relative molecular mass H H C I H CH3I Relative molecular mass: 141.94 1.1.3 Chemical and physical properties of the pure substance (a) Description: Colourless transparent liquid, with a sweet ethereal odour (American Conference of Governmental Industrial Hygienists, 1992; Budavari, 1996) (b) Boiling-point: 42.5°C (Lide, 1997) (c) Melting-point: –66.4°C (Lide, 1997) (d) Solubility: Slightly soluble in water (14 g/L at 20°C); soluble in acetone; miscible with diethyl ether and ethanol (Budavari, 1996; Verschueren, 1996; Lide, 1997) (e) Vapour pressure: 53 kPa at 25.3°C; relative vapour density (air = 1), 4.9 (Ver- schueren, 1996) ( f ) Octanol/water partition coefficient (P): log P, 1.51 (Hansch et al., 1995) (g) Conversion factor: mg/m3 = 5.81 × ppm –1503– 1504 IARC MONOGRAPHS VOLUME 71 1.2 Production and use No information on the global production of methyl iodide was available to the Working Group. Production in the United States in 1983 was about 50 tonnes (IARC, 1986). Because of its high refractive index, methyl iodide is used in microscopy. It is also used as an embedding material for examining diatoms, in testing for pyridine, as a methy- lating agent in pharmaceutical (e.g., quaternary ammonium compounds) and chemical synthesis, as a light-sensitive etching agent for electronic circuits, and as a component in fire extinguishers (IARC, 1986; American Conference of Governmental Industrial Hygienists, 1992; Budavari, 1996). -
Aldrich Organometallic, Inorganic, Silanes, Boranes, and Deuterated Compounds
Aldrich Organometallic, Inorganic, Silanes, Boranes, and Deuterated Compounds Library Listing – 1,523 spectra Subset of Aldrich FT-IR Library related to organometallic, inorganic, boron and deueterium compounds. The Aldrich Material-Specific FT-IR Library collection represents a wide variety of the Aldrich Handbook of Fine Chemicals' most common chemicals divided by similar functional groups. These spectra were assembled from the Aldrich Collections of FT-IR Spectra Editions I or II, and the data has been carefully examined and processed by Thermo Fisher Scientific. Aldrich Organometallic, Inorganic, Silanes, Boranes, and Deuterated Compounds Index Compound Name Index Compound Name 1066 ((R)-(+)-2,2'- 1193 (1,2- BIS(DIPHENYLPHOSPHINO)-1,1'- BIS(DIPHENYLPHOSPHINO)ETHAN BINAPH)(1,5-CYCLOOCTADIENE) E)TUNGSTEN TETRACARBONYL, 1068 ((R)-(+)-2,2'- 97% BIS(DIPHENYLPHOSPHINO)-1,1'- 1062 (1,3- BINAPHTHYL)PALLADIUM(II) CH BIS(DIPHENYLPHOSPHINO)PROPA 1067 ((S)-(-)-2,2'- NE)DICHLORONICKEL(II) BIS(DIPHENYLPHOSPHINO)-1,1'- 598 (1,3-DIOXAN-2- BINAPH)(1,5-CYCLOOCTADIENE) YLETHYNYL)TRIMETHYLSILANE, 1140 (+)-(S)-1-((R)-2- 96% (DIPHENYLPHOSPHINO)FERROCE 1063 (1,4- NYL)ETHYL METHYL ETHER, 98 BIS(DIPHENYLPHOSPHINO)BUTAN 1146 (+)-(S)-N,N-DIMETHYL-1-((R)-1',2- E)(1,5- BIS(DI- CYCLOOCTADIENE)RHODIUM(I) PHENYLPHOSPHINO)FERROCENY TET L)E 951 (1,5-CYCLOOCTADIENE)(2,4- 1142 (+)-(S)-N,N-DIMETHYL-1-((R)-2- PENTANEDIONATO)RHODIUM(I), (DIPHENYLPHOSPHINO)FERROCE 99% NYL)ETHYLAMIN 1033 (1,5- 407 (+)-3',5'-O-(1,1,3,3- CYCLOOCTADIENE)BIS(METHYLD TETRAISOPROPYL-1,3- IPHENYLPHOSPHINE)IRIDIUM(I) -
A High Volume Sampling System for Isotope Determination of Volatile Halocarbons and Hydrocarbons
Atmos. Meas. Tech., 4, 2073–2086, 2011 www.atmos-meas-tech.net/4/2073/2011/ Atmospheric doi:10.5194/amt-4-2073-2011 Measurement © Author(s) 2011. CC Attribution 3.0 License. Techniques A high volume sampling system for isotope determination of volatile halocarbons and hydrocarbons E. Bahlmann, I. Weinberg, R. Seifert, C. Tubbesing, and W. Michaelis Institute for Biogeochemistry and Marine Chemistry, Hamburg, Germany Received: 15 March 2011 – Published in Atmos. Meas. Tech. Discuss.: 8 April 2011 Revised: 31 August 2011 – Accepted: 7 September 2011 – Published: 4 October 2011 Abstract. The isotopic composition of volatile organic com- 1 Introduction pounds (VOCs) can provide valuable information on their sources and fate not deducible from mixing ratios alone. Compound specific isotope ratio mass spectrometry In particular the reported carbon stable isotope ratios of (CSIRMS) of non methane volatile organic compounds chloromethane and bromomethane from different sources (NMVOCs) emerged as a powerful tool to distinguish dif- 13 cover a δ C-range of almost 100 ‰ making isotope ra- ferent sources and to provide information on sinks (Rudolph tios a very promising tool for studying the biogeochemistry et al., 1997; Rudolph and Czuba, 2000; Tsunogai et al., of these compounds. So far, the determination of the iso- 1999; Bill et al., 2002; Thompson et al., 2002; Goldstein and topic composition of C1 and C2 halocarbons others than Shaw, 2003 and references therein; Archbold et al., 2005; chloromethane is hampered by their low mixing ratios. Redeker -
Synthesis, Characterization and Polymerization of Ethylene Using a Novel Soluble Magnesium-Titanium Catalyst*
Synthesis, characterization and polymerization of ethylene using a novel soluble magnesium-titanium catalyst* Ganugupati Satyanarayana and Swaminathan Sivaramt Division of Polymer Chemistry, National Chemical Laboratory, Pune 411008, India (Received 4 January 1993; revised 28 May 1993) A l:2 complex of MgCI2 and tetrahydrofuran (THF) was prepared by a simple Grignard decomposition reaction using Mg metal and 1,2-dichloroethane in THF as diluent. The MgC12.2THF complex formed a homogeneous solution with titanium-n-butoxide in xylene at 60°C. The soluble Mg-Ti complex in xylene polymerized ethylene under homogeneous conditions in the presence of organoaluminium compounds. The kinetic behaviour of the polymerization reaction was studied. It was observed that the presence of MgCI2 transformed the Ti centre from a dimerization to a polymerization catalyst. (Keywords: magnesium chloride; titanium-n-butoxide; magnesium-titanium catalyst) INTRODUCTION a Grignard decomposition reaction forms a soluble complex with titanium-n-butoxide, which in conjunction Solid catalysts based on anhydrous MgCI z and Ti halides with organoaluminium compound initiates ethylene have attracted considerable attention during the past polymerization under homogeneous conditions in xylene decade as components of high efficiency ethylene and as the solvent 11. This paper reports our results on the propylene polymerization catalysts 1. The role of MgC12 synthesis, characterization and polymerization of ethylene in these catalysts has been widely discussed in the using this novel soluble Mg-Ti catalyst. literature 2. There are, however, only a few reports of truly soluble Mg-Ti catalysts for olefin polymerization. Soga et al. prepared a soluble metal halide-2-ethylhexanol complex which, in conjunction with titanium-n-butoxide EXPERIMENTAL and diethylaluminium chloride, polymerized propylene 3. -
Doped Acetylene Polymer and Process for Production Thereof
European Patent Office © Publication number: 0 022 271 A1 Office europeen des brevets © EUROPEAN PATENT APPLICATION © Application number: 80103857.1 © Int. CI.3: C 08 L 49/00 C 08 J 3/20 © Date of filing: 07.07.80 //C08K3/10, C08K5/08, C08K5/09, H01B1/00 © Priority: 10.07.79 JP 86402/79 © Applicant: JAPAN SYNTHETIC RUBBER CO., LTD. 10.07.79 JP 8640379 11-24, Tsukiji-2-chome Chuo-ku 28.08.79 JP 108641/79 Tokyo(JP) © Inventor: Matsumura, Yoshio © Date of publication of application: 14-30, Tsukimino-8-chome 14.01.81 Bulletin 81/2 Yamato-shi(JP) © Designated Contracting States: © Inventor: Nozue, Ikuo DE FR GB NL 29, Aobadai-2-chome Midori-ku, Yokohama(JP) © Inventor: Ukachi, Takashi 29, Aobadai-2-chome Midori-ku, Yokohama(JP) © Representative: Beetz, sen., Richard, Dipl. -Ing. Patentanwalte Dipl. -Ing. R. Beetz sen. Dipl.-lng. K. Lamprecht;Dr. Ing. R. Beetz jr. et al, Rechtsanwalt Dipl.-Phys. Dr. jur. U. Heidrich Dr.-lng. W. Timpe; Dipl.-lng. J. Siegfried Dipl.-Chem. Dr.rer.nat.W. Schmitt-Fumian Steinsdorfstrasse 10 D-8000 Munchen 22(DE) © Doped acetylene polymer and process for production thereof. (57) Doped acetylene polymers are produced by immersing an acetylene polymer under an inert gas atmosphere in an organic solvent solution of a dopant selected from the group consisting of a platinum group metal complex, a carbonium salt, an oxonium salt and a parabenzoquinone derivative. According to this process, a doped acetylene polymer having any desired electrical conductivity can be produced and the doped acetylene polymer thus obtained has excellent proper- ties as an organic semiconductor material for solar batteries, various sensors, etc. -
Methyl Iodide (Iodomethane)
Methyl Iodide (Iodomethane) 74-88-4 Hazard Summary Methyl iodide is used as an intermediate in the manufacture of some pharmaceuticals and pesticides, in methylation processes, and in the field of microscopy. In humans, acute (short-term) exposure to methyl iodide by inhalation may depress the central nervous system (CNS), irritate the lungs and skin, and affect the kidneys. Massive acute inhalation exposure to methyl iodide has led to pulmonary edema. Acute inhalation exposure of humans to methyl iodide has resulted in nausea, vomiting, vertigo, ataxia, slurred speech, drowsiness, skin blistering, and eye irritation. Chronic (long-term) exposure of humans to methyl iodide by inhalation may affect the CNS and cause skin burns. EPA has not classified methyl iodide for potential carcinogenicity. Please Note: The main sources of information for this fact sheet are the International Agency for Research on Cancer (IARC) monographs on chemicals carcinogenic to humans (2) and the Hazardous Substances Data Bank (HSDB) (3), a database of summaries of peer-reviewed literature. Uses Methyl iodide is used as an intermediate in the manufacture of some pharmaceuticals and pesticides. It is also used in methylation processes and in the field of microscopy. (1,2,4) Proposed uses of methyl iodide are as a fire extinguisher and as an insecticidal fumigant. (5) Sources and Potential Exposure Individuals are most likely to be exposed to methyl iodide in the workplace. (1) Methyl iodide occurs naturally in the ocean as a product of marine algae. (2) Assessing Personal Exposure No information was located regarding the measurement of personal exposure to methyl iodide. -
Measurement of Formic and Acetic Acid in Air by Chemical Ionization Mass Spectroscopy: Airborne Method Development
University of Rhode Island DigitalCommons@URI Open Access Master's Theses 2015 Measurement of Formic and Acetic Acid in Air by Chemical Ionization Mass Spectroscopy: Airborne Method Development Victoria Treadaway University of Rhode Island, [email protected] Follow this and additional works at: https://digitalcommons.uri.edu/theses Recommended Citation Treadaway, Victoria, "Measurement of Formic and Acetic Acid in Air by Chemical Ionization Mass Spectroscopy: Airborne Method Development" (2015). Open Access Master's Theses. Paper 603. https://digitalcommons.uri.edu/theses/603 This Thesis is brought to you for free and open access by DigitalCommons@URI. It has been accepted for inclusion in Open Access Master's Theses by an authorized administrator of DigitalCommons@URI. For more information, please contact [email protected]. MEASUREMENT OF FORMIC AND ACETIC ACID IN AIR BY CHEMICAL IONIZATION MASS SPECTROSCOPY: AIRBORNE METHOD DEVELOPMENT BY VICTORIA TREADAWAY A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN OCEANOGRAPHY UNIVERSITY OF RHODE ISLAND 2015 MASTER OF SCIENCE THESIS OF VICTORIA TREADAWAY APPROVED: Thesis Committee: Major Professor Brian Heikes John Merrill James Smith Nasser H. Zawia DEAN OF THE GRADUATE SCHOOL UNIVERSITY OF RHODE ISLAND 2015 ABSTRACT The goals of this study were to determine whether formic and acetic acid could be quantified from the Deep Convective Clouds and Chemistry Experiment (DC3) through post-mission calibration and analysis and to optimize a reagent gas mix with CH3I, CO2, and O2 that allows quantitative cluster ion formation with hydroperoxides and organic acids suitable for use in future field measurements. -
Gas Phase Chemistry and Removal of CH3I During a Severe Accident
DK0100070 Nordisk kernesikkerhedsforskning Norraenar kjarnoryggisrannsoknir Pohjoismainenydinturvallisuustutkimus Nordiskkjernesikkerhetsforskning Nordisk karnsakerhetsforskning Nordic nuclear safety research NKS-25 ISBN 87-7893-076-6 Gas Phase Chemistry and Removal of CH I during a Severe Accident Anna Karhu VTT Energy, Finland 2/42 January 2001 Abstract The purpose of this literature review was to gather valuable information on the behavior of methyl iodide on the gas phase during a severe accident. The po- tential of transition metals, especially silver and copper, to remove organic io- dides from the gas streams was also studied. Transition metals are one of the most interesting groups in the contex of iodine mitigation. For example silver is known to react intensively with iodine compounds. Silver is also relatively inert material and it is thermally stable. Copper is known to react with some radioio- dine species. However, it is not reactive toward methyl iodide. In addition, it is oxidized to copper oxide under atmospheric conditions. This may limit the in- dustrial use of copper. Key words Methyl iodide, gas phase, severe accident mitigation NKS-25 ISBN 87-7893-076-6 Danka Services International, DSI, 2001 The report can be obtained from NKS Secretariat P.O. Box 30 DK-4000RoskiIde Denmark Phone +45 4677 4045 Fax +45 4677 4046 http://www.nks.org e-mail: [email protected] Gas Phase Chemistry and Removal of CH3I during a Severe Accident VTT Energy, Finland Anna Karhu Abstract The purpose of this literature review was to gather valuable information on the behavior of methyl iodide on the gas phase during a severe accident. -
Acroseal Packaging Your Solution for Air- and Moisture- Sensitive Reagents
AcroSeal Packaging Your solution for air- and moisture- sensitive reagents Extra dry solvents Deuterated solvents Organometallic compounds Reagents in solution Organics Introduction Since the launch of AcroSealTM packaging we have introduced a new septum, which helps preserve product quality for longer. In addition, our AcroSeal portfolio has been expanded to include a broad range of solvents, organometallics, reagents in solution and organic compounds. In this brochure we have categorized our products under chemical families to make it easier to locate the product you need. Introduction Page no. AcroSeal packaging highlights 3 AcroSeal packaging performance 4 New 25mL AcroSeal packaging 4 Solvents Extra dry solvents 5-7 Solvents for biochemistry 7 Deuterated solvents 7 Organometallics Grignard reagents 8-10 Organoaluminiums 11 Organolithiums 11 Organosodiums 12 Organotins 12 Organozincs 12 Reagents in solution Amines 13 Boranes 13 Halides 14-15 Hydrides 15 Oxides 16 Silanes 16 Other reagents in solution 17 Organics Aldehydes 18 Amines 18 Epoxides 18 Halides 19 Phosphines 19 Silanes 19 Other organics 20 How to use AcroSeal packaging 21 Alphabetical index 22-23 2 Introduction AcroSeal packaging: drier reagents for longer When using air- and moisture-sensitive solvents and reagents, it is essential that these products are not only as dry as possible when you first use them, but they should remain dry in storage as well. Through the innovative quadrant-style screw cap and specially designed septum, AcroSeal packaging ensures that you have access to high-quality and low-moisture products every use, guaranteeing improved yield and consistency of your research experiments while reducing chemical waste. AcroSeal packaging highlights New septum developed from a polymeric elastomer with an inert fluoropolymer-coated surface, preserves product quality for longer with better re-seal around needle punctures. -
Acroseal Packaging Your Solution for Air- and Moisture- Sensitive Reagents
AcroSeal Packaging Your solution for air- and moisture- sensitive reagents Extra dry solvents Deuterated solvents Organometallic compounds Reagents in solution Organics Introduction Since the launch of AcroSealTM packaging we have introduced a new septum, which helps preserve product quality for longer. In addition, our AcroSeal portfolio has been expanded to include a broad range of solvents, organometallics, reagents in solution and organic compounds. In this brochure we have categorized our products under chemical families to make it easier to locate the product you need. Introduction Page no. AcroSeal packaging highlights 3 AcroSeal packaging performance 4 New 25mL AcroSeal packaging 4 Solvents Extra dry solvents 5-7 Solvents for biochemistry 7 Deuterated solvents 7 Organometallics Grignard reagents 8-10 Organoaluminiums 11 Organolithiums 11 Organosodiums 12 Organotins 12 Organozincs 12 Reagents in solution Amines 13 Boranes 13 Halides 14-15 Hydrides 15 Oxides 16 Silanes 16 Other reagents in solution 17 Organics Aldehydes 18 Amines 18 Epoxides 18 Halides 19 Phosphines 19 Silanes 19 Other organics 20 How to use AcroSeal packaging 21 Alphabetical index 22-23 2 Introduction AcroSeal packaging: drier reagents for longer When using air- and moisture-sensitive solvents and reagents, it is essential that these products are not only as dry as possible when you first use them, but they should remain dry in storage as well. Through the innovative quadrant-style screw cap and specially designed septum, AcroSeal packaging ensures that you have access to high-quality and low-moisture products every use, guaranteeing improved yield and consistency of your research experiments while reducing chemical waste. AcroSeal packaging highlights New septum developed from a polymeric elastomer with an inert fluoropolymer-coated surface, preserves product quality for longer with better re-seal around needle punctures.