University of Wisconsin Milwaukee UWM Digital Commons

Theses and Dissertations

May 2018 Paleobiology and Taphonomy of Exceptionally Preserved Putative Macroalgae from the Zuun-Arts Biota, Zavkhan Province, Mongolia Keenan Hassell University of Wisconsin-Milwaukee

Follow this and additional works at: https://dc.uwm.edu/etd Part of the Geology Commons, and the Paleontology Commons

Recommended Citation Hassell, Keenan, "Paleobiology and Taphonomy of Exceptionally Preserved Putative Macroalgae from the Ediacaran Zuun-Arts Biota, Zavkhan Province, Mongolia" (2018). Theses and Dissertations. 1821. https://dc.uwm.edu/etd/1821

This Thesis is brought to you for free and open access by UWM Digital Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UWM Digital Commons. For more information, please contact [email protected]. PALEOBIOLOGY AND TAPHONOMY OF EXCEPTIONALLY PRESERVED PUTATIVE

MACROALGAE FROM THE EDIACARAN ZUUN-ARTS BIOTA, ZAVKHAN PROVINCE,

MONGOLIA

by

Keenan Hassell

A Thesis Submitted in

Partial Fulfillment of the

Requirements for the Degree of

Master of Science

in Geosciences

at

The University of Wisconsin-Milwaukee

May 2018 ABSTRACT

PALEOBIOLOGY AND TAPHONOMY OF EXCEPTIONALLY PRESERVED PUTATIVE MACROALGAE FROM THE EDIACARAN ZUUN-ARTS BIOTA, ZAVKHAN PROVINCE, MONGOLIA

by

Keenan Hassell

The University of Wisconsin-Milwaukee, 2018 Under the Supervision of Professor Stephen Q. Dornbos

The first unequivocal evidence of complex multicellular life appears in exceptionally

preserved Ediacaran (635-541 Ma) fossil deposits. The newly discovered Ediacaran Burgess

Shale-type (BST) Zuun-Arts Biota of Zavkhan Province, Mongolia, contains putative macroalgae

fossils. Morphological measurements of 821 individual specimens including length, width, and

branching angle obtained using ImageJ software were used to calculate morphological

parameters including median thallus length (16.75 mm), filament width (0.50 mm), branching

angle (63.63⁰), and surface area/volume ratio (8.19 mm -1). The Zuun-Arts biota contains fossils

of six distinct morphotypes: non-branching, dichotomous branching, monopodial branching,

fan-shaped, shrub-like, and small non-branching, all morphologies are similar to macroalgae

from the Ediacaran Lantian and Miaohe biotas. Morphological and taphonomic data rule out a

non-macroalgae affinity, and SEM-EDS data indicate that the Zuun-Arts fossils are preserved as

aluminosilicate and carbon films. Results indicate that the Zuun-Arts fossils are macroalgae

preserved as aluminosilicate mineral films.

ii

© Copyright by Keenan Hassell, 2018 All Rights Reserved

iii

TABLE OF CONTENTS

I. INTRODUCTION……………………………………………………………………………………………………..…..1

II. BACKGROUND………………………………………………………………………………………..……3

Functional morphology in modern macroalgae………………………………….…………………….3

Applying functional morphology to the fossil record………………………….…………………….8

The Proterozoic macroalgae fossil record……………………………………………………………….10

The Lantian biota……………………………………………………………………………………..11

The Miaohe biota………………………………………………………………….…………………13

The Zuun-Arts biota……………………………………………………………….………………..14

Burgess Shale-type taphonomy………………………………………………………………………………17

III. GEOLOGIC SETTING……………………………………………………………………………………..20

IV. METHODS………………………………………………………………………………………………………………….27

Morphology………………………………………………………………………………………..………………….27

Scanning electron microscopy………………………………………………………………………………..28

X-ray diffraction……………………………………………………………………………….…………………….30

V. RESULTS………………………………………………………………………………………………...... 31

Morphology…………………………………………………………………………………………………………31

Small non-branching morphology…………………………………………………………….31

Shrub-like morphology…………………………………………………………………………….31

Non-branching morphology……………….……………….……………….……………….…38

Monopodial branching morphology……………….……………….……………….………38

iv

Dichotomously branching morphology……………….……………….…………………..38

Fan-shaped morphology……………….……………….……………….……………….………39

Scanning electron microscopy……………….……………….……………….……………….…………….39

X-ray diffraction……………….……………….……………….……………….……………….…………………43

VI. DISCUSSION……………….……………….……………….……………….……………….……………….……………49

Morphology……………….……………….……………….……………….……………….……………….………49

Comparison of the Zuun-Arts biota with other Ediacaran BST deposits…………………..54

Scanning electron microscopy……………….……………….……………….……………….…………….58

X-ray diffraction……………….……………….……………….……………….……………….…………………61

VII. CONCLUSIONS……………….……………….……………….……………….……………….……………….………..63

VIII. REFERENCES…………………………………………………………………………………………………………………66

IX. APPENDICES…………………………………………………………………………………………………………………70

Appendix A: SEM-EDS maps……………………………………………………………………………………………….70

Appendix B: SEM-EDS maps C and Al overlay………………………………………………….………………….74

Appendix C: SEM-EDS line scans…………………………………………………………………………….…………..76

Appendix D: Morphological measurements of non-branching thalli……………………………..…….81

Appendix E: Morphological measurements of dichotomously branching thalli…….…………….96

Appendix F: Morphological measurements of monopodial branching thalli.………………………98

Appendix G: Morphological measurements of fan-like thalli..…………………………………………….99

Appendix H: Morphological measurements of small non-branching thalli…………….………….100

Appendix I: Morphological measurements of shrub-like thalli…………….…………………………...101

Appendix J: XRD patterns………………………………………………………………………………………………….102

v

LIST OF FIGURES

Figure 1. Stratigraphic column of the Zuun-Arts Formation………………………………………………………15

Figure 2. BST early diagenesis model……………………………………………………………………………………….19

Figure 3. SEM- 15 KeV accelerating velocity………………………………………………………………………..…….21

Figure 4.SEM- 5 KeV accelerating velocity ………………………………………………………………………………..22

Figure 5. Location map…………………………..…………………………………………………………………………………23

Figure 6. Geochemical data………………………………………..…………………………………………………………….26

Figure 7. SEM-Sample orientation…………………………………………………………………………………………….29

Figure 8. Photographs of the Zuun-Arts fossils…………………………………………………………………………..32

Figure 9. Illustrations of the Zuun-Arts fossils……………………………………………………………………………33

Figure 10. Length plot-small morphologies ………………………………………………………………………………34

Figure 11. Surface area/volume plot- small morphologies ………………………………………………………..35

Figure 12. Length plot- large morphologies ………………………………………………………………………………36

Figure 13. Surface area/volume plot- large morphologies…………………………………………………………37

Figure 14. Relative abundance of Zuun-Arts morphologies……………………………………………………….40

Figure 15. SEM-EDS maps……..………………………………………………………………………………………………….41

vi

Figure 16. SEM-EDS C and Al overlay map………………………………………………………………………………….42

Figure 17. SEM-EDS line scan…………………………………………………………………………………………………….44

Figure 18. SEM-BSE images……………………….………………………………………………………………………………46

Figure 19. XRD results……………………………………………………………………………………………………………….47

Figure 20. XRD results with ethyl glycol……………………………………………………………………………………..48

Figure 21. SEM-BSE comparison of Zuun-Arts fossils with graptolites………………………………………..51

Figure 22. Length comparison…………………………………………………………………………………………………..55

Figure 23. Surface area-volume comparison……………………………………………………………………………..56

Figure 24. Alternative early digenesis model…………………………………………………………………………….60

Figure 25.Comparison of Zuun-Arts fossils with other Ediacaran macroalgae…………………………….64

vii

LIST OF ABBREVIATIONS

BST Burgess Shale-Type

BSE Backscattered Electron

EDS Energy Dispersive X-ray Spectroscopy

FFG Functional Form Group

SEM Scanning Electron Microscope

SE Secondary Electron

XRD X-Ray Diffraction

Ma Million Years Ago

Ga Billion Years Ago

viii

ACKNOWLEDGEMENTS

First, I would first like to thank my thesis advisor Dr. Stephen Dornbos for his guidance throughout this process, and for allowing me to further explore my interest in Ediacaran paleontology. I would also like to thank Dr. Lindsay McHenry and Dr. Margaret Fraiser for serving on my thesis committee. In addition, I would like to thank Dr. Lindsay McHenry for guiding me through the X-ray diffraction component of this project, and Dr. Heather Owen from the UWM electron microscopy laboratory for her support on my scanning electron microscopy work. Lastly, I would like to thank my parents for their unwavering support and encouragement throughout my academic career.

ix

Introduction

The Ediacaran Period stretches from 635 Ma to 542 Ma and is characterized by important

paleobiological and paleoenvironmental changes. This period between the end of the Snowball

Earth glaciations and the beginning of the Period shows the first unequivocal complex

animal life, and may hold the key to a better understanding of the origins of multicellular life

(Xiao et al., 2008). The fossil record indicates a soft-bodied Ediacaran biota appearing as early as 575 Ma and persisting until around 541 Ma, at the beginning of the Cambrian Period (Xiao et al., 2008). Interpretations of these organisms have been controversial, and their phylogenetic affinities are still not entirely understood. Paleontologists first tried to shoehorn the Ediacaran organisms into Paleozoic phyla, however more recent studies suggest that many of these organisms belong to an extinct kingdom level taxon known as the rangeomorphs (Seilacher,

1992; Narbonne, 2005). The Ediacaran biota is characterized by rangeomorphs and erniettomorphs, but also includes microbial colonies, algae, fungi, protists and stem-group bilaterians and other metazoans (Narbonne, 2005).

The Ediacaran Period also contains fossil deposits of exceptional quality, known as Lagerstätten

(Wang et al., 2014). Ediacaran Lagerstätten preserve a variety of soft-bodied organisms

including enigmatic forms, putative metazoans, and algae that are not normally preserved, and

show a variety of preservation types (Butterfield, 2003). Preservation types include external

molds of soft tissue in fine-grained sand stone, carbonaceous compressions, phosphatization,

pyritization, and silicification (Wang et al., 2014; Cai et al., 2010, Meyer et al., 2012; Brasier et

al., 2011). Deposits that preserve carbonaceous compression fossils in fine-grained marine

1 siliciclastics, or Burgess Shale-type (BST) deposits, are a specific type of Lagerstätten that does an excellent job of preserving evidence of soft tissue (Wang et al., 2014).

Ediacaran BST deposits are known from around the world, including the recently described

Zuun-Arts Biota in the Zavkhan terrane of western Mongolia (Dornbos et al., 2016). The

Zavkhan terrane is a crustal fragment that was embedded in the core of the central Asian orogenic belt (Smith et al., 2016). During the Ediacaran Period, arc terranes were accreting to the south, causing the Zavkhan terrane to begin subducting beneath the

Khantaishir-Dariv arc. This subduction created the foreland basin in which the Zuun-Arts

Formation was deposited (Macdonald et al., 2009). The Zuun-Arts Formation is composed of a basal stromatolitic limestone, a thin black shale interval with a cherty phosphorite layer, and then a thick carbonate sequence (Dornbos et al., 2016). The Zuun-Arts Biota is only beginning to be studied, but so far two new species of putative macroalgae, Chinggiskhaania bifurcata and

Zuunartsphyton delicatum, have been identified (Dornbos et al., 2016). Preliminary data suggest they are preserved as aluminosilicate films (Dornbos et al., 2016).

The goal of this project was to test the hypotheses that 1) the Zuun-Arts fossils are indeed macroalgae, and 2) they are preserved as aluminosilicate films. These hypotheses were tested through thorough micro- and macroscopic study and morphometric analysis of Zuun-Arts fossil specimens in combination with scanning electron microscope energy dispersive x-ray spectroscopy (SEM-EDS) and x-ray diffraction (XRD) analysis. Learning more about the morphology, preservation, and the paleoenvironmental conditions under which these

2

exceptional fossils were preserved will provide a better understanding of early multicellular life

in the Ediacaran.

Background

Functional morphology in modern macroalgae

BST macroalgae fossils preserve only the exterior morphology of the the organism and can look similar to other types of fossils, so establishing a macroalgae affinity can be difficult (Xunlai et

al., 1999). Most notabley, macroalgae fossils can look similar to burrow fossils, although they

can be distinguished from burrows by their flattend form, carbonaceous composition, clearly defined margins, jagged endings, and non-disturbance of adjacent sediment, all of which

burrow fossils lack (Miller, 2007; Osgood, 1970). Macroalgae fossils can look similar to graptoliet fossils as well, however in scaning electron microscope backscatter (SEM-BSE)

images, graptolite fusellae are clearly visable, while macroalgae lack these structures (Tang et al., 2017; Muscente and Xiao, 2015). Lastly, large bacterial sheaths produced by photosynthetic eukaryotes can look morphologically similar to non-branching tubular forms of macroalgae in the fossil record, however these macroalgae are an order of magnitude larger than the largest known bacterium with a similar morphology (LoDuca et al, 2017).

Once a macroalgae affinity has been detrmined for a fossil, the biggest obstacle is a lack of any genetic information required for proper taxonomic classification (Xunlai et al., 1999). In some cases, 3-dimensional preservation of a thallus may provide additional information about the internal structure, however such preservation is rare. In most cases the only information available is gross thallus morphology, so this is the criteria used in the classification of ancient

3 macroalgae (Wang et al., 2014). Due to the role of morphology in classification, understanding the functional morphology of macroalgae is crucial for classifying and understanding their evolutionary history (Xiao et al., 2002).

Although many Proterozoic and Cambrian macroalgae have no direct modern ancestors, they likely filled some of the same ecological roles as modern macroalgae. Extensive research has been done in order to understand the functional morphology of modern macroalgae, and much of this can be applied to ancient macroalgae as well (LoDuca and Behringer, 2009).

Littler and Littler (1980) published an extensive study examining the cost/benefit of various aspects of modern macroalgae morphology to ecological interactions and physiological function. The evolution of features such as environmental hardiness, defense against predation, and interference with competition were considered in terms of the energetic cost, material commitment, and possible incompatibility with basic physiological processes for each feature.

Community succession was examined experimentally by clearing and sterilizing an area of seafloor and observing which macroalgae species appeared over 12 months. Based on this experiment, macroalgae were divided into two main groups: opportunistic forms and late successional/climax forms (Littler and Littler, 1980).

The first macroalgae to appear in the cleared areas are opportunistic forms, which are rapid colonizers with a simple thallus morphology and high surface area to volume ratio.

Opportunistic thalli are characterized by rapid growth, high reproductive capacity, and a high and uniform distribution of nutrient value (caloric density) across the entire thallus. These algae maintain the same morphology throughout their life cycle, and avoid predation by having an

4

unpredictable spatial and temporal distribution. This life style allows opportunistic macroalgae

to rapidly invade and cover newly exposed areas of seafloor. Since the thallus is made almost

entirely of photosynthetic tissue, these algae are highly productive, allowing them to rapidly replace any tissue lost to herbivorous predators. Although opportunistic algae are well adapted for rapid colonization, many aspects of their morphology and life cycle prevent them from long- term domination of their ecosystems. Although reproduction rates are high, mortality rates for reproductive bodies are also high. Once later successional forms of taller, more complex macroalgae begin to invade, opportunistic forms cannot adequately compete for light and other resources (Littler and Littler, 1980).

Late successional macroalgae appear after opportunistic forms have established a community, and often push them out of the area. In general, late successional forms have a lower surface area to volume ratio, grow slower, have a more structurally differentiated thallus, and have a lower reproductive capacity than opportunistic forms. Although reproductive rates are lower, mortality rates in reproductive bodies are also lower, and larger size and structural differentiation of the thallus allows late successional forms to better compete for light. An overall toughness of the thallus combined with other morphological and chemical characteristics act as defense mechanisms against herbivorous predators (Littler and Littler,

1980).

Both of these morphologies provide advantages to macroalgae in terms of predation defense and light acquisition. Below is a summary of adaptations leading to these advantageous morphological features, some of which should be observable in the fossil record.

5

Morphological characteristics increasing productivity

The morphology of macroalgae is the most important control of photosynthetic efficiency

(Littler and Littler, 1980). Studies of modern macroalgae have found that sheet-like and finely branched morphologies result in the highest rates of photosynthetic productivity.

Photosynthetic cells in macroalgae are concentrated in the outer tissue layer, so thalli with higher surface area to volume ratios will have more photosynthetic cells, and will therefore have a higher rate of photosynthetic productivity. In sheet-like forms, a higher surface area to volume ratio is achieved through folding of the thallus, and fine branching increases this ratio by decreasing branch volume and increasing surface area. In addition to increasing rates of photosynthesis, these thin morphologies have larger cells, which minimizes internal shelf- shading by non-photosynthetic wall components (Littler, 1979).

Defense mechanisms

Macroalgae employ a variety of morphological and non-morphological strategies in order to protect themselves from herbivorous predation (Littler and Littler, 1980). Defense mechanisms fall into two broad categories: non-coexistence and coexistence (Iken, 2012). Non-coexistence strategies are non-morphological strategies that reduce the number and frequency of macroalgae-herbivore interactions (Iken, 2012). This is achieved through strategic temporal and spatial occurrences of macroalgae. Taxa using non-coexistence strategies live in locations that are not easily accessible to predators, or during seasons when herbivorous predators are not present. For example, some forms of brown algae are only susceptible to predation during early

6

life cycle stages. These algae reproduce during seasons when herbivores are not in the area.

Once large numbers of predators arrive, many of these macroalgae will be in the adult stage of

their life cycle, so predation is thwarted (Markel and DeWeede, 1998).

Spatial and temporal defenses are often not an option, so macroalgae have evolved several morphological features for defense against predation (Iken, 2012). Producing high numbers of fleshy, lateral branches was an important morphological innovation leading to an increased resistance to predation. Filaments can be easily grazed upon, but the high number of lateral branches, along with the low cost of replacing damaged lateral branches, results in little impact on photosynthetic capacity (Iken, 2012; Van Alstyne, 1989). Littler and Littler (1980) also observed a morphological trend leading to thalli with a tough central axis containing the reproductive bodies. The development of a tough central axis with numerous soft lateral branches allows macroalgae to survive in environments with high populations of herbivorous predators (Iken, 2012; Littler and Littler, 1980).

Based on this functional morphology study, Littler and Arnold (1982) established six functional form groups (FFGs). FFG 1 consists of thin tubular and sheet-like thalli, FFG 2 consists of delicately- branched thalli, FFG 3 consists of coarsely-branched thalli, FFG 4 consists of thalli composed of thick blades and branches, FFG 5 consists of articulated calcareous thalli, and FFG

6 consists of encrusting thalli. These funtional form groups fall on a spectrum of photosynthetic prouctivey, environmental hardiness, and resistance to predation. The tubular and sheet-like morphologies in FFG 1 have the highest photosynthetic productivety due to their high surface area-volume ratio and lack of branches, which reduces self shading. Although FFG 1 is highly

7

productive, thalli have little to no abiity to resist harsh environmental conditions or herbivorous

predation. From FFG 1 to FFG 6, photosynthetic productivety decreses at a steady rate (Littler

and Littler, 1980; Littler and Arnold, 1982).

Thalli in FFG 6 are the least photosynthetically productive, but have the greatest environmental

hardiness and ability to resist herbivorous predation. These thalli have the most robust

morphologies and highest degree of structural differentiation, allowing them to protect chloroplasts and reproductive structures inside a tough thallus when not in use (LoDuca, 2017).

The robust morphologies of FFG 6 thalli also account for their low photosynthetic productivety, since the ratio of photosynthetic to non-photosynthetic tissue is much lower than in FFG 1

(Littler and Arnold, 1982).

Modern macroalgae have developed numerous morphological features which increase their photosynthetic efficiency and ability to defend themselves against predation (Littler and Littler,

1980). Although evidence of some features, such as chemical defenses and non-coexistence strategies, cannot be observed in the fossil record, trends towards some morphological strategies should be observable.

Applying the functional form group concept to the fossil record

Due to the limitations associated with classifying ancient macroalgae, classification is based on

morphogroups, which are groups of fossils with similar morphological features. LoDuca et al.

(2017) performed a detailed survey of all known BST deposits containing macroalgae from the

Cambrian, , and periods and calculated canopy height, maximum length and surface area for all thalli. Based on these morphological data, nine morphogroups were

8

established for the early Paleozoic: tubiform, ribbon-like, spherical, delicately dichotomously

branching, coursely dichotomously branching, soloniform, frondose, simple monopodial, and

complex monopodial. Morphogroups were then assigned to a functional form group based on

Littler and Littler (1980). The tubiform, ribbon-like, speherical, and frondose morphogroups

were assinged to FFG 1, delicately dichotomously branching and stoloniform morphogroups

were assigned in FFG 2, the simple monopodial morphogroup was assigned to FFG 2.5, complex

monopodial and most of the coarsely dichotomously branched morphogroups were assigned to

FFG 3, and one specimen from the coarsely dichotomously branched morphogroup was

assigned to FFG 4 (LoDuca et al., 2017).

LoDuca et al. (2017) found several trends in the evolution of macroalgae thallus morphology

from the Cambrian through Silurian periods. First of all, there is a trend of incresing complexity

of morphogroups. The Cambrian Period was dominated by the simplest tubiform and delicately

dichotomously branching morphogroups. In the Ordovician Period, the tubiform morphogroup

disappears, the delicate dichotomously branching morphogroup becomes less common, and

the monopodial branching morphogroup becomes dominant. The Silurian macroalgae record is

similar to the Ordovician, however the ratio of monopodial to delicately dichotomously

branching morphogroups is slightly higher (LoDuca et al., 2017).

A similar pattern is seen in functional form groups, with the Cambrian Period dominated by FFG

1 and FFG 2. In the Ordovician, FFG 1 becomes less common, FFG 2 and FFG 2.5 become the

most common, and FFG 3 first appears. The Silurian Period is similar to the Ordovician, with FFG

2.5 and FFG 3 being the most common. The Silurian Period also contains one example of a FFG

9

4 specimen. Based on these trends in morphogroups and funtional form groups, there appears

to be a general trend towards incresing complexity in macroalgae thalli from the Cambrian to

the Silurian, with a major diversification occuring during the Ordovician radiation. This trend

from highly efficient, delicate morogroups to less efficient, hardier morphogroups was likely

driven primarily by the evolution of herbivorous predation (LoDuca et al., 2017). In order to

better understand the early Paleozoic evolutionary trends seen in the fossil record of

macroalgae, a better understanding of Proterzoic macroalgae is required, especially during the

Ediacaran Period.

The Proterozoic fossil record of macroalgae

Macroalgae underwent a major diversification event during the Ediacaran Period, however macroalgae such as Grypania have been found in rocks as old 1.8-2.0 Ga (Han and Runnegar,

1992). Other putative Paleoproterozoic macroalgae include the spherical to cylindrical forms of

Churia, Ellipsophysa, and Tawuia from 1.7-1.8 Ga rocks in North China (Zhu et al., 2000).

Although these putative Paleoproterozoic macroalgae are small and simple, some early morphological advances can be seen even at this time, including the development of stipe morphology and possibly the earliest holdfast structures (Xiao and Dong, 2006).

Mesoproterozoic macroalgae include spherical, ellipsoidal, tomaculate and cylindrical thallus morphologies as well as more complex discoidal holdfasts and transverse annulations (Xiao and

Dong, 2006). Ediacaran BST deposits containing abundant macroalgae fossils include the

Lantian biota of southern Anhui Province, China, the Miaohe biota in the terminal Doushantuo

Formation at Miaohe in Hubei Province, China, and the Zuun-Arts biota of western Mongolia.

10

The Lantian Biota

The Lantian Biota of southern Anhui Province, China, is the oldest known Ediacaran BST deposit

containing macroalgae (Yuan et al., 2011). This biota represents a slope basinal depositional

environment within the photic zone, and is regarded as the oldest fossil assemblage containing

macroscopic and morphologically complex life (Yuan et al., 2011).

Two formations are present at this location; the Lantian Formation, which correlates with the

635-551 Ma Doushantuo Formation based on δ13C chemostratigraphy, and the Piyuancun

Formation, which correlates with the 551-542 Ma Dengying Formation in the Yangtze Gorges

area (Xunlai et al., 1999). The stratigraphic column consists of 1.8 m of dolostone cap

carbonate, 35 m of finely laminated, fossiliferous black shale, a 34 m unit of dolostone

interbedded with mudstone and ribbon rock, and 20 m of black silty mudstone (Yuan et al.,

2002). The lower shale unit contains the Lantian biota fossils, and its age has been constrained

to 579-565 Ma based on U-Pb radiometric dating (Condon et al., 2016). Fossils here are

exceptionally preserved as carbonaceous compressions in black shale and are up to 40 mm in

length. Several enigmatic forms are present here, including a cone shaped thallus with a

globose holdfast and a splay of filaments at the top, a conical thallus with a fusiform inner

body, and a thin stalk with a cylindrical thallus and a dark axial trace. Interpretations of these

fossils remain controversial due to a lack of modern analogues for comparison (Yuan et al.,

2011). Different morphologies have been interpreted as macroalgae, Cnidarians, bilaterian

worm-like organisms, and bilaterian metazoans (Xiao et al., 2002). Regardless of the taxonomic

11 affinities of these fossils, the presence of macroeukaryotes suggests that some amount of free oxygen must have been present in the environment while these organisms were alive (Yuan et al., 2011).

The Lantian Biota also contains a diverse assemblage of megascopic, non-calcareous macroalgae ranging from 10-100 mm in length and 0.1-20 mm in width. Many of these specimens have holdfasts and include ribbon-like and dichotomous branching morphologies

(Xunlai et al., 1999). Several morphotypes have been identified from the Lantian Biota macroalgae including thin and thick dichotomous and ribbon-like branching, fan shaped thalli with dichotomous branching, broom shaped thalli with all branches attached to a single basal structure, spherical/elliptical forms, and a variety of tube and cone shaped morphologies composed of many filaments attached to a basal structure. Septation is not common, but some forms have septated filaments. Filament branching as well as disc/globose holdfasts found in most specimens suggest that these were erect, benthic macroalgae (Xunlai et al., 1999).

The Lantian Biota macroalgae are preserved as carbonaceous compressions, often associated with densely packed, framboidal pyrite (Wang et al., 2014; Yuan et al., 2011). The presence of pyrite in these fossils can be used to interpret the redox history of the basin. Pyrite framboids form in anoxic conditions, but the presence of macroeukaryotes suggest that there must have been some free oxygen present in the water. Wang et al. (2014) proposed a cyclical redox model to explain this apparent dichotomy by suggesting that there was a flux in oxygen levels between when the organisms were alive and when they died: the basin was largely anoxic, punctuated by brief oxic episodes. During oxic intervals, the chemocline was below the water-

12 sediment interface and macroalgae lived in oxic waters within the photic zone. When oxic intervals ended, the chemocline shifted up into the water column, killing the algae (Wang et al.,

2014). Algal remains were buried in fine-grained siliciclastics, where they were preserved as carbonaceous compressions and acted as localized substrates for large pyrite framboids to form on. This led to primary preservation as carbonaceous compressions with some late stage

Pyritization (Gabbott et al., 2004).

The Miaohe Biota

The other major Ediacaran BST deposit is the Miaohe Biota from the terminal Doushantuo

Formation at Miaohe in Hubei Province, China (Xiao et al., 2002). The Doushantuo Formation at this location is about 200 m thick, and is composed of extremely finely laminated, organic rich shale and cherty carbonates deposited in a quiet subtidal environment, likely within a restricted basin (Wang et al., 1998; Ding et al., 1996). Fossils are within a 2 m thick interval in the upper shale member (Xiao et al., 2002).

Several distinct morphologies have been identified in the Miaohe Biota, most are multicellular algae (Xiao et al., 2002). Most algal specimens have holdfasts and dichotomous branching, and some have reproductive structures preserved (Zhang et al., 1989). Morphologies include spherical cell-like vesicles, cylindrical forms with monopodial branching, unbranching cylindrical thalli, straight/zigzag central axis with dichotomous branching (some with several successive dichotomies), and ribbon-like thalli with or without branching and fan or dumbbell-shaped thalli composed of a bundle of filaments. Branching and the presence of basal attachment structures in most morphologies suggest an erect, benthic life habit (Xiao et al., 2002).

13

Miaohe Biota fossils are preserved primarily as carbonaceous compressions in fine-grained

marine siliciclastic sediments (Xiao et al., 2002). Like the Lantian Biota, Miaohe carbonaceous

compressions are often associated with framboidal pyrite, or cavities left by framboids that

have weathered out (Wang et al., 2014). The presence of pyrite framboids suggests an

environmental model similar to that of the Lantian Biota in which organisms lived during oxic

episodes in a largely anoxic basin, and were preserved through carbonization and late-stage

pyritization. Although the Lantian and Miaohe Biotas are over 600 km apart, they are both

composed primarily of macroalgae preserved through carbonization and late-stage pyritization,

suggesting that anoxic conditions were wide spread in this basin (Wang et al., 2014).

The Zuun-Arts Biota

The recently discovered Zuun-Arts biota is a late Ediacaran BST deposit in the Zuun-Arts

Formation of Zavkhan Province, western Mongolia (Dornbos et al., 2016). The absolute age of

the Zuun-Arts biota is unclear, however it lies beneath the oldest indisputable trace fossils in

the region (~555 Ma) (Macdonald, 2011), and is therefore likely younger than the Miaohe Biota

(Zhu et al., 2013). The stratigraphic sequence of the Zuun-Arts formation consists of a basal

stromatolitic limestone followed by a shale interval, a cherty phosphorite unit, and a thick

carbonate succession (Figure 1). Fossils are preserved in a roughly 40 cm thick black shale interval. The Zuun-Arts Formation represents a transgressive lag deposit and has an unclear age

relationship with the Lantian and Miaohe Biotas, although it may correlate with the terminal

Doushantuo Formation at Miaohe (Dornbos et al., 2016).

14

Figure 1. The stratigraphic context of the Zuun-Arts Biota. A) Regional map of Mongolia showing the location of the Zuun-Arts region. B) Stratigraphic column of the Zuun-Arts Formation. C) Detailed stratigraphic column of the Zuun-Arts Formation at the location of the Zuun-Arts biota. Modified from Dornbos et al. (2016).

15

Preliminary study of the Zuun-Arts Biota indicates two species of probable eukaryotic macroalgae (Dornbos et al., 2016). Chinggiskhaania bifurcata consists of thin filaments that lack transverse longitudinal ornamentation, are gently curving, and rarely branch. Filaments have fine length-wise lineations, no consistent distal tapering, and diverge at 43°-85°, with a mean branching angle of 63°. These specimens are mostly fragmentary, but one well-preserved specimen shows four filaments that are not densely grouped. Chinggiskhaania bifurcata is not entirely analogous to any other know Ediacaran macroalgae, but it most closely resembles

Doushantophyton from the Miaohe Biota and Huangshanophyton from the Lantian biota

(Dornbos et al., 2016). The other probable macroalgae species found in the Zuun-Arts biota is

Zuunartsphyton delicatum, which is known from three specimens. Zuunartsphyton delicatum

exhibits a shrub-like morphology less than 3 mm in diameter, composed of tightly curling

filaments lacking branching and longitudinal divisions or ornamentation. Attachment structures

are unknown, and Zuunartsphyton delicatum does not appear to closely resemble any

specimens from the Lantian or Miaohe Biotas (Dornbos et al., 2016).

Preliminary SEM-EDS data show that filaments have high concentrations of Al and Si relative to

other elements, and that Si is not enriched relative to the matrix (Dornbos et al., 2016). Carbon

is locally concentrated in portions of specimens. These results are consistent with preservation

as aluminosilicate clay mineral films. The presence of locally concentrated carbon suggests that

these organisms were originally preserved as carbonaceous compressions, and were

diagenetically altered to aluminosilicate mineral films. One specimen shows a concentration of

Fe in a zone with a high C concentration, and SEM analysis reveals the presence of framboidal

minerals consistent with pyrite. As in the Lantian and Miaohe Biotas, it appears that late-stage

16 pyrite formation occurred as a result of sulfate reduction during the decay of filaments, however aluminosilicate clay mineral preservation contrasts with the carbonaceous compressions fossils in the Lantian and Miaohe Biotas, as well as most other Ediacaran and

Cambrian BST deposits (Dornbos et al., 2016).

Burgess Shale-type taphonomy

BST preservation is a unique taphonomic pathway that leads to 2-dimensional preservation of soft tissue as a film of carbon and/or aluminosilicate mineral films with a thickness on the scale of microns (Orr et al., 2009; Briggs and Williams, 1981). This rare taphonomic window is largely limited to the Ediacaran- early Ordovician Periods (~ 545-480 Ma) (Van Roy et al., 2010). The

BST preservation pathway begins when a soft-bodied organism is buried in anoxic mud very soon after death, which isolates delicate morphological features and seals out heterotrophic microbes (Marshall, 1976). The carcass then begins to degrade, leaving behind only a thin film of organic carbon. Two primary models attempt to explain when aluminosilicate films form during fossil diagenesis, and both have implications for how organisms should appear in the fossil record (Orr et al., 2009; Butterfield et al., 2007).

Orr et al. (2009) proposed an early diagenesis model in which aluminosilicate layers form on the decaying organism shortly after burial. In this model, the decaying carcass acts as a substrate for the accumulation of colloids or the precipitation of authegenic clays (Orr et al., 2009; Orr et al., 1998). Once the carcass decays, aluminosilicate clay that precipitates on the original C film.

Over time, the rock containing the fossil is subjected to regional metamorphism, which alters the clay to a coherent aluminosilicate film. This model would result in a fossil film composed of

17

three layers: a layer of C in the middle with layers of Al above and below, or an Al layer in the

middle with C layers above and below (Figure 2) (Orr et al., 2009; Orr et al., 1998).

Butterfield et al. (2007) suggests an alternative late diagenesis origin of aluminosilicate films. In this model, the diagenetic process also begins with an organism being buried in anoxic mud, decaying, and leaving behind a carbon film. The role of clay in early diagenesis and the formation of aluminosilicate films, however, differ considerably from the early diagenesis model. In the late diagenesis model, clay minerals in the sediment absorb degradative enzymes due to their large surface area and high cation exchange capacity, indefinitely delaying the decay process (Butterfield, 1990; Thang, 1979). The formation of aluminosilicate films does not require a pre-existing mineral phase (Butterfield et al., 2007), as shown by the replacement and/or overgrowth of organic- walled graptolite fossils by aluminosilicate films as a result of metamorphism (Underwood, 1992). Thus, clay plays a vital role in preservation, but does not form the aluminosilicate film. The late diagenesis model should result in fossils composed primarily of aluminum, possibly with areas of elevated carbon concentrations (Butterfield,

2007; Orr et al., 2009).

Scanning electron microscopy

SEM-EDS elemental mapping has become a common tool for paleontologists trying to

understand how BST fossils form (e.g. Loydell, 2004; Huggett et al, 2000; Moore and Liberman,

18

Figure 2. A summary of the early taphonomic model for BST preservation. A-B result in Al films. A) Al inside, C outside, plane of plitting through the Al layer. B) C inside, Al outside, plane of splitting through the Al layer. C-D result in C films. C) C inside, Al outside, plane of splitting through the C layer. D) Al inside, C outside, plane of splitting through the C layer. E) Al inside, C outside, plane of splitting through the sedimentary matrix. Modified from Orr et al. (2009).

19

2009). Although EDS analysis can provide a wealth of information about the composition of

fossils, determining the appropriate SEM parameters, especially accelerating voltage, can be

difficult (Orr et al., 2009). BST fossils are extremely thin, often having a thickness of 0.05 µm or

less, creating a challenge in EDS analysis. EDS works best at a high accelerating voltage, which creates a large interaction volume, extending far below the fossil of interest and into the rock containing the fossil. Orr et al. (2009) addressed this problem using Electron Flight Simulator software to generate interaction volumes for rocks with C films 2.5 µm, 0.175 µm and 0.15 µm thick at 15 keV (Figure 3), and 0.05 µm, 0.03 µm and 0.02 µm thick at 5 keV (Figure 4). For the

15 keV accelerating voltage, the interaction volume extended far beneath the C film of interest.

The 2.5 µm film showed up clearly, the 0.175 µm film was faint but visible, and the 0.15 µm film was not seen at all in the spectrum. The large interaction volume associated with a 15 keV accelerating voltage extended so far into the rock that the signals from the C films were washed

out. At the 5 keV accelerating voltage, the 0.05 µm, 0.03 µm and 0.02 µm C films were all

detectable in the spectrum. Since the 5 keV accelerating voltage produces a much smaller

interaction volume than 15 keV, more of the signal came from the film and there was less

background noise from the rock, resulting in an increase in resolution (Orr et al., 2009).

Geologic Setting

The Zuun-Arts Formation is located in the Zavkhan terrane of Western Mongolia, a Precambrian

crustal fragment embedded in the core of the central Asian orogenic belt (Fig. 5) (Kroner et al.,

20

Figure 3. Simulated interaction volume of a 15 keV accelerating voltage in shale containing carbon films of various thicknesses. A) 2.5 µm thick carbon films, note the large carbon peak in the spectrum. B) 0.175 µm thick carbon films, note the subtle but still distinguishable carbon peak in the spectrum. C) 0.15 µm thick carbon film, the carbon peak is not distinguishable in the spectrum. Red boxes show the portion of the interaction volume penetrating into the matrix beneath the fossil. Modified from Orr et al. (2009).

21

Figure 4. Simulated interaction volumes for a 5 keV accelerating voltage in shale containing carbon films of various thicknesses. A) 0.05 µm thick carbon film, note the distinct carbon spike on the spectrum. B) 0.03 µm thick carbon films, note the distinct carbon spike on the spectrum. C) 0.02 µm thick carbon film, although the carbon speak is smaller, it is distinguishable in the spectrum. Red boxes show the portion of the interaction volume penetrating the matrix beneath the fossil. Modified from Orr et al. (2009).

22

Figure 5. Regional map showing the location of the Zavkhan Terrane. The orange star marks the region of the Zuun-Arts biota. Modified from Smith et al. (2016).

23

2010). Accretion of arc terranes occurred to the south of the Zavkhan terrane from the late

Ediacaran through the Ordovician Period. The late Ordovician and Silurian Periods are marked by extensional magmatism and basin formation. The Zavkhan terrane was buckled during the arrival of North China from the early through the Period (Kroner et al.,

2010).

Cryogenian stratigraphy in the Zavkhan terrane begins with 773.3-803.4 Ma felsic igneous rocks containing ~755 Ma granitic intrusions (Macdonald et al., 2009). The Zavkhan Formation is then overlain by synrift and passive margin deposits. The Zuun-Arts Formation is within the Tsagaan

Oloom Group, which contains two glacial deposits. The first is the Maikhan-Uul

Formation, which is a Sturtian age diamictite (717-660 Ma) and the Taishie Formation, which is composed of Sturtian cap carbonates and interglacial strata (Bold et al., 2006). These are overlain by the Khongor Formation, which has been correlated to Marinoan glacial deposits.

The Ol Formation, which is correlative with 635 Ma basal Ediacaran cap carbonates, overlies the

Khongor Formation. The Ol Formation is overlain by the early Ediacaran Shuurgat Formation, which consists of 100-500 m of carbonates, and is uncomformably overlain by the late

Ediacaran Zuun-Arts Formation (Bold et al., 2006). The Zuun-Arts Formation was deposited in the Zavkhan basin. The age of continental arc volcanism, position of the accrectionary wedge and ophiolites on the northern margin of the Khantayshir-Dariv arc, and north vergent thrusting in the accrectionary zone all indicate that the Zavkhan basin was created through the subduction of the Zavkhan terrane beneath the Khantayshir-Dariv arc (Macdonald et al., 2009).

24

Chemostratigraphy of δ13C isotopic data has been used to interpret the environmental conditions present within the Tsagaan Oloom Group, including the Zuun-Arts Formation (Fig. 6)

(Macdonald et al., 2009). δ13C values in the Maikhan diamictites are moderately negative, and

increase to +8‰ in the overlying Tayshir Formation. δ 13C then plummets abruptly from +8‰

to -7.5‰ during the third transgression in the Tayshir Formation before returning to +8‰

through the top of the Tayshir Formation (Macdonald et al., 2009). In the Ol Formation, the

δ13C profile forms a sigmoidal pattern which reaches -6‰ and remains negative throughout the

Ol Formation and into the beginning of the Ulaan Bulagyn Formation, where δ13C abruptly

jumps to + 3‰ through the top of the Ulaan Bulagyn Formation. The carbon isotopic profile

observed in the Ulaan Bulagyn Formation is consistent with a mid-Ediacaran age. The Zuun-Arts

Formation overlies the Ulaan Member and has a variable δ13C profile, which ranges from +2‰

to -5‰, but is mostly negative. Strontium isotopic data shows a high 87Sr/86Sr value of 0.7085 in

the Zuun-Arts Formation (Figure 6). These strontium isotopic values are consistent with values

typically found during the Proterozoic-Phanerozoic transition, indicating a late Ediacaran age for

the Zuun-Arts Biota (Bold et al., 2016). This, in addition to the mid-Ediacaran carbon isotopic

values in the Ulaan Bulagyn Formation, supports the interpretation that there is a hiatus of

about 35 MY between the Zuun-Arts Formation and the underlying Ulaan Bulagyn Formation

(Macdonald et al., 2009).

25

Figure 6. Carbon isotope chemostratigraphy and lithostratigraphy of the Tsagaan Oloom Group. The red box shows the interval containing the Zuun-Arts biota. K-Khongoryn Fm, Ol- Ol Fm, MU- Maikhan UI Fm, DV- Dzabkhan volcanics. Modified from Macdonald et al. (2009).

26

Methods

Morphological analysis

Fossils were collected from the Zuun-Arts biota in Zavkhan Provence, Mongolia. Fossils were first examined under low magnification using a Leica EZ4D light microscope, and then photographed with a Canon EOS 350D camera under cross-polarized light. ImageJ software was used to take morphological measurements from the photographs. Morphological measurements of 821 individual fossil specimens include length, width and canopy height for all specimens, and branching angle for branching specimens. These morphological measurements were then used to calculate surface area, volume, and surface area/volume ratio. Fossils were modeled as cylinders based on one pair of 3-dimensionally preserved part-counterpart fossils with a tube-like cross section. Surface area, volume, and surface area/volume ratio were calculated as follows:

Surface area (SA) = 2πrl + 2πr2

Volume (V) = πr2 l

Surface area/volume ratio (SA/V) = 𝑆𝑆𝑆𝑆 𝑉𝑉 where r is the radius of the filament and l is the length of the filament. For 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ � 2 � specimens with more than one thallus element, total length and width were calculated as the sum of all elements. Median length, width, canopy height, branching angle, and surface area/volume ratio were calculated for all thalli. Canopy height was calculated as the total

27

distance between the seafloor and the top of the thallus in life. For specimens showing

evidence of an erect, benthic lifestyle, canopy height is the total distance from the base of the thallus to the top of the highest thallus element. Specimens lacking evidence of an erect, benthic lifestyle were assumed to be either pelagic or benthic organisms that laid flat on the seafloor. Canopy height for these individuals is the same as width.

To compare the Zuun-Arts fossils to accepted Ediacaran macroalgae, the above measurements and calculations were also performed on fossils from the Lantian and Miaohe biotas. The photos used were obtained from Xiao et al. (2008) and Xunlai et al. (1999).

Scanning electron microscopy

SEM-EDS mapping and line scans were used to examine the elemental composition of 39

Chinggiskhaania fossils from the Zuun-Arts biota. All SEM analysis was done on a Hitachi S-

4800 scanning electron microscope with a Bruker Quantax ESPIRIT energy dispersive x-ray

detector in the scanning electron microscopy laboratory at the University of Wisconsin-

Milwaukee. Specimens were cut with a rock saw and mounted on a 1-inch stub using carbon

glue, and the sides of the sample were painted with colloidal carbon paint to increase

conductivity. Fossils were mounted with the long axis of the fossil perpendicular to the beam in

order to examine the distribution of elements on the exterior (Figure 7). All specimens were

coated with carbon using an Edwards’s vacuum coating unit. An accelerating voltage of 10 keV

was used for all specimens to produce SEM-EDS maps for O, C, Al, Si and Fe. Line scans were

28

Figure 7. Illustration showing the orientation of fossils with respect to the electron beam. Fossils were mounted perpendicular to the electron beam in order to examine elemental variations across the exterior surface.

29

also produced for C, Si, and Al. Backscatter images were used to locate the outer margins of

fossils before EDS analysis was done.

X-ray diffraction

XRD was used to examine the clay mineral content of the Zuun-Arts shale. Grain size separation

was used to segregate the clay size fraction from 6 samples of shale from the Zuun-Arts

Formation. For each sample, approximately 10 grams of shale was ground with a mortar and pestle, soaked in deionized water in 200 ml glass beakers overnight, and blended for 3 minutes in a Waring blender. The fine grain fraction was decanted into plastic tubes for centrifugation.

About 30 mg of sodium pyrophosphate dispersing agent was added to each tube, and samples were centrifuged at 750 rpm for 3.3 minutes. The clay size fraction was then decanted into a new tube, and this process was repeated 5-6 times to isolate the clay fraction. To induce flocculation, 2.2 g of CaCl2 were added to each sample. Samples were left overnight to

flocculate, then centrifuged a final time for 3.3 minutes at 750 rpm, concentrating the clay

fraction in the bottom of the tube. Sediment free water was removed with a vacuum hose, and

the remaining samples were mounted on glass slides.

To test for the presence of montmorillonite, three samples were run a second after adding ethyl glycol to the slides. Samples were run on a Bruker D8 Focus XRD with Diffrac Plus

software, and interpretation was done using Diffrac Plus EVA software.

30

Results

Morphology

Two species of putative macroalgae, Chinggiskhaania bifurcata and Zuunartsphyton delicatum,

have been identified in the Zuun-Arts biota (Figure 8; Figure 9). Zuunartsphyton delicatum has a shrub-like morphology. Chinggiskhaania bifurcata has four different morphologies: non- branching, single monopodial branching, dichotomous branching, and fan-shaped. A small non-

branching morphology has also been identified, but its affinity is unclear.

Small non-branching morphology

The small non-branching morphology is composed of a single, non-branching element less than

4 mm in length, and is often twisted or curved. Thalli have a median length of 2.87 mm (Figure

10), median width of 0.16 mm and a median surface area/volume ratio of 27.4 mm-1 (Figure 11).

Zuunartsphyton: Shrub-like morphology

The shrub-like morphology is composed of up to six thin elements twisted tightly together to form a shrub-like thallus. Individual elements have a median length of 3.80 mm (Figure 10) and a median width of 0.27 mm. Elements twist around and overlap one another. The entire thallus has a median surface area/volume ratio of 16.12 mm-1 (Figure 11) and a total width of less than

6 mm.

31

Figure 8. The Zuun-Arts morphologies. A,E) dichotomously branching, B) fan-shaped, C) monopodial branching, D) non-branching, F) shrub-like. Scale bars= 3mm.

32

Figure 9. Illustrations of the Zuun-Arts morphologies. A) non-branching, B) dichotomously branching, C) monopodial branching, D) fan-shaped, E) shrub-like, F) small non-branching.

33

Figure 10. Box and whisker plot showing total thallus length of the small non-branching and shrub-like morphologies. Median value is marked by the middle horizontal bar, mean is indicated with an X.

34

Figure 11. Box and whisker plot showing surface area/volume ratio of the small non-branching and shrub-like morphologies. Median value is marked by the middle horizontal bar, mean is indicated with an X.

35

Figure 12. Box and whisker plot showing total thallus length of the non-branching, monopodial, fan-shaped, and dichotomous branching morphologies. Median value is marked by the middle horizontal bar, mean is indicated with an X.

36

Figure 13. Box and whisker plot showing surface area/volume ratio of the non-branching, monopodial branching, fan-like, and dichotomously branching morphologies. Median value is marked by the middle horizontal bar, mean is indicated with an X.

37

Chinggiskhaania: Non-branching morphology

The non-branching morphology is composed of a single, non-branching element with a median

length of 17.9 mm (Figure 12), a median width of 0.48 mm, and a median surface area/volume

ratio of 8.47 mm-1 (Figure 13). Non-branching fossils are found straight, slightly curved, or

twisted, and often overlap each other on slabs containing multiple fossils. Non-branching fossils

lack any evidence of basal attachment structures, transverse lineations, or distal tapering in

width across the thallus.

Chinggiskhaania: Single monopodial branching morphology

The single monopodial branching morphology is composed of a central element running the

entire length of the thallus and 1-2 secondary elements branching off the central axis in a monopodial fashion. The central element is straight or slightly curved and has a median length of 17.0 mm (Figure 12) and median width of 0.57 mm. Secondary elements have a median length of 5.10 mm, median width of 0.39 mm and a median branching angle of 50⁰. Thalli have an overall median canopy height of 17.0 mm, and surface area/volume ratio of 6.70 mm-1

(Figure 13).

Chinggiskhaania: Dichotomously branching morphology

The dichotomous branching morphology consists of one primary element and two dichotomously branching secondary elements. Primary elements have a median length of 10.7 mm (Figure 12) and median width of 0.44 mm. Secondary elements have a median length of

8.66, median width of 0.45 mm, and a median branching angle of 60.4⁰. Thalli have an overall

38

median canopy height of 15.0 and median surface area/volume ratio of 8.89 mm-1 (Figure 13).

All thalli have only one level of branching (1 primary element and 2 secondary elements).

Chinggiskhaania: Fan-shaped morphology

The fan shaped morphology is composed of 2-3 primary elements that come together in a fan shape. Individual elements have a median length of 8.084 mm (Figure 12) and median width of

0.31 mm. Thalli have an overall canopy height of 8.08 mm and median surface area/volume ratio of 13.0 mm-1 (Figure 13).

Of the 821 individual fossils examined, the non-branching morphology is the most dominant with 761 specimens (92.7 %). Branching morphologies are the most abundant after non- branching with 39 dichotomously branching (4.8 %) and 14 monopodial branching (1.7 %) samples. There are only 3 fossils with a fan morphology (0.4 %), 2 with a small non-branching

morphology (0.2 %) and 2 with a shrub-like morphology (0.2 %) (Figure 14).

Scanning electron microscopy

The results of EDS mapping show no variation in Fe and O concentrations between fossils and the surrounding matrix. There is, however, variation in C, Al and Si concentrations (Figure 15).

All fossils have increased concentrations of Al and are depleted in Si compared to the matrix.

Some fossils are composed entirely of Al, but most contain some amount of C (Figure 16). Some fossils have high concentrations of C around the margins and Al with little to no C in the center, however most have areas of elevated carbon throughout. Areas of the fossil with

39

Non-Branching Monopodial Branching Dichotomous Branching Fan Small Non-Branching Shrub

Figure 14. Pie chart showing the relative abundance of different morphologies in the Zuun-Arts biota. The non- branching morphology makes up 93% of the biota, with all other morphologies making up the remaining 7%.

40

Figure 15. Selected SEM-EDS maps of 5 fossils and surrounding matrix. A) Note high C and Al concentrations and Si depletion throughout the fossil. Scale bar = 300 µm, final magnification = 90x. B) Note high Al concentration and Si depletion within the fossil and the total absence of C within the fossil. Scale bar = 300 µm, final magnification = 90 x. C) Note high C concentrations along the margins of and within the fossil and high Al concentrations and Si depletion throughout. Scale bar = 300 µm, final magnification = 90 x. D) Note high C and Al concentrations and Si depletion throughout the fossil. Scale bar = 400 µm, final magnification = 50 x. E) Note high C concentrations along the margins and high Al and Si depletion throughout the fossil. Scale bar = 200 µm, final magnification = 130 x.

41

Figure 16. EDS maps of fossils and surrounding matrix showing concentrations of C and Al. Areas of the fossils have elevated concentrations of C or Al, but never both.

42

high Al concentrations are depleted in C, and areas of high C concentrations are depleted in Al.

All fossils are depleted in Si regardless of the distribution of Al and C.

The relationship between C, Al, and Si is especially clear in line scans run perpendicular to the

long axis of the fossils (Figure 17). In most specimens, Si concentrations are initially high in the

matrix, decline sharply when the line passes over the fossil, then increase again when the line

passes over the fossil and back into the matrix on the opposite side. Al concentrations show the

opposite pattern: Al is relatively low in the matrix, increases sharply within the fossil, and then

declines in the matrix on the opposite side. Similar to the elemental maps, line scans show

variable C concentrations within the fossils, but are consistently low in the matrix. In specimens

containing carbon within the fossil, spikes in C correspond to decreases in Al.

In backscatter images of the Zuun-Arts fossils, areas with high C concentrations appear as

conspicuous black to brown spots, and areas of high Al concentrations are not visible (Figure

18).

X-ray diffraction

XRD patterns for all samples have large 2θ peaks around 9, 18, 21, and 27, although there is

some variation between samples (Figure 19). For the three samples run with ethyl glycol, there is no difference in XRD patterns with and without ethyl glycol (Figure 20). In addition, there is no major difference in XRD patterns between samples from the fossil bearing and non-fossil bearing intervals.

43

44

Figure 17. Line scans run across the width of fossils, including a small amount of matrix on either side. Fossil margins are marked by vertical dashed lines. Fossils containing C also have large carbon peaks within the fossil. Line scan distance vary from 600 µm to 1,000 µm (see individual graphs).

45

Figure 18. Backscatter images of fossils and surrounding matrix. Dark areas indicate high C concentrations, areas with high Al concentrations are indistinguishable from the surrounding material. Fossils containing high C concentrations (A-C) are clearly seen in BSE mode, fossils composed primarily of aluminum (D-E) show little to no contrast against the matrix. All images were taken at an accelerating voltage of 10 keV, see individual images for scale and final magnification.

46

upper 90 80 70 60

50

40

30

20

10 Log (Counts) 6

5

4

3

2

1 2 10 20 30 2-Theta - Scale

ZA_173

50

40

30

20

10

6 Log (Counts) 5

4

3

2

1 2 10 20 30 2-Theta - Scale

Figure 19. Clay fraction XRD patterns for samples from non-fossil bearing shale (upper) and fossil bearing shale (ZA_173) from the Zuun-Arts Formation. Notice the similarity of the two.

47

ZA_378

50

40

30

20

10

6 Log (Counts) 5

4

3

2

1 2 10 20 30 2-Theta - Scale

ZA_378EG

100

60 50

40

30

20

10 Log (Counts)

6 5

4

3

2

1 2 10 20 30 2-Theta - Scale

Figure 20. Clay fraction XRD patterns for a sample run without ethyl glycol (ZA_378) and with ethyl glycol (XA_378EG). The similarity of samples run with and without ethyl glycol indicates a lack of smectite.

48

Discussion

Morphology

Many body and trace fossils can have an ambiguous, tubular morphology similar to macroalgae, so a detailed morphological analysis is necessary to determine if the Zuun-Arts fossils are in fact macroalgae. Fossilized burrows have a tubular, branching morphology formed when an animal digs a burrow that later fills with sediment. The result is a 3-dimensional, often cylindrical fossil that can be distinguished from surrounding sediment by its tubular morphology as well as the burrow margins, which are not always clearly defined (Miller, 2007). In addition, burrows often result in disturbance of the sediment in the surrounding matrix (Cohen, 2009; LoDuca et al.,

2017). The Zuun-Arts fossils are preserved as 2-dimensional films and are composed of C and/or

Al, they are not 3-dimensional sediment-filled casts. Unlike some burrows, the Zuun-Arts fossils have sharp margins that are easily distinguishable from the surrounding matrix, and there is no evidence of disturbance of the surrounding sediment. All morphological data suggest that the

Zuun-Arts fossils are not burrows or any other type of trace fossil.

BST macroalgae fossils can also look similar to hemichordate fossils such as graptolites, since both have a similar gross morphology and are commonly preserved as carbonaceous compressions (Muscente and Xiao, 2015). Although macroalgae and graptolites can appear superficialy similar, close examination of the Zuun-Arts fossils under a microscope failed to detect any structural features found in graptolites such as theca or zooids. SEM-BSE imaging also suggests that the Zuun-Arts fossils are not graptolites, since they lack fusellae which would

49 suggest a hemichordate affinity (Figure 21) (Tang et al., 2017). Detailed morphological examination and SEM-BSE imaging suggest that the Zuun-Arts fossils are not hemichordates.

Another alternative interpretation of the Zuun-Arts fossils is that they are bacterial sheaths preserved as carbonaceous compressions. Some microrganisms living in marine environments attach to submerged substrates and many individuals align in a filamentous arrangment, enclosed by a sheath (LoDuca et al., 2017). Bacterial sheaths have morphologies similar to the non-branching fossils in the Zuun-Arts biota and can be preserved as BST fossils, however the

Zuun-Arts fossils are about ten times larger than the largest known bacterial sheaths (LoDuca et al., 2017). The size of the Zuun-Arts fossils alone suggests that they are not bacterial sheaths preserved as carbonaceous compressions.

In addition to ruling out the possibility that the Zuun-Arts fossils are burrows, graptolites or bacterial sheaths, several morphological features including the length, width, and branching are also consistent with a macroalgae interpretation. Most of the Zuun-Arts fossils also bear a morphological resemblance to other types of Ediacaran macroalgae.

The non-branching specimens of Chinggiskhaania have a morphology that closely resembles the macroalgae genus Sinocylindra, which is common in the Ediacaran Miaohe biota, although

Chinggiskhaania is generally smaller than most specimens of Sinocylindra. Chinggiskhaania has a median length of 17.865 mm and a median width of 0.481 mm, while Sinocylindra has a median length of 28.33 mm and median width of 0.481 mm (Xiao et al., 2002). Although

Sinocylindra is larger, two have similar surface area-volume ratios, with Sinocylindra having a ratio of 7.77 mm-1 and Chinggiskhaania having a ratio of 8.47 mm-1.

50

Figure 21. A-C) Backscatter images of (A) BST hemichordate fossil and (B-C) BST macroalgae fossils. Scale bars = 0.2 mm. D-E) BST macroalgae fossils from the Zuun-Arts biota. Scale bars = 0.5mm, final magnification = 90x. Note the transverse bands in A and lack of bands or any other internal structures in B-E. Modified from LoDuca et al. (2017).

51

The fan-shaped morphology of Chinggiskhaania somewhat resembles the Ediacaran macroalgae Doushantuophyton cometa, although the Chinggiskhaania specimens are much simpler. Fan- shaped Chinggiskhaania and Doushantuophyton cometa specimens have similar median lengths of 8.084 mm and 11.92 mm, respectively. With a median width of 0.09 mm,

Doushantuophyton cometa filaments are generally much thinner than Chinggiskhaania filaments, which have a median width of 0.311 mm (Xunlai et al., 1999). The two also differ with

respect to surface area-volume ratio and number of filaments. Doushantuophyton cometa has a

SA/V of 44.61 mm-1 and about 40 filaments on average (Xunlai et al., 1999), Chinggiskhaania has a SA/V of 13.016 mm-1 and only 3 filaments. Based on these morphological data it is unclear whether the fan-shaped Chinggiskhaania morphology has any direct relationship to

Doushantuophyton cometa. Although the fan-shaped morphology is much simpler than

Doushantuophyton cometa, the general morphological resemblance at least indicates that this morphology is consistent with a macroalgae interpretation.

The dichotomously branching morphology of Chinggiskhaania bears a general morphological resemblance to the Ediacaran macroalgae Doushantophyton rigidium. The dichotomous branching form of Chinggiskhaania and Doushantophyton rigidium both have a similar morphology consisting of a primary element that terminates in two dichotomous branches, and similar heights of 14.988 mm and 15.28 mm, respectively. Chinggiskhaania has a median width of 0.438 mm, has only 2 branches, and has a surface area-volume ratio of 8.891 mm-1, while

Doushantophyton rigidium has a median width of 0.09 mm, has up to 6 branches, and has a surface area-volume ratio of 44.58 mm-1 (Xiao et al., 2002). Based on the number of branches

and surface area-volume ratio, it appears that Doushantophyton rigidium is more complex than

52

the dichotomously branching Chinggiskhaania specimens. Overall, Chinggiskhaania does have a

morphology generally similar to that of Doushantophyton rigidium, indicating that

Chinggiskhaania has a macroalgae affinity.

The single monopodial morphology of Chinggiskhaania resembles a simpler version of

Doushantophyton quyuani, which is composed of a central axis with 6 or more monopodial branches. The monopodial Chinggiskhaania has a median height of 16.96 mm and

Doushantophyton quyuani has a median height of 8.69 mm, and Chinggiskhaania has only 1-2 monopodial branches. Doushantophyton quyuani also has a greater surface area-volume ratio of 33.49 mm-1 (Xunlai et al., 1999), compared to Chinggiskhaania, which has a ratio of 6.704 mm-1. The monopodial branching morphology of Chinggiskhaania is morphologically similar to

Doushantophyton quyuani, but is simpler in terms of the number of branches and surface area-

volume ratio.

The shrub-like thallus of Zuunartsphyton is morphologically similar to the Ediacaran macroalgae

Glomulus filamentous, which consists of a number of fine filaments twisted together into a

colony. The shrub morphology of Zuunartsphyton consists of about 6 filaments forming a

colony with a total width of 3.80 mm, while Glomulus filamentous consists of about 10

filaments forming a colony with a total width of 5 mm (Xiao et al., 2002).

The small non-branching morphology of Zuunartsphyton does not resemble any known form of

macroalgae from the Ediacaran or early Paleozoic. Although it is possible that the small non- branching form represents a novel morphology, it is more likely that these specimens are

fragments or an earlier life cycle stage of Chinggiskhaania. Reproductive bodies are not

53

preserved in the Zuun-Arts fossils, so it is not possible to know with certainty how these organisms reproduced or what earlier life cycle stages would have looked like. The results of

this morphological analysis indicate that the Zuun-Arts fossils are not trace fossils, graptolites or

bacterial sheaths and that they bear a strong morphological resemblance to other Ediacaran

macroalgae, supporting the hypothesis that these fossils are indeed macroalgae.

Comparison of the Zuun-Arts biota with other Ediacaran BST deposits

Lagerstätten are not common in the Ediacaran, and those that do occur often do not contain

BST preservation, but when BST preservation is present, macroalgae fossils are often preserved

(Xiao, 2002). Two Ediacaran BST deposits, the Lantian biota and the Miaohe biota, preserve a large number of macroalgae with a variety of morphologies (Xunlai et al., 1999; Xiao et al.,

2002). Compared to the Lantian and Miaohe biotas, the Zuun-Arts fossils are morphologically simple, and the biota as a whole is low in diversity, although the Zuun-Arts fossils do have length (Figure 22) and surface area-volume ratios similar to macroalgae in the Lantian and

Miaohe biotas (Figure 23). The Lantian biota contains 13 macroalgae morphotypes (Xunlai et al., 1999) and the Miaohe biota contains 23 (Xiao et al., 2002), while the Zuun-Arts contains only 6. The Lantian and Miaohe biotas also include macroalgae with complex morphologies including a variety of complex dichotomous and monopodial branching thalli and tube-shaped thalli, some of which contain rhizoidal holdfasts and septation. The Lantian biota also contains enigmatic fossils that may have a metazoan affinity (Xunlai et al., 1999; Xiao et al., 2002). The

Zuun-Arts biota lacks much of the morphological complexity seen in the Lantian and Miaohe biotas, and is morphologically simple even when compared to much older deposits (Han and

54

Figure 22. Box and whisker plot showing total length values for macroalgae from the Lantian, Miaohe, and Zuun- Arts biotas. Note how similar the median values are in all three biotas.

55

Figure 23. Box and whisker plot showing surface area-volume ratios for macroalgae from the Lantian, Miaohe, and Zuun-Arts biotas. Median surface area-volume ratios for the Zuun-Arts fossils fall in between those for macroalgae from the Lantian and Miaohe biotas.

56

Runnegar, 1992). Definitive rhizoidal and discoidal holdfasts, annulations, and some degree of structural differentiation dates back to at least the Mesoproterozoic (Xiao and Dong, 2006).

The Zuun-Arts biota is composed entirely of macroalgae belonging to FFG 1 and FFG 2, although over 93% of all specimens are in FFG 1 (non- branching). The Miaohe and Lantian biotas include macroalgae that fall within FFG 1, however most belong the FFG 2 or FFG 2.5. These morphologies indicate that the Zuun-Arts macroalgae are highly photosynthetically productive and lack environmental hardiness and the ability to resist herbivorous predation. Specimens of the genus Doushantophyton tend to have higher surface area-volume ratio than specimens of

Chinggiskhaania, which may suggest that Doushantophyton was more photosynthetically efficient that Chinggiskhaania, however Doushantophyton specimens also tend to have more branches than Chinggiskhaania, which could reduce photosynthetic efficiency by increasing self-shading (Xiao and Dong, 2006).

Ediacaran macroalgae as a whole are simple compared to early Paleozoic macroalgae. The simplicity of Ediacaran morphologies should not be surprising, since much of the Paleozoic diversification of thallus morphology was driven by competition for light and adaptation to herbivorous predation (LoDuca et al., 2017; Littler and Littler, 1980). Macroalgae communities were just beginning to form in the Ediacaran, and the low number of individual macroalgae in a given community, especially in the Zuun-Arts biota, suggests there probably was not much competition for light, unlike in the dense, robust communities that formed in the Paleozoic

(LoDuca et al., 2017). In addition to competition for light, adaptation to predation has been a major driving force behind macroalgae diversification. Most of the trends in macroalgae

57

evolution seen in the Phanerozoic, including an increase in surface area-volume ratio, a higher

degree of thallus differentiation, the advent of lateral monopodial branching, and an overall

increase in thallus toughness, have been driven by herbivorous predation (Littler and Littler,

1980). Although evidence of small-scale herbivorous predation by microscopic organisms may be impossible to detect in the fossil record, there are no known examples of macro-herbivorous predation in the Ediacaran fossil record (LoDuca et al., 2017). The lack of predation and competition for light in Ediacaran macroalgae communities may explain the simplicity of thallus morphology. Structural differentiation comes with an enormous energy cost, so it makes sense that macroalgae facing little competition or predation pressure would not expend the energy required to develop more complex thallus morphologies. Ediacaran macroalgae are morphologically simple, highly photosynthetically efficient, and seem to be very well equipped for life in the Ediacaran.

Scanning electron microscopy

The SEM-EDS results indicate BST preservation as Al and sometimes C-rich films. These results

are consistent with the SEM-EDS results from Dornbos et al. (2016), which indicate that the

Zuun-Arts fossils are preserved primarily as aluminosilicate mineral films with some areas of

elevated C content. Overall, these results support the second major hypothesis of this project,

that the Zuun-Arts fossils are preserved through BST preservation as aluminosilicate mineral

films.

Although the goal of this project was not to evaluate the different models for the formation of

BST fossils, the SEM-EDS data obtained may provide some new insight into the process. SEM-

58

EDS data for the Zuun-Arts fossils does not necessarily provide support for or against the early

diagenesis or late diagenesis models outlined earlier, but it may have implications for some

aspects of these models.

The early diagenesis model proposed by Orr et al. (2009) suggests a variety of ways that

authegenic clay films can form in early diagenesis, as well as several models of how the

elemental composition of fossils may appear based on the way the fossil splits into part and

counterpart (Figure 2). In the early diagenesis model, the aluminosilicate film can form on the outside or inside of the cuticle, resulting in an a film composed of an internal C layer with Al above and below it, or an internal Al layer with C above and below it. Orr et al. (2009) also suggest that, when the fossil is split into part and counter-part, the split will happen preferentially through the C layer, the Al layer, or through the sediment encasing the fossil. In all cases, this model proposes that the splitting plane is confined to a single layer of the fossil, which should result in a fossil with a homogenous elemental composition.

SEM-EDS results clearly show that some of the Zuun-Arts fossils are composed of Al and C, which seems to be inconsistent with the early diagenesis model. These results do not disprove the early diagenesis model as a mechanism for BST preservation, but do suggest that the model of how fossils split into part and counterpart may need to be revisited. It is possible that BST films do form in the way proposed in the early diagenesis model, but that the splitting plane is not always confined to a single layer of the film. Many of the Zuun-Arts fossils are composed mostly of Al, which is consistent with the splitting plane being confined to a single layer. The

59

Figure 24. One possible alternative to the splitting paths proposed in the early diagenesis model for the formation of BST fossils. A-B) cross section view of a zig-zag splitting path breaking through C and Al layers. C-D) the theoretical SEM-EDS map pattern created by the zig-zag splitting paths shown in A and B. This provides a potential explanation for the SEM-EDS map patterns seen in the Zuun-Arts fossils that does not necessarily conflict with the early diagenesis model.

60

Zuun-Arts fossils containing Al and C may represent instances where the splitting plane was not confined to one layer, leading to a fossil showing Al and C in SEM-EDS (Figure 24).

The SEM-EDS results from the Zuun-Arts fossils are generally consistent with the late diagenesis

model for BST fossil formation proposed by Butterfield et al. (2007). This model proposes that

BST films are originally composed of organic C left behind by the organism in early diagenesis,

and that the original C film is gradually overprinted by aluminosilicate minerals in later diagenesis as a result of low-grade regional metamorphism. Over time, this process should lead to a film composed entirely of aluminum. This taphonomic model may be able to explain why

some of Zuun-Arts fossils contained C and Al; the original C films had not been completely

overprinted by Al yet when regional metamorphism ended. However, it does seem odd that

there would be any variation in the composition of fossils if regional metamorphism were the

primary control of Al overprinting, since all of the Zuun-Arts fossils are from the same location,

and have gone through the same diagenetic history. Overall, the SEM-EDS data from the Zuun-

Arts fossils are generally consistent with both the early diagenesis and late diagenesis models,

although they do raise minor concerns with both.

X-ray diffraction

Prominent 2θ peaks around 18 and 21 in XRD patterns can be accounted for by quartz in all

samples. Besides quartz, the largest 2θ peaks in most samples can be accounted for by illite.

XRD results indicate that the clay size fraction of the Zuun-Arts shale is composed primarily of

quartz and illite, although most samples contain additional minerals. In several samples,

61

kaolinite, muscovite, and possibly glauconite and vermiculite can account for many of the

smaller peaks.

Interestingly, there appears to be little to no montmorillonite in any of the samples. Some

samples have one or two 2θ peaks that match montmorillonite peaks, but none have the large,

low angle peaks that are diagnostic of montmorillonite. In addition, in samples re-run with

ethylene glycol, XRD patterns with and without ethylene glycol are essentially identical.

Smectite will absorb ethylene glycol, causing the XRD pattern to shift to the right (Moore and

Reynolds, 1997). If the clay fraction contained montmorillonite, such a shift would have

occurred after ethylene glycol was added to the slides, but this is not the case. It is possible that montmorillonite was present in early diagenesis and has since altered to illite. This process of alteration usually results in mixed layer illite-montmorillonite clays, however XRD analysis did

not show any evidence of mixed layer illite-montmorillonite clay.

Butterfield (1990) suggested that smectite may be important in the BST preservation process due to its ability to absorb degradative enzymes, delaying soft tissue decay. The lack of montmorillonite in the Zuun-Arts fossil bearing shale suggests that smectite is not necessary for

BST preservation to occur, although it may be beneficial when present. In addition, the similarity of the clay fraction in the fossil bearing and non-fossil bearing intervals of the Zuun-

Arts Formation suggests that variation in clay mineral content cannot explain the lack of fossils in the non-fossil bearing intervals. Despite the lack of smectite in the Zuun-Arts Formation, clay minerals still play an important role in the BST preservation process. Even non-swelling clays could absorb degradative enzymes, since they have a large surface area compared to the non-

62

clay component of the clay sized fraction. In addition, all minerals in the clay fraction play an important role early in the taphonomic process by packing around the organism and sealing out oxygen. If the organism is not sealed tight very soon after death, there is no chance of preservation.

Conclusions

Morphological analysis of Chinggiskhaania and Zuunartsphyton from the Zuun-Arts biota

indicate six different morphologies: unbranching, dichotomously branching, single monopodial

branching, fan-shaped, shrub-like and small non-branching. The dichotomously branching,

single monopodial branching, and fan-shaped morphologies of Chinggiskhaania generally

resemble species of the macroalgae Doushantophyton and the non-branching morphology

resembles Sinocylindra, while the shrub-like morphology of Zuunartsphyton generally

resembles the macroalgae species Glomulus filamentous (Figure 25). Morphological

measurements including width, length and surface area to volume ratio for the Zuun-Arts fossils

are similar to the macroalgae from the Ediacaran Lantian and Miaohe biotas. In addition,

morphological and SEM-BSE data indicate that the Zuun-Arts fossils are not hemichordates,

trace fossils, or bacterial sheaths. All these data indicate that the Zuun-Arts fossils are indeed

macroalgae, supporting the first hypothesis of this project. The Zuun-Arts biota is dominated by

the non-branching morphology Chinggiskhaania, and lacks much of the macroalgal diversity

preserved in the Lantian and Miaohe biotas.

SEM-EDS data show that the Zuun-Arts fossils are preserved as films composed primarily of Al

with areas of elevated C concentrations in some fossils. These data are consistent with

63

Figure 25. A comparison of the Zuun-Arts fossil morphologies with their closest Ediacaran macroalgae counterparts. A) Doushantuophyton cometa, a macroalgae species from the Lantian biota. B) The Zuun-Arts fan- like morphology. C) Doushantophyton rigidium from the Miaohe biota. D) The Zuun-Arts dichotomously branching morphology. E) Doushantophyton quyuani from the Lantian biota. F) The monopodial branching morphology from the Zuun-Arts biota. G) Sinocylindra sp. from the Lantian and Miaohe biotas. H) The Zuun-Arts non-branching morphology. I) Glomulus filamentous from the Miaohe biota. J) The Zuun-Arts shrub-like morphology. A,E modified from Xunlai et al. (1999); C,G,I modified from Xiao et al. (2002).

64

preservation through the BST taphonomic pathway as aluminosilicate mineral films, supporting

the second hypothesis of this project. Although these data do not definitively prove or disprove

any of the models proposed for the formation of BST fossils in general, they do offer insights

into how the plane of splitting passes through the fossil when the rock is split into part and

counterpart (Figure 20). The similarity in clay mineral content between shale within and outside

of the Zuun-Arts biota indicates that the lack of fossils outside of the fossiliferous zone is not due to a lack of swelling clays. In addition, the lack of smectite in the clay fraction of the Zuun-

Arts shale indicates that swelling clay is not necessary for BST preservation to occur. Overall, although simple compared to the Lantian and Miaohe biotas, the Zuun-Arts biota does provide a rare view of soft-bodied organisms during an important time in the history of life, and may lead to a more complete understanding of the origins of complex multicellular life.

65

References

Bold S., Smith F.E., Rooney D.A., Bowring A.S., Buchwaldt R., Dubas O.F., Ramezani J., Crowley L.J., Schrag P.D., Macdonald A.F. "Neoproterozoic Stratigraphy of the Zavkhan Terrane of Mongolia: the Backbone for Cryogenian and Early Ediacaran Chemostratigraphic Records." American Journal of Science (2016): vol. 316, 1-63.

Brasier, M., Antcliffe, J., Callow, R. "Evolutionary trends in remarkable fossil preservation across the Ediacaran-Cambrian transition and the impact of metazoan mixing." Allison, P., Bottjet, D. Taphonomy: process and bias through time, second edition. Dordrecht: Springer, 2011. p. 519- 567.

Briggs, D., Williams, S. "The restoration of flattend fossils." Lethaia (1981): v. 14, pg. 157-164.

Butterfield, J. N. "Exceptional Fossil Preservation and the Cambrian Explosion." Integrative and Comparative Biology (2003): vol. 43, 166-177.

Butterfield, N. "Organis preservation of non-mineralizing organisms and the taphonomy of the Burgee Shale." Paleobiology (1990): vol. 16-3, pg. 272-286.

Butterifeld, N., Balthasar, U., Wilson, L. "Fossil diagenesis in the Burgess Shale." Paleontology (2007): v. 50-3, pg. 537-543.

Cai, Y., Hua, H., Xiao, S., Schiffbauer, D., Li, p. "Biostratinomy of the late Ediacaran pyritized Gaojishan fomr southern Shaanxi, south China: importance of event deposits." PALAIOS (2010): v. 25, pg. 487-506.

Cohen, P.S., Bradlet, A.H., Knoll, J.P., Grotzinger, S., Jensen, J., Abelson, K., Hand, G., Love, J., Metz, N., McLoughlin,P. "Tubular compression fossils from the Ediacaran Nama Group, Namibia." Journal of Paleontology (2009): v. 83-1, pg. 110-122.

Condon D., Zhu M., Bowring S., Wang W., Yang A., Jin Y. "U-Pb Ages from the Neoproterozoic Doushantuo Formation, China." Science (2016): vol. 308, 95-98.

Ding, L., Li, Z., Hu, Y., Xiao, C., Huang, J. Sinian Miaohe biota. Beijing: Geological Publishing House, 1996.

Dornbos Q.S., Oji T., Kanayama A., Gonchigdorj S. "A new Burgess Shale-type Deposit from the Ediacaran of Western Mongolia." Scientific Reports (2016): 6:243438, 1-5.

Gabbott E.S., Xian-guang H., Norry J.M, Siveter J.D. "Preservation of Early Cambrian Animals of the Chengjiang Biota." Geology (2004): vol. 32, no. 10, 901-904.

Han T., Runnegar B. "Megascopic eukaryotic algae from the 2.1-billion-year-old Negaunee iron- formation, Michigan." Science (1992): vol. 257; pg. 232-235.

66

Huggett, J., Gale, A., Evans, A. "Carbonate concretions from the London Clay (Ypresian, Eocene) of southern England and the exceptional peservation of wood-boring communities." Journal of the Geological Society, London (2000): v. 157, pg. 187-200.

Iken, K. "Grazers on benthic seaweeds." Wiencke C., Bischof K. Seaweed Biology: novel insights into ecophysiology, ecology and utilization. Berlin: Springer, 2012. 157-176.

Kroner A., Lehmann J., Schulmann K., Demoux A., Lexa O., Tomurhuu D., Stipska P., Liu D., Wingate D.T.M. "Lithostratigraphic and Geochronological Constraints on the Evolution of the Central Asain Orogenic Belt in SW Mongolia: Early Paleozoic Rifting Followed by Late Proterozoic Accretion." American Journal of Science (2010): vol. 310, 523-574.

Littler M., Littler D. "The evolution of thallus form survival strategies in benthic marine macroalgae: field and laboratory tests of a functional form model." The American Naturalist (1980): vol. 116:1; pg. 25-44.

Littler, M. "Morphological form and photosynthetic performances of marine macroalgae: tests of a functional/form hypothesis." Botanica Marina (1979): vol. 22; pg. 161-165.

LoDuca S., Behtinger E. "Functional morphology and evolution of early Paleozoic Dasycladalean algae (Chlorophyta)." Paleobiology (2009): vol. 35:1: pg. 63-76.

LoDuca, S., Bykova, N., Wu, M., Zhao, Y. "Seaweed morphology and ecology during the great animal diversification events of the early Paleozoic: A tale of two floras." Geobiology (2017): v. 15, pg. 588-616.

Loydell, D., Orr, P., Kearns, S. "Preservation of soft tissues in Silurian graptolites from Latvia." Palwontology (2004): v. 47, pg. 503-213.

Macdonald A.F., Jones S.D., Schrag P.D. "Stratigraphic and Tectonic Implications of a Newly Discovered Glacial Diamictite-Cap Carbonate Couplet in Southwestern Mongolia." Geology (2009): vol. 37, no. 2, 123-126.

Macdonald, F. "The geological record of Neoproterozoic glaciations." Arnaud, E., Halverson, G., Sheilds- Zhou, G. Geological Society Memoirs. London, 2011. pg. 331-337.

Marshall, K.C. Interfaces in microbial ecology. Cambridge: Harvard University Press, 1976.

Meyer, M., Schiffbauer, J., Xiao, S. Cai, Y., Hue, H. "Taphonomy of the upper Ediacaran enigmatic fossil shaanxilithes." PALAIOS (2012): v. 27,pg. 354-372.

Miller, W. Trace fossils: concepts, problems, prospects. Amsterdam: Elsevier, 2007.

Moore, D., Reynolds, R. X-ray diffraction and the identification and analysis of clay minerals second edition. Oxford, New York: Oxford University Press, 1997.

67

Moore, R. Lieberman, B. "Preservation of Early and Middle Cambrian soft-bodied arthropods from the Pioche Shale, Nevada, USA." Palaeogeography, Palaeoclimatology, Palaeoecology (2009): v. 277, pg. 57-62.

Muscente, A.D., Xiao, S. "Resolving the three-dimensional and sunsurficial features of carbonaceous compressions and shelly fossils using backscattered electron scanning electron microscopy (SEM-BSE)." Palaios (2015): v. 30, pg. 462-481.

Narbonne M.G. "The Ediacara Biota: Neoproterozoic Origin of Animals and Theri Ecosystems." Annual Review of Earth and Planetary Science (2005): vol. 33, 421-442.

Orr, P.J., Briggs, D.E.G., Kearns, S.L. "Cambrian Burgess Shale animals replicated in clay minerals." Science (1998): v. 281, p. 1173-1175.

Orr, P.J., Kearns, S. L., Briggs, D.E.G. "Elemantal mapping of exceptionally preserved 'carbonaceous compression' fossils." Palaeogeography, palaeoclimatology, palaeoecology (2009): v. 277, p. 1-8.

Osgoos, R. "Trace fossils of the Cincinnati area." Palaeontographica Americana (1970): v. 6:41, pg. 276- 439.

Seilacher, A. "Vendobionta and Psammocorallia: Lost Constructions of Precambrian Evolution." Journal of the Geological Society, London (1992): vol. 149, 607-613.

Smith E.F., MacDonald F.A, Petach A.T., Bold U., Schrag P.D. "Inegrated Stratigraphic, Geochemical, and Paleontological Late Ediacaran to Early Cambrian Records from Southwestern Mongolia." GSA Bulletin (2016): vol. 128, no. 3/4, 442-462.

Tang, G., Pang, K., Yuan, X., Xiao, S. "Electron microscopy reveals evidence for simple multicellularity in the Proterozoic fossil Churia." Geology (2017): v. 45, pg. 75-78.

Thang, B. Formatino of clay-polymer complexes. Amsterdam; New York: Elsevier Scientific Publishing Company, 1979.

Underwood, C. "Graptolite preservation and deformation." PALAIOS (1992): v. 7, pg. 178-186.

Van Alstyne K. "Adventitious branching as a herbivore-induced defense in the intertidal brown algae Fucus distichus." Marine Ecology Progress Series (1989): vol. 56; 169-176.

Van Roy, P., Orr, P.J., Botting J.P., Muir, L.A., Vinther, J., Lefebvre, B., Hariri, K., Briggs, D.E.G. "Ordovician faunas of Brugess Shale type." Nature Letters (2010): v. 465, p. 215- 218.

Wang W., Guan C., Zhou C., Wan B., Tang Q., Chen X., Chen Z., Yuan X. "Exceptional Preservation of Macrofossils from the Ediacaran Lantian and Miaohe Biotas, South China." Society for Sedimentray Geology (2014): 29(3), 129-136.

68

Wang X., Bernd-D E., Chen X., Mao X. "Integrated Sequence-.bio- and chemo-stratigraphy of the Terminal Proterozoic to Lowermost Cambrian "Black Rock Series" from Central South China." Episodes (1998): vol. 21, no. 3, 178-189.

Xiao s., dong L. "POn the morphological and ecological history of Proterozoic macroalgae." Xiao S., Kaufman A. Neoproterozoic geobiology and paleobiology. Dordrecht: Springer, 2006. 57-90.

Xiao S., Laflamme M. "On the eve of Animal Radiation: Phylogeny, Ecology and Evolution of the Ediacara Biota." Trends in Ecology and Evolution (2008): vol. 24 no. 1, 31-40.

Xiao S., Yuan X., Steiner M., Knoll A. "Macroscopic Carbonaceous Compressions in a Terminal Proterozoic Shale: a Systematic Reassessment of the Miaohe Biota, South China." Journal of Paleontology (2002): 76(2), 347-376.

Xunlai Yuan, Jun Li, Ruiji Cao. "A Diverse Metaphyte Assemblage from the Neoproterozoic Black Shales of South China." Lethaia (1999): vol. 32, 143-155.

Yuan X., Chen Z., Xiao S., Zhou C., Hua H. "An early Ediacaran Assemblage of Macroscopic and Morphologically Differentiated Eukaryotes." Nature (2011): vol. 470, 390-393.

Yuan X., Xiao S., Parsley L.R., Zhou C., Chen Z., Hu J. "Towering Sponges in an Early CambrianLagerstaätte: Disparity Between Nonbilaterian and Bilaterian Epifaunal Tierers at the Neoproterozoic-Cambrian Transition." Geology (2002): vol. 30, no. 4, 363-366.

Yuan, X., Chen, Z., Xiao, S., Zhou, C., Hua, H. "An early Ediacaran assemblage of macroscopic and morphologically differentiated eukaryotes." Nature (2011): v. 140, pg. 390-393.

Zhang, Y. "Multicellular Thallophytes with Differentiated Tissues from late Proterozoic Phosphate rocks of South China." Lethaia (1989): vol. 22, 113-132.

Zhu B., Becker H., Jiang S., Pi D., Fischer-Godde M., Yang J. "Re-Os Geochronology of Black Shales from the Neoproterozoic Doushantuo Formation, Yangtze Platform, South China." Precambrian Research (2013): vol. 225, 67-76.

Zhu, S., Chen, H. "Megascopic multicellular organisms from the 1700-million-year-old Tuanshanzi Formation in the Jixian area, north China." Science (1995): v. 270, pg. 620-622.

69

Appendix A:

SEM-EDS maps

70

71

72

73

Appendix B:

SEM-EDS map, C and Al overlay

74

75

Appendix C:

SEM-EDS line scans

76

77

78

79

80

Appendix D:

Morphological measurements, non-branching 3.68 9.84 5.56 6.05 7.00 4.16 7.78 6.10 3.47 7.16 5.85 6.75 4.88 7.69 9.32 9.24 8.04 9.22 6.37 8.39 6.57 6.56 5.43 5.40 6.57 6.83 5.71 5.31 6.74 5.56 5.90 6.96 7.29 6.70 5.20 14.74 11.65 10.89 11.80 11.78 11.63 10.49 23.35 12.09 12.07 11.61 12.07 10.44 10.60 10.60 SA/V (mm^-1) 9.95 1.98 6.97 4.33 4.15 0.62 1.24 4.06 5.33 0.69 0.73 1.76 1.31 5.99 5.60 0.21 1.60 3.95 3.69 1.88 1.58 7.55 1.78 1.65 8.17 9.45 2.29 1.95 3.58 4.08 6.33 0.94 6.74 9.35 3.24 5.65 2.92 27.97 28.47 12.48 33.65 24.82 97.94 11.25 14.21 17.24 18.07 13.64 12.12 14.15 V (mm3) 9.10 8.18 8.66 4.80 9.84 51.71 19.45 38.75 30.28 51.91 32.25 14.43 44.23 32.55 20.50 13.79 35.02 37.78 19.35 30.40 34.39 22.64 14.64 60.68 16.44 71.59 13.87 53.63 61.95 26.60 23.48 77.18 93.04 23.50 27.85 36.19 96.01 45.43 75.80 71.50 65.13 34.33 41.23 30.98 94.74 102.90 172.21 116.63 177.78 478.23 SA (mm2) Total 0.78 1.11 0.41 0.74 0.66 0.58 0.99 0.52 0.28 0.35 0.37 0.67 0.35 0.35 0.35 0.39 1.18 0.56 0.70 0.60 0.82 0.17 0.33 0.53 0.43 0.33 0.44 0.50 0.44 0.63 0.49 0.62 0.62 0.35 0.33 0.75 0.75 0.63 0.60 0.72 0.39 0.76 0.60 0.73 0.69 0.58 0.38 0.56 0.38 0.60 Avg. Width (mm) 7.34 7.77 8.76 8.77 7.78 20.61 29.02 14.83 16.40 82.26 16.28 16.19 19.45 10.40 13.03 37.99 15.14 18.64 11.13 31.00 15.61 19.68 18.29 18.07 25.08 21.42 10.33 38.32 11.63 35.65 27.42 31.72 24.24 22.23 32.62 39.24 11.66 14.53 15.74 39.85 23.77 32.80 32.90 35.54 28.58 23.38 25.77 49.90 100.83 185.10 Avg Length (mm) 5.20 3.68 9.84 5.56 6.05 7.00 4.16 7.78 6.10 7.16 4.88 3.47 5.85 6.75 7.69 9.32 9.24 8.04 9.22 6.37 8.39 6.57 6.56 5.43 5.40 6.57 6.83 5.71 5.31 6.74 5.56 5.90 6.96 7.29 6.70 14.74 11.65 10.89 11.80 11.78 11.63 10.49 23.35 12.09 12.07 11.61 12.07 10.44 10.60 10.60 SA/V (mm^-1) 9.95 1.98 6.97 4.33 4.15 0.62 1.24 4.06 5.33 0.69 0.73 1.76 1.31 5.99 5.60 0.21 1.60 3.95 3.69 1.88 1.58 7.55 1.78 1.65 8.17 9.45 2.29 1.95 3.58 4.08 6.33 0.94 6.74 9.35 3.24 5.65 2.92 27.97 28.47 12.48 24.82 97.94 33.65 11.25 14.21 17.24 18.07 13.64 12.12 14.15 V (mm3) 9.10 8.18 8.66 4.80 9.84 51.71 19.45 38.75 30.28 51.91 32.25 14.43 44.23 32.55 20.50 13.79 35.02 37.78 19.35 30.40 34.39 22.64 14.64 60.68 16.44 71.59 13.87 53.63 61.95 26.60 23.48 77.18 93.04 23.50 27.85 36.19 96.01 45.43 75.80 71.50 65.13 34.33 41.23 30.98 94.74 102.90 172.21 177.78 478.23 116.63 SA (mm2) 0.78 1.11 0.41 0.74 0.66 0.58 0.99 0.52 0.28 0.35 0.37 0.67 0.35 0.35 0.35 0.56 0.39 0.82 1.18 0.70 0.60 0.17 0.33 0.53 0.43 0.33 0.44 0.50 0.44 0.63 0.49 0.62 0.62 0.35 0.33 0.75 0.75 0.63 0.60 0.72 0.39 0.76 0.60 0.73 0.69 0.58 0.38 0.56 0.38 0.60 Primary Elements Avg. Width (mm) 7.34 7.77 8.76 8.77 7.78 20.61 29.02 14.83 16.40 82.26 16.28 16.19 19.45 10.40 13.03 37.99 15.14 18.64 11.13 31.00 15.61 19.68 18.29 18.07 25.08 21.42 10.33 38.32 11.63 35.65 27.42 31.72 24.24 22.23 32.62 39.24 11.66 14.53 15.74 39.85 23.77 32.80 32.90 35.54 28.58 23.38 25.77 49.90 100.83 185.10 Avg. Length (mm) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Number 0.78 1.11 0.41 0.74 0.66 0.58 0.99 0.52 0.28 0.35 0.37 0.67 0.35 0.35 0.35 0.56 0.39 0.82 1.18 0.70 0.60 0.33 0.17 0.53 0.43 0.33 0.44 0.50 0.44 0.63 0.62 0.49 0.62 0.35 0.33 0.75 0.75 0.63 0.60 0.72 0.76 0.39 0.60 0.73 0.69 0.58 0.38 0.56 0.38 0.60 Canopy Height (mm) ZA_2 ZA_7I ZA_3I ZA_7J ZA_3L ZA_3J ZA_8B ZA_7E ZA_7C ZA_5C ZA_5B ZA_4B ZA_3K ZA_3F ZA_3E ZA_9F ZA_9E ZA_3C ZA_9C ZA_3B ZA_9B ZA_1E ZA_8F ZA_1C ZA_8E ZA_1B ZA_8C ZA_8A ZA_7D ZA_7A ZA_5A ZA_3H ZA_3G ZA_3D ZA_9D ZA_3A ZA_9A ZA_8H ZA_8G ZA_1D ZA_8D ZA_3M ZA_10E ZA_12A ZA_11A ZA_11B ZA_10D ZA_10C ZA_10B ZA_10A Specimen

81

8.53 8.34 8.89 8.13 7.94 6.53 6.38 7.21 5.72 6.59 5.18 8.59 8.79 7.00 6.29 8.13 5.55 7.11 7.81 9.51 8.45 5.00 9.60 5.35 6.41 9.30 6.83 5.52 7.51 6.98 9.90 8.01 9.90 5.41 7.80 5.40 7.33 5.09 6.94 8.40 9.85 5.75 11.79 10.80 10.82 11.39 11.01 15.22 15.24 10.76 10.75 15.21 SA/V (mm^-1) 1.71 4.14 1.58 3.01 4.06 1.45 1.87 5.91 6.53 4.43 1.37 2.12 4.21 1.21 9.77 1.31 7.96 9.74 8.73 3.14 3.75 4.16 2.75 3.66 3.26 7.60 3.45 1.75 1.43 5.15 1.42 1.50 3.42 4.81 1.19 3.28 4.10 6.38 1.82 4.20 1.93 11.73 10.59 17.03 11.82 17.63 11.15 10.47 16.73 16.82 18.30 24.70 V (mm3) 67.43 14.57 34.50 14.02 24.47 32.22 17.11 12.22 67.56 42.66 37.33 29.22 88.20 14.75 18.22 37.03 13.14 68.37 14.93 74.27 64.71 54.06 62.07 24.53 35.68 45.79 23.21 88.07 35.18 59.67 20.93 70.63 23.57 57.85 13.17 14.12 41.25 14.10 22.89 90.95 26.66 98.85 35.29 18.10 35.28 44.02 44.32 27.68 35.25 19.03 116.71 125.72 SA (mm2) Total 0.70 0.48 0.49 0.46 0.50 0.51 0.34 0.65 0.63 0.56 0.72 0.62 0.78 0.38 0.48 0.46 0.38 0.58 0.36 0.64 0.50 0.73 0.57 0.52 0.42 0.37 0.48 0.81 0.42 0.76 0.64 0.43 0.60 0.74 0.55 0.58 0.41 0.50 0.41 0.26 0.75 0.52 0.75 0.55 0.26 0.37 0.37 0.79 0.58 0.26 0.48 0.41 Avg. Width (mm) 9.41 9.46 5.69 7.31 30.15 22.41 15.34 19.87 15.71 33.68 23.94 16.27 14.70 35.58 12.31 11.98 25.46 10.95 37.52 13.17 36.52 41.38 23.15 34.58 14.74 26.59 39.77 15.13 34.22 26.47 24.66 10.03 51.85 12.21 24.70 64.24 10.71 25.82 10.69 27.48 38.40 16.04 41.77 20.05 21.71 29.85 37.30 50.16 23.92 33.26 23.10 14.50 Avg Length (mm) 5.75 8.53 8.89 8.34 8.13 6.53 7.94 6.38 7.21 5.72 6.59 5.18 8.59 8.79 7.00 6.29 8.13 5.55 7.11 7.81 9.51 8.45 5.00 9.60 5.35 6.41 9.30 6.83 7.51 5.52 6.98 9.90 8.01 9.90 5.41 7.80 5.40 7.33 5.09 6.94 8.40 9.85 11.79 10.80 10.82 11.39 11.01 15.22 15.24 10.76 10.75 15.21 SA/V (mm^-1) 1.71 1.58 4.14 3.01 1.45 1.87 4.06 5.91 6.53 1.37 4.43 2.12 1.21 4.21 1.31 9.77 7.96 9.74 4.16 8.73 3.14 3.75 2.75 3.66 3.26 7.60 3.45 1.75 1.43 5.15 1.50 1.42 3.42 1.19 3.28 4.10 4.81 1.82 6.38 4.20 1.93 11.73 10.59 17.03 11.82 17.63 11.15 10.47 16.73 16.82 18.30 24.70 V (mm3) 67.43 14.57 14.02 34.50 24.47 17.11 12.22 32.22 67.56 42.66 37.33 14.75 29.22 88.20 18.22 13.14 37.03 14.93 68.37 74.27 64.71 54.06 45.79 62.07 24.53 35.68 23.21 88.07 35.18 59.67 20.93 70.63 23.57 13.17 57.85 14.12 41.25 22.89 14.10 90.95 26.66 98.85 18.10 35.28 44.02 35.29 27.68 44.32 35.25 19.03 116.71 125.72 SA (mm2) 0.70 0.48 0.46 0.49 0.50 0.34 0.65 0.51 0.63 0.56 0.72 0.38 0.62 0.78 0.48 0.38 0.46 0.36 0.58 0.64 0.50 0.73 0.37 0.57 0.52 0.42 0.48 0.81 0.42 0.76 0.64 0.43 0.60 0.55 0.74 0.58 0.41 0.50 0.26 0.41 0.75 0.52 0.75 0.26 0.37 0.37 0.55 0.79 0.26 0.58 0.48 0.41 Primary Elements Avg. Width (mm) 9.41 9.46 5.69 7.31 30.15 22.41 15.34 15.71 19.87 33.68 23.94 16.27 12.31 14.70 35.58 11.98 10.95 25.46 13.17 37.52 36.52 41.38 23.15 39.77 34.58 14.74 26.59 15.13 34.22 26.47 24.66 10.03 51.85 12.21 24.70 64.24 10.71 25.82 27.48 10.69 38.40 16.04 41.77 21.71 29.85 37.30 20.05 50.16 33.26 23.92 23.10 14.50 Avg. Length (mm) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Number 0.70 0.48 0.49 0.46 0.50 0.34 0.51 0.65 0.63 0.56 0.72 0.38 0.62 0.78 0.48 0.38 0.46 0.36 0.58 0.64 0.50 0.73 0.37 0.57 0.52 0.42 0.48 0.81 0.42 0.76 0.64 0.43 0.60 0.74 0.55 0.58 0.41 0.50 0.26 0.41 0.75 0.52 0.75 0.26 0.37 0.37 0.55 0.79 0.26 0.58 0.48 0.41 Canopy Height (mm) ZA_29 ZA_26 ZA_22 ZA_19 ZA_18 ZA_14 ZA_30J ZA_30I ZA_12I ZA_23E ZA_30L ZA_30F ZA_12E ZA_12F ZA_30E ZA_30A ZA_28C ZA_34C ZA_28B ZA_28A ZA_34B ZA_27B ZA_34A ZA_33C ZA_23D ZA_33B ZA_23B ZA_23A ZA_33A ZA_32C ZA_32A ZA_21B ZA_31B ZA_21A ZA_31A ZA_16B ZA_16A ZA_30K ZA_15C ZA_15B ZA_15A ZA_30H ZA_30G ZA_12H ZA_12G ZA_12D ZA_12C ZA_12B ZA_30D ZA_30C ZA_30B ZA_30M Specimen

82

7.24 6.51 6.43 6.67 8.60 6.41 6.12 8.44 6.40 4.96 5.47 4.89 8.23 8.28 8.37 9.05 8.01 6.58 9.67 8.53 9.38 6.30 9.73 6.03 6.22 4.19 9.89 6.78 6.61 9.11 9.48 4.76 7.75 3.82 5.25 6.24 6.57 5.93 45.16 12.71 12.82 14.43 12.76 12.12 10.64 18.23 11.53 12.98 12.86 20.26 10.41 SA/V (mm^-1) 0.06 1.05 4.98 0.92 0.56 0.88 6.61 3.87 5.77 4.96 1.88 6.23 7.95 2.55 0.81 2.57 1.60 1.28 5.14 2.24 3.40 4.66 1.32 3.35 0.37 1.18 1.13 6.34 3.06 7.91 2.86 2.32 7.02 2.22 1.32 4.93 1.11 6.06 9.09 1.89 6.99 4.97 10.80 15.54 10.23 14.96 31.82 12.81 27.57 15.30 13.28 V (mm3) 2.64 7.18 9.85 6.66 21.27 36.03 11.71 70.29 99.89 12.67 44.05 33.27 36.97 30.38 15.91 39.85 39.42 32.53 55.93 27.38 73.10 13.16 10.63 42.99 20.23 27.19 30.67 12.78 28.54 13.65 10.62 39.96 29.75 47.70 17.80 23.00 47.58 14.68 17.19 44.88 10.48 61.02 46.92 47.76 24.25 95.51 45.94 51.72 78.76 133.24 105.32 SA (mm2) Total 0.09 0.20 0.56 0.32 0.62 0.63 0.32 0.28 0.61 0.47 0.64 0.67 0.49 0.64 0.83 0.32 0.74 0.34 0.38 0.83 0.50 0.50 0.48 0.45 0.51 0.62 0.42 0.48 0.22 0.35 0.44 0.65 0.42 0.67 0.67 0.97 0.41 0.60 0.63 0.31 0.44 0.43 0.86 0.52 1.07 0.78 0.31 0.65 0.62 0.39 0.68 Avg. Width (mm) 9.40 7.01 9.17 8.12 6.49 9.41 9.44 7.49 8.13 7.08 7.48 34.11 20.21 11.53 35.79 50.51 14.28 22.77 22.31 18.22 14.13 10.21 19.67 14.71 32.73 23.60 22.82 27.60 28.16 14.13 16.83 15.45 18.90 12.18 19.41 22.63 22.24 43.44 17.70 25.08 17.45 32.12 22.27 28.42 30.96 19.19 24.52 46.84 23.41 42.48 36.49 Avg Length (mm) 7.24 6.51 6.43 6.67 8.60 6.41 6.12 8.44 6.40 4.96 5.47 8.23 4.89 8.28 8.37 9.05 9.67 8.01 6.58 9.38 8.53 6.30 6.22 9.73 6.03 4.19 6.61 9.89 6.78 9.48 9.11 4.76 7.75 3.82 5.25 6.24 6.57 5.93 45.16 20.26 12.71 12.82 14.43 12.76 12.12 10.64 18.23 11.53 12.98 12.86 10.41 SA/V (mm^-1) 0.06 1.05 0.92 4.98 0.56 0.88 6.61 3.87 5.77 4.96 1.88 2.55 6.23 0.81 7.95 2.57 1.60 1.28 5.14 2.24 1.32 3.40 4.66 0.37 1.18 1.13 3.35 6.34 2.86 3.06 7.91 2.22 1.32 2.32 7.02 1.11 4.93 1.89 6.06 9.09 4.97 6.99 10.80 15.54 10.23 14.96 31.82 12.81 27.57 15.30 13.28 V (mm3) 2.64 7.18 9.85 6.66 21.27 11.71 36.03 70.29 12.67 99.89 44.05 33.27 36.97 30.38 15.91 32.53 39.85 39.42 27.38 55.93 13.16 10.63 73.10 42.99 20.23 12.78 27.19 30.67 13.65 10.62 28.54 39.96 17.80 29.75 47.70 14.68 17.19 23.00 47.58 10.48 44.88 61.02 24.25 46.92 47.76 51.72 95.51 45.94 78.76 133.24 105.32 SA (mm2) 0.09 0.20 0.32 0.56 0.62 0.32 0.28 0.63 0.61 0.47 0.64 0.67 0.49 0.32 0.64 0.34 0.83 0.38 0.74 0.50 0.50 0.83 0.48 0.45 0.42 0.51 0.62 0.22 0.35 0.44 0.48 0.65 0.67 0.42 0.67 0.97 0.63 0.31 0.41 0.60 0.43 0.44 0.86 0.31 0.52 1.07 0.78 0.39 0.65 0.62 0.68 Primary Elements Avg. Width (mm) 9.40 7.01 9.17 8.12 6.49 9.41 9.44 7.49 8.13 7.08 7.48 34.11 11.53 20.21 35.79 14.28 50.51 22.77 22.31 18.22 14.13 10.21 32.73 19.67 14.71 22.82 23.60 27.60 28.16 14.13 16.83 15.45 12.18 18.90 19.41 22.63 22.24 43.44 17.45 17.70 25.08 32.12 22.27 24.52 28.42 30.96 19.19 42.48 46.84 23.41 36.49 Avg. Length (mm) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Number 0.20 0.32 0.09 0.56 0.62 0.28 0.63 0.32 0.61 0.47 0.64 0.67 0.49 0.32 0.64 0.83 0.38 0.74 0.34 0.83 0.50 0.50 0.48 0.45 0.51 0.62 0.35 0.42 0.48 0.22 0.44 0.65 0.42 0.67 0.67 0.97 0.31 0.41 0.60 0.63 0.44 0.43 0.86 0.31 0.52 1.07 0.78 0.39 0.65 0.62 0.68 Canopy Height (mm) ZA_42F ZA_42E ZA_50F ZA_50E ZA_45E ZA_42H ZA_42G ZA_42D ZA_42B ZA_42C ZA_42A ZA_42C ZA_50G ZA_42A ZA_41B ZA_50D ZA_41A ZA_50B ZA_50C ZA_40D ZA_50A ZA_40C ZA_49C ZA_40B ZA_49A ZA_40A ZA_48D ZA_39B ZA_39C ZA_48C ZA_39A ZA_48B ZA_38C ZA_48A ZA_38B ZA_47C ZA_38A ZA_47A ZA_47B ZA_37B ZA_37A ZA_45D ZA_36B ZA_45B ZA_45C ZA_36A ZA_45A ZA_35B ZA_35C ZA_35A ZA_34D Specimen

83

5.57 9.15 7.62 6.10 5.18 7.26 7.77 7.14 7.55 9.64 4.82 7.58 8.19 7.59 6.58 6.19 9.46 7.94 5.26 7.49 8.35 5.46 8.41 9.61 5.71 8.50 7.66 6.91 6.47 4.70 5.18 9.49 4.16 6.35 3.16 5.53 6.99 7.88 5.10 5.96 12.33 11.34 12.41 11.49 10.01 12.86 12.41 10.61 10.67 10.03 44.14 SA/V (mm^-1) 7.74 1.65 1.42 0.64 1.92 8.99 1.60 1.59 7.68 3.05 7.17 3.14 1.69 9.99 0.66 4.39 6.77 5.45 3.01 0.67 2.88 0.40 3.36 2.63 9.19 4.03 2.18 2.03 2.94 3.70 1.63 0.77 3.60 3.95 1.08 5.47 0.84 1.68 0.07 9.99 3.03 15.70 23.04 19.83 13.50 34.58 12.96 31.53 13.22 11.29 16.07 V (mm3) 7.24 6.61 8.56 5.02 7.28 8.97 3.07 43.12 20.41 14.25 17.56 68.53 19.80 18.25 95.87 55.75 23.73 51.15 23.75 16.31 95.64 75.69 33.31 44.53 33.70 28.44 22.86 25.19 22.00 50.14 33.84 20.92 11.60 22.53 25.54 10.52 68.41 47.00 22.84 50.78 21.85 11.41 38.27 13.25 50.94 18.06 119.24 110.54 181.74 110.20 148.13 SA (mm2) Total 0.73 0.33 0.41 0.36 0.45 0.53 0.33 0.35 0.66 0.78 0.56 0.52 0.57 0.54 0.42 0.84 0.53 0.42 0.49 0.53 0.62 0.66 0.43 0.32 0.51 0.33 0.77 0.54 0.49 0.75 0.48 0.42 0.76 0.47 0.53 0.59 0.66 0.86 0.78 0.44 0.99 0.65 1.34 0.75 0.39 0.58 0.39 0.53 0.09 0.80 0.70 Avg. Width (mm) 6.17 4.84 8.44 4.62 4.48 4.74 5.05 8.85 9.24 7.23 7.77 7.85 18.39 19.71 10.98 12.35 41.07 19.24 16.33 45.93 48.36 31.66 14.16 28.50 13.73 12.10 35.88 45.13 71.60 19.60 22.71 15.93 21.00 13.94 75.28 14.48 14.14 21.03 22.16 15.58 74.12 13.20 13.44 54.55 27.40 14.56 10.88 11.40 20.73 10.71 19.88 Avg Length (mm) 5.57 9.15 7.62 6.10 5.18 7.26 7.77 7.14 7.55 9.64 4.82 7.58 8.19 7.59 6.58 6.19 9.46 7.94 5.26 7.49 8.35 5.46 5.71 8.41 9.61 8.50 6.47 7.66 6.91 4.70 9.49 5.18 4.16 5.53 6.35 3.16 7.88 6.99 5.96 5.10 12.33 10.03 11.34 12.41 11.49 10.01 12.86 12.41 10.61 10.67 44.14 SA/V (mm^-1) 1.65 1.42 0.64 7.74 1.60 1.59 1.92 8.99 7.68 3.05 7.17 3.14 1.69 0.66 9.99 4.39 6.77 0.67 5.45 3.01 0.40 2.88 3.36 2.63 9.19 2.03 4.03 2.18 1.63 2.94 3.70 0.77 3.95 3.60 1.08 0.84 1.68 5.47 0.07 3.03 9.99 15.70 23.04 19.83 13.50 34.58 12.96 31.53 13.22 11.29 16.07 V (mm3) 7.24 6.61 8.56 5.02 7.28 8.97 3.07 20.41 14.25 43.12 19.80 18.25 17.56 68.53 95.87 55.75 23.73 51.15 23.75 16.31 95.64 75.69 33.31 44.53 33.70 28.44 22.86 25.19 22.00 50.14 11.60 33.84 20.92 10.52 22.53 25.54 68.41 47.00 21.85 22.84 11.41 50.78 13.25 38.27 18.06 50.94 119.24 110.54 181.74 110.20 148.13 SA (mm2) 0.33 0.41 0.36 0.73 0.33 0.35 0.45 0.53 0.66 0.78 0.56 0.52 0.57 0.54 0.42 0.42 0.84 0.53 0.49 0.53 0.62 0.32 0.66 0.43 0.33 0.51 0.77 0.54 0.49 0.75 0.76 0.48 0.42 0.47 0.66 0.53 0.59 0.44 0.86 0.78 0.99 0.75 0.65 0.39 1.34 0.39 0.53 0.58 0.09 0.70 0.80 Primary Elements Avg. Width (mm) 6.17 4.84 8.44 4.62 4.48 4.74 5.05 8.85 9.24 7.23 7.77 7.85 19.71 10.98 18.39 19.24 16.33 12.35 41.07 45.93 48.36 31.66 14.16 28.50 13.73 12.10 35.88 45.13 71.60 19.60 22.71 15.93 21.00 13.94 75.28 14.48 14.14 21.03 22.16 15.58 74.12 13.20 13.44 54.55 27.40 14.56 10.88 11.40 20.73 10.71 19.88 Avg. Length (mm) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Number 0.33 0.41 0.73 0.36 0.33 0.35 0.45 0.53 0.66 0.78 0.56 0.52 0.57 0.54 0.42 0.84 0.53 0.42 0.49 0.53 0.62 0.66 0.43 0.32 0.51 0.33 0.77 0.54 0.49 0.75 0.48 0.42 0.76 0.47 0.53 0.59 0.66 0.86 0.78 0.44 0.99 0.65 1.34 0.75 0.39 0.58 0.09 0.39 0.53 0.80 0.70 Canopy Height (mm) ZA_54 ZA_60 ZA_50I ZA_57E ZA_55F ZA_55E ZA_50L ZA_58E ZA_58F ZA_58C ZA_58D ZA_58B ZA_58A ZA_57C ZA_57D ZA_57B ZA_65D ZA_57A ZA_65C ZA_56C ZA_65B ZA_56B ZA_65A ZA_56A ZA_64B ZA_64A ZA_63D ZA_55D ZA_63C ZA_55C ZA_63B ZA_55B ZA_63A ZA_62B ZA_53D ZA_62A ZA_53C ZA_61D ZA_53A ZA_61B ZA_52B ZA_61A ZA_52A ZA_51C ZA_59B ZA_51B ZA_59A ZA_51A ZA_58G ZA_50K ZA_50H Specimen

84

8.55 5.63 6.01 9.26 8.20 5.50 7.91 7.21 5.71 9.48 5.77 6.95 8.17 5.88 9.40 5.28 5.45 8.94 9.81 7.98 6.99 8.24 4.31 9.31 4.20 9.38 8.06 8.62 6.72 8.67 8.03 9.11 5.96 6.44 6.02 4.67 6.03 7.02 12.57 15.93 16.62 13.11 29.49 10.97 12.98 12.35 13.11 11.54 10.93 10.48 10.31 SA/V (mm^-1) 2.47 7.28 6.93 7.72 7.12 0.86 5.72 4.41 0.42 1.20 0.32 7.92 1.61 6.74 1.86 6.79 5.18 3.52 3.59 1.35 1.83 7.70 0.10 2.63 2.14 0.97 1.46 1.87 1.69 3.85 2.01 6.20 2.48 7.41 1.20 1.06 5.09 2.61 8.99 7.27 4.36 5.12 5.07 14.69 10.37 24.49 25.14 28.14 14.51 12.01 13.13 V (mm3) 6.72 5.30 2.93 68.59 21.12 41.00 62.33 64.20 63.31 39.14 10.80 45.24 31.75 11.39 55.05 13.16 39.63 17.45 35.81 28.25 31.47 35.20 10.79 24.01 53.79 21.71 23.45 12.57 18.07 24.57 19.47 35.83 60.91 18.88 96.86 53.47 16.70 64.18 13.14 11.14 40.87 23.73 53.60 46.88 44.97 30.85 79.22 35.63 139.93 145.02 121.24 SA (mm2) Total 0.87 0.48 0.73 0.67 0.43 0.49 0.74 0.32 0.51 0.56 0.26 0.70 0.43 0.70 0.25 0.58 0.51 0.69 0.43 0.78 0.76 0.45 0.41 0.52 0.31 0.58 0.14 0.49 0.37 0.31 0.94 0.33 0.31 0.35 0.43 0.98 0.43 0.50 0.47 0.62 0.46 0.37 0.39 0.50 0.45 0.68 0.63 0.39 0.68 0.67 0.58 Avg. Width (mm) 8.27 8.16 6.77 8.04 6.32 6.74 8.31 8.90 24.61 13.89 17.65 29.16 46.89 40.82 16.38 10.49 27.99 17.65 62.95 65.91 29.89 17.84 12.62 14.25 11.49 21.95 27.07 24.75 29.35 13.75 20.11 12.68 40.65 17.44 25.33 17.54 26.14 19.37 13.67 61.69 36.23 43.82 11.06 25.62 16.76 24.76 23.42 36.53 14.11 37.38 19.34 Avg Length (mm) 4.67 8.55 5.63 6.01 9.26 8.20 5.50 7.91 7.21 9.48 5.71 5.77 8.17 6.95 5.88 9.40 5.28 5.45 7.98 8.94 9.81 6.99 8.24 4.31 9.31 4.20 9.38 8.06 6.72 8.62 8.67 8.03 9.11 5.96 6.44 6.02 6.03 7.02 12.57 15.93 16.62 13.11 29.49 10.97 12.98 12.35 13.11 11.54 10.93 10.48 10.31 SA/V (mm^-1) 2.47 7.28 6.93 0.86 7.72 7.12 0.42 5.72 4.41 1.20 0.32 1.61 7.92 6.74 1.86 6.79 5.18 1.35 1.83 3.52 3.59 0.10 2.14 0.97 7.70 1.46 1.87 1.69 2.63 3.85 2.01 2.48 1.20 6.20 1.06 7.41 5.09 4.36 2.61 8.99 7.27 5.12 5.07 14.69 10.37 24.49 25.14 28.14 14.51 12.01 13.13 V (mm3) 6.72 5.30 2.93 68.59 21.12 41.00 62.33 64.20 10.80 63.31 39.14 45.24 31.75 11.39 13.16 55.05 39.63 17.45 35.81 28.25 10.79 24.01 31.47 35.20 23.45 12.57 53.79 18.07 24.57 19.47 21.71 35.83 60.91 18.88 16.70 96.86 13.14 53.47 11.14 64.18 40.87 44.97 23.73 53.60 46.88 30.85 79.22 35.63 139.93 145.02 121.24 SA (mm2) 0.87 0.48 0.73 0.67 0.43 0.32 0.49 0.74 0.26 0.51 0.56 0.43 0.70 0.25 0.70 0.51 0.58 0.69 0.43 0.78 0.76 0.52 0.31 0.45 0.41 0.14 0.37 0.31 0.58 0.33 0.31 0.35 0.49 0.94 0.43 0.98 0.43 0.62 0.50 0.37 0.47 0.39 0.46 0.50 0.39 0.45 0.68 0.63 0.68 0.67 0.58 Primary Elements Avg. Width (mm) 8.27 8.16 6.77 8.04 6.32 6.74 8.31 8.90 24.61 13.89 17.65 29.16 46.89 10.49 40.82 16.38 27.99 17.65 62.95 65.91 29.89 17.84 12.62 14.25 11.49 24.75 21.95 27.07 20.11 12.68 29.35 17.44 25.33 17.54 13.75 40.65 26.14 19.37 13.67 61.69 11.06 36.23 43.82 25.62 36.53 16.76 24.76 23.42 14.11 37.38 19.34 Avg. Length (mm) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Number 0.87 0.48 0.73 0.67 0.43 0.32 0.49 0.74 0.51 0.56 0.26 0.70 0.43 0.70 0.25 0.58 0.51 0.69 0.43 0.78 0.76 0.31 0.45 0.41 0.52 0.37 0.31 0.58 0.33 0.31 0.35 0.14 0.49 0.94 0.43 0.98 0.43 0.50 0.37 0.47 0.62 0.46 0.39 0.50 0.39 0.45 0.68 0.63 0.68 0.67 0.58 Canopy Height (mm) ZA_75 ZA_74 ZA_69J ZA_69I ZA_70F ZA_70E ZA_69L ZA_76E ZA_69E ZA_69F ZA_72F ZA_72E ZA_72A ZA_71C ZA_71B ZA_71A ZA_70D ZA_70C ZA_70B ZA_80C ZA_70A ZA_80B ZA_80A ZA_79C ZA_69K ZA_79A ZA_78A ZA_77A ZA_69H ZA_76D ZA_69G ZA_76A ZA_76B ZA_76C ZA_69D ZA_69C ZA_73C ZA_69B ZA_73A ZA_68C ZA_69A ZA_68B ZA_68A ZA_72C ZA_72D ZA_67C ZA_72B ZA_67B ZA_67A ZA_66B ZA_69M Specimen

85

5.52 7.72 5.61 7.95 5.61 6.84 4.66 4.85 6.20 4.63 9.31 7.71 8.55 5.54 7.84 4.74 6.30 5.27 6.96 6.78 6.83 8.38 7.63 6.89 5.89 6.80 9.18 8.21 8.63 7.69 5.59 6.90 7.70 4.96 8.32 7.65 12.73 12.22 13.25 18.08 13.69 11.24 11.88 11.01 10.68 11.83 13.87 11.48 11.56 10.28 12.60 SA/V (mm^-1) 4.52 2.75 3.45 0.85 0.83 6.17 8.30 4.40 1.53 1.72 0.36 4.19 1.57 0.63 4.65 6.45 1.55 1.52 2.39 1.49 4.57 1.49 5.36 5.39 2.73 5.26 1.75 8.72 2.35 6.71 5.79 1.17 2.34 2.33 1.55 1.61 7.44 8.03 6.85 2.62 9.81 12.60 22.88 10.69 23.94 11.16 16.73 36.52 13.69 13.08 20.45 V (mm3) 6.50 8.67 24.94 34.65 26.59 10.85 10.11 70.70 49.07 73.13 38.66 27.28 20.27 51.65 16.04 32.32 13.39 92.65 36.46 40.67 17.37 18.06 72.14 16.61 16.38 30.99 15.89 36.58 45.20 32.31 40.12 24.26 60.03 27.03 39.51 39.37 13.55 21.49 19.17 13.37 16.57 57.20 44.89 47.26 20.17 64.88 81.59 128.29 116.06 172.98 156.50 SA (mm2) Total 0.75 0.32 0.53 0.32 0.33 0.72 0.51 0.72 0.59 0.89 0.83 0.66 0.30 0.89 0.44 0.22 0.53 0.48 0.30 0.73 0.52 0.85 0.65 0.36 0.34 0.77 0.60 0.37 0.60 0.38 0.60 0.48 0.34 0.53 0.29 0.59 0.35 0.69 0.60 0.35 0.44 0.50 0.48 0.40 0.52 0.73 0.59 0.53 0.82 0.48 0.52 Avg. Width (mm) 9.51 9.12 8.62 9.15 8.59 8.71 10.20 34.43 15.81 10.68 30.87 30.57 56.55 39.25 13.44 43.96 12.79 21.08 18.15 11.44 19.31 40.11 22.24 64.39 19.76 15.19 16.75 29.49 14.00 16.12 13.12 19.28 29.69 30.09 23.84 26.49 32.33 24.35 17.84 20.71 12.12 15.26 12.03 13.16 34.50 19.25 25.39 11.83 24.79 53.56 94.86 Avg Length (mm) 5.52 7.72 5.61 7.95 5.61 6.84 4.66 4.85 6.20 4.63 9.31 8.55 7.71 5.54 7.84 4.74 6.96 6.30 5.27 6.78 6.83 8.38 7.63 6.89 5.89 6.80 8.63 9.18 8.21 7.69 5.59 6.90 7.70 4.96 8.32 7.65 12.60 12.73 12.22 13.25 18.08 13.69 11.24 11.88 11.01 10.68 11.83 13.87 11.48 11.56 10.28 SA/V (mm^-1) 2.75 0.85 4.52 0.83 3.45 6.17 1.53 8.30 4.40 0.36 1.72 1.57 0.63 4.19 4.65 1.55 1.52 2.39 1.49 6.45 1.49 2.73 4.57 1.75 5.36 2.35 5.39 5.26 1.17 8.72 6.71 5.79 1.55 1.61 2.34 2.33 7.44 8.03 6.85 2.62 9.81 12.60 22.88 10.69 23.94 11.16 16.73 36.52 13.69 13.08 20.45 V (mm3) 6.50 8.67 34.65 10.85 24.94 10.11 26.59 70.70 49.07 73.13 20.27 38.66 27.28 51.65 16.04 13.39 32.32 92.65 36.46 17.37 18.06 16.61 16.38 40.67 15.89 72.14 32.31 30.99 24.26 36.58 27.03 45.20 40.12 13.55 60.03 39.51 39.37 13.37 16.57 21.49 19.17 57.20 44.89 47.26 20.17 64.88 81.59 128.29 116.06 172.98 156.50 SA (mm2) 0.32 0.32 0.75 0.33 0.53 0.72 0.51 0.72 0.59 0.30 0.89 0.83 0.66 0.22 0.89 0.44 0.48 0.30 0.53 0.73 0.52 0.36 0.34 0.85 0.60 0.37 0.65 0.38 0.77 0.34 0.60 0.29 0.60 0.35 0.48 0.53 0.35 0.59 0.69 0.60 0.48 0.40 0.44 0.50 0.52 0.73 0.59 0.53 0.82 0.48 0.52 Primary Elements Avg. Width (mm) 9.51 9.12 8.62 9.15 8.59 8.71 34.43 10.68 10.20 15.81 30.87 30.57 56.55 39.25 21.08 13.44 43.96 12.79 18.15 11.44 19.31 40.11 22.24 15.19 16.75 64.39 14.00 19.76 13.12 29.49 30.09 16.12 26.49 19.28 24.35 29.69 23.84 12.12 32.33 17.84 20.71 13.16 15.26 12.03 34.50 19.25 25.39 11.83 24.79 53.56 94.86 Avg. Length (mm) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Number 0.32 0.32 0.75 0.53 0.33 0.72 0.51 0.72 0.59 0.30 0.89 0.83 0.66 0.89 0.44 0.22 0.53 0.48 0.30 0.73 0.52 0.36 0.34 0.85 0.37 0.65 0.38 0.77 0.60 0.34 0.60 0.29 0.60 0.35 0.48 0.53 0.35 0.59 0.69 0.60 0.40 0.44 0.50 0.48 0.52 0.73 0.59 0.53 0.82 0.48 0.52 Canopy Height (mm) ZA_98 ZA_86 ZA_97 ZA_95 ZA_84 ZA_92 ZA_91 ZA_90 ZA_81 ZA_82I ZA_87E ZA_100 ZA_83F ZA_83E ZA_82F ZA_82E ZA_88C ZA_88A ZA_88B ZA_87D ZA_87C ZA_87B ZA_99A ZA_99B ZA_87A ZA_85C ZA_96B ZA_85B ZA_96A ZA_85A ZA_83G ZA_94C ZA_94D ZA_83D ZA_94B ZA_83B ZA_83C ZA_94A ZA_83A ZA_82G ZA_82H ZA_89C ZA_89D ZA_89B ZA_82D ZA_89A ZA_82C ZA_88D ZA_82B ZA_82A ZA_101A Specimen

86

7.68 5.26 3.76 8.55 4.91 6.62 4.84 5.33 9.49 4.93 9.02 8.25 7.34 7.98 8.92 7.93 7.38 3.54 7.20 3.51 7.05 3.57 5.61 4.35 6.68 6.54 9.18 5.99 8.94 6.08 7.06 4.99 5.66 9.10 20.05 10.89 13.15 28.50 10.19 16.64 14.58 12.64 15.34 18.41 11.37 13.40 13.77 18.10 22.29 12.54 20.52 SA/V (mm^-1) 1.94 0.12 8.46 3.86 2.48 0.97 5.66 7.41 1.26 0.15 1.79 0.30 0.42 1.67 0.84 3.48 0.51 2.94 3.37 1.26 0.41 1.51 1.32 0.32 0.08 3.73 1.61 7.17 4.63 4.72 3.53 6.36 0.83 7.76 4.15 0.55 5.61 3.00 8.35 6.76 4.48 1.48 13.54 24.16 33.14 12.01 12.82 33.24 15.80 36.49 11.67 V (mm3) 2.44 4.31 5.07 6.10 9.39 5.58 9.69 5.85 1.78 14.93 44.52 19.28 50.84 21.19 10.61 37.47 39.53 16.61 18.23 21.05 12.92 33.06 59.17 33.43 30.41 16.89 12.42 29.74 14.32 56.83 34.17 45.34 33.95 24.84 56.33 35.71 10.43 78.00 50.74 38.08 11.32 33.60 26.85 50.80 47.73 25.37 13.48 118.63 160.41 116.63 158.63 SA (mm2) Total 0.54 0.21 0.78 0.85 1.11 0.48 0.82 0.38 0.61 0.83 0.77 0.31 0.14 0.40 0.25 0.28 0.32 0.26 0.43 0.83 0.22 0.35 0.45 0.30 0.30 0.50 0.58 0.22 0.19 0.51 0.46 0.51 0.55 1.19 0.56 1.16 0.58 1.17 0.73 0.93 0.32 0.60 0.62 0.44 0.20 0.68 0.45 0.67 0.57 0.73 0.45 Avg. Width (mm) 8.58 3.69 6.78 8.82 9.64 6.47 6.80 5.81 7.65 5.07 8.21 2.98 9.71 9.32 17.86 14.07 13.94 45.55 19.13 60.98 16.01 17.07 14.39 20.86 15.52 24.56 22.37 13.54 29.90 21.39 17.72 18.39 35.37 19.51 11.55 18.89 31.41 13.35 14.80 15.21 53.98 10.09 40.89 25.80 27.41 18.29 15.33 18.65 23.92 26.24 10.69 Avg Length (mm) 7.68 4.99 5.26 3.76 8.55 4.91 6.62 4.84 5.33 9.49 4.93 8.25 9.02 7.34 8.92 7.98 7.93 7.38 3.54 7.20 3.51 7.05 3.57 5.61 4.35 6.68 6.54 9.18 5.99 8.94 6.08 7.06 9.10 5.66 20.05 10.89 13.15 28.50 10.19 16.64 14.58 12.64 15.34 18.41 11.37 13.40 13.77 18.10 22.29 12.54 20.52 SA/V (mm^-1) 1.94 0.12 3.86 8.46 0.97 2.48 1.26 0.15 1.79 0.30 0.42 1.67 0.84 5.66 7.41 0.51 2.94 1.26 3.48 0.41 1.51 3.37 1.32 0.32 0.08 1.61 3.73 7.17 4.63 4.72 3.53 0.83 6.36 0.55 7.76 4.15 5.61 3.00 8.35 6.76 1.48 4.48 13.54 24.16 33.14 12.01 12.82 33.24 15.80 36.49 11.67 V (mm3) 2.44 4.31 5.07 6.10 9.39 5.58 9.69 5.85 1.78 14.93 19.28 44.52 50.84 10.61 21.19 16.61 18.23 21.05 12.92 37.47 39.53 33.43 16.89 33.06 59.17 12.42 30.41 14.32 29.74 56.83 34.17 45.34 33.95 24.84 10.43 56.33 35.71 11.32 78.00 50.74 38.08 33.60 26.85 50.80 47.73 13.48 25.37 118.63 160.41 116.63 158.63 SA (mm2) 0.54 0.21 0.85 0.78 1.11 0.38 0.48 0.82 0.31 0.14 0.40 0.25 0.28 0.32 0.26 0.61 0.83 0.77 0.22 0.35 0.30 0.43 0.30 0.83 0.50 0.45 0.58 0.22 0.19 0.46 0.51 0.51 0.55 1.19 0.56 1.16 0.58 0.32 1.17 0.73 0.93 0.20 0.60 0.62 0.44 0.68 0.45 0.67 0.57 0.45 0.73 Primary Elements Avg. Width (mm) 8.58 3.69 6.78 8.82 9.64 6.47 6.80 5.81 7.65 5.07 8.21 2.98 9.71 9.32 17.86 14.07 13.94 45.55 17.07 14.39 20.86 15.52 19.13 60.98 16.01 13.54 29.90 17.72 24.56 22.37 21.39 18.39 35.37 19.51 11.55 18.89 31.41 13.35 10.09 14.80 15.21 53.98 18.29 40.89 25.80 27.41 15.33 18.65 23.92 26.24 10.69 Avg. Length (mm) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Number 0.54 0.21 0.78 0.85 1.11 0.48 0.82 0.31 0.40 0.32 0.38 0.26 0.61 0.83 0.77 0.14 0.22 0.25 0.35 0.28 0.30 0.43 0.83 0.45 0.30 0.50 0.58 0.22 0.19 0.51 0.46 0.51 0.55 1.19 0.56 1.16 0.58 0.32 1.17 0.73 0.93 0.20 0.60 0.62 0.44 0.68 0.45 0.67 0.57 0.73 0.45 Canopy Height (mm) ZA_131 ZA_114 ZA_112 ZA_110 ZA_106 ZA_125 ZA_104 ZA_130B ZA_122B ZA_129C ZA_129B ZA_117B ZA_119C ZA-119D ZA_121B ZA_118B ZA_119B ZA_128E ZA_128C ZA_108C ZA_128B ZA_108B ZA_127B ZA_107C ZA_107B ZA_126B ZA_105B ZA_124B ZA_103B ZA_123B ZA_102C ZA_122C ZA_102B ZA_101B ZA_129D ZA_122A ZA_121A ZA_129A ZA_117A ZA_118A ZA_119A ZA_128D ZA_128A ZA_108A ZA_127A ZA_126A ZA_105A ZA_124A ZA_103A ZA_123A ZA_102A Specimen

87

6.24 6.09 5.27 6.33 6.65 8.51 7.84 6.19 8.41 6.58 9.16 5.45 6.67 6.62 5.65 3.94 8.34 7.41 8.64 6.83 4.47 6.38 8.51 5.84 7.66 10.94 18.26 10.43 18.19 29.23 10.79 12.24 10.86 10.63 10.33 11.09 10.34 17.18 43.82 21.86 24.43 11.73 11.95 10.45 23.16 13.56 10.71 12.97 17.88 48.98 14.43 SA/V (mm^-1) 0.32 7.76 0.88 3.07 0.32 3.10 6.41 1.66 0.44 0.12 2.39 1.09 1.37 1.08 2.57 1.45 4.82 4.05 2.52 0.99 4.39 1.29 0.94 0.53 0.04 2.16 0.43 0.09 0.71 1.16 2.71 1.14 0.45 1.49 2.99 5.02 4.47 1.54 2.78 0.67 3.23 0.05 5.34 0.64 2.47 10.79 14.93 10.96 38.13 25.85 65.97 V (mm3) 5.69 9.66 5.77 8.02 3.64 9.16 9.76 9.19 1.71 9.49 2.22 8.38 6.08 8.67 2.62 9.22 48.42 18.67 56.92 19.65 42.60 17.30 25.83 13.31 14.85 20.18 15.44 29.79 34.07 16.61 10.23 40.18 14.26 81.35 73.18 14.32 13.88 28.35 26.45 15.95 24.89 37.21 38.62 10.53 17.73 27.48 31.17 18.90 215.30 101.75 294.78 SA (mm2) Total 0.23 0.65 0.37 0.68 0.77 0.22 0.65 0.61 0.39 0.22 0.14 0.37 0.33 0.37 0.49 0.52 0.38 0.66 0.48 0.63 0.40 0.44 0.37 0.74 0.40 0.24 0.09 0.60 0.63 0.18 0.71 0.17 0.35 0.34 1.03 0.39 0.17 0.30 0.38 0.49 0.55 0.47 0.62 0.90 0.65 0.31 0.48 0.08 0.70 0.28 0.54 Avg. Width (mm) 7.87 8.04 8.35 8.17 9.24 8.33 5.71 8.05 8.01 7.63 5.88 6.90 4.15 7.47 6.26 5.09 8.33 8.63 23.40 23.13 21.94 13.97 11.40 21.81 12.64 12.46 12.07 12.68 14.00 22.32 28.86 12.23 34.54 12.33 38.29 16.33 96.08 12.87 30.85 23.20 48.60 13.21 16.04 21.39 26.10 18.15 10.14 13.79 10.31 10.98 103.98 Avg Length (mm) 6.09 6.24 5.27 6.33 8.51 6.65 7.84 6.58 6.19 8.41 9.16 5.45 6.62 6.67 5.65 3.94 8.34 6.83 7.41 8.64 6.38 4.47 8.51 5.84 7.66 17.88 10.94 18.26 10.43 18.19 29.23 10.79 12.24 10.86 10.63 10.33 11.09 10.34 17.18 43.82 21.86 24.43 11.73 11.95 10.45 23.16 13.56 10.71 12.97 48.98 14.43 SA/V (mm^-1) 0.32 0.88 3.07 7.76 0.32 3.10 1.66 0.44 0.12 2.39 1.09 1.37 1.08 1.45 6.41 2.57 2.52 4.82 0.99 1.29 4.05 0.94 0.53 0.04 4.39 2.16 0.43 0.09 0.71 1.16 2.71 1.14 0.45 1.49 2.99 1.54 5.02 4.47 2.78 0.67 0.05 0.64 3.23 5.34 2.47 10.79 14.93 10.96 38.13 25.85 65.97 V (mm3) 5.69 9.66 5.77 8.02 3.64 9.16 9.76 9.19 1.71 9.49 2.22 8.38 6.08 8.67 2.62 9.22 18.67 48.42 19.65 56.92 17.30 25.83 13.31 14.85 15.44 42.60 20.18 16.61 29.79 10.23 14.26 34.07 40.18 81.35 14.32 73.18 13.88 28.35 26.45 15.95 24.89 10.53 37.21 38.62 17.73 27.48 31.17 18.90 215.30 101.75 294.78 SA (mm2) 0.23 0.37 0.68 0.65 0.22 0.65 0.77 0.39 0.22 0.14 0.37 0.33 0.37 0.49 0.38 0.61 0.52 0.63 0.66 0.40 0.37 0.48 0.40 0.24 0.09 0.44 0.74 0.63 0.18 0.60 0.17 0.35 0.34 0.39 0.17 0.71 0.30 0.38 1.03 0.49 0.62 0.55 0.47 0.65 0.90 0.31 0.08 0.28 0.48 0.70 0.54 Primary Elements Avg. Width (mm) 7.87 8.04 8.35 8.17 9.24 8.33 5.71 8.05 8.01 7.63 5.88 6.90 4.15 7.47 6.26 5.09 8.33 8.63 23.40 23.13 13.97 11.40 21.81 12.64 12.46 12.68 21.94 12.07 14.00 12.23 22.32 12.33 28.86 34.54 16.33 38.29 12.87 23.20 48.60 96.08 13.21 30.85 16.04 21.39 26.10 10.14 10.31 18.15 13.79 10.98 103.98 Avg. Length (mm) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Number 0.23 0.65 0.37 0.68 0.77 0.39 0.22 0.22 0.37 0.33 0.37 0.65 0.38 0.61 0.14 0.49 0.52 0.66 0.37 0.48 0.63 0.24 0.40 0.44 0.74 0.18 0.40 0.09 0.60 0.34 0.63 0.39 0.17 0.71 0.17 0.38 0.35 1.03 0.30 0.49 0.55 0.47 0.62 0.90 0.08 0.65 0.28 0.31 0.48 0.70 0.54 Canopy Height (mm) ZA_150 ZA_149 ZA_162 ZA_141 ZA_160 ZA_156 ZA_135 ZA_133 ZA_151C ZA_151B ZA_144B ZA_144C ZA_144E ZA_146B ZA_146C ZA_147B ZA_159B ZA_140C ZA_157C ZA_157E ZA_140B ZA_157B ZA_155C ZA_139B ZA_139C ZA_154B ZA_155B ZA_137B ZA_152C ZA_136B ZA_152B ZA_152C ZA_134B ZA_134C ZA_151A ZA_146A ZA_163A ZA_144A ZA_144D ZA_147A ZA_159A ZA_157A ZA_157D ZA_140A ZA_139A ZA_155A ZA_154A ZA_137A ZA_152D ZA_152A ZA_134A Specimen

88

8.89 7.87 8.89 5.52 7.62 5.24 7.23 7.46 7.99 4.21 8.84 9.02 7.75 9.50 9.64 9.68 7.88 5.83 8.20 5.58 8.62 8.73 5.83 8.16 9.29 8.39 8.14 9.46 15.31 12.98 15.21 27.83 27.86 14.02 11.66 45.92 16.23 52.23 15.43 23.34 10.81 14.50 13.45 41.93 18.55 23.27 22.19 22.11 12.90 10.47 11.09 SA/V (mm^-1) 0.42 0.86 0.75 1.74 0.63 1.80 1.75 0.14 0.12 4.57 4.94 8.41 5.02 0.58 4.16 1.16 1.85 5.07 0.03 2.47 5.76 0.68 1.52 0.42 1.25 5.65 0.03 5.15 2.42 5.05 0.21 6.73 1.45 1.29 0.46 0.71 0.06 0.26 0.31 0.25 0.41 0.97 7.90 1.69 3.52 3.48 1.03 15.95 10.58 10.83 11.24 V (mm3) 6.35 9.57 9.73 9.64 3.77 3.31 8.10 9.28 1.20 6.45 6.84 1.71 4.98 6.72 9.56 2.32 4.84 7.25 5.45 8.95 9.78 15.45 14.16 15.56 25.21 37.67 44.06 36.29 31.08 21.61 67.18 44.84 22.28 44.68 14.62 12.06 83.36 32.98 42.22 37.33 28.15 58.03 12.67 13.90 63.06 12.48 82.71 91.72 15.74 29.49 28.32 SA (mm2) Total 0.27 0.37 0.31 0.46 0.27 0.52 0.46 0.15 0.15 0.75 0.53 0.78 0.56 0.29 0.54 0.53 0.35 0.97 0.46 0.09 0.45 0.52 0.44 0.42 0.25 0.42 0.51 0.70 0.08 0.49 0.26 0.74 0.17 0.47 0.47 0.38 0.28 0.30 0.10 0.70 0.22 0.17 0.18 0.18 0.31 0.38 0.49 0.44 0.48 0.50 0.44 Avg. Width (mm) 7.47 8.07 9.74 8.35 8.21 7.20 8.75 5.37 4.29 4.43 8.59 8.87 7.04 9.09 8.33 7.48 9.93 7.64 6.93 9.45 6.93 10.47 11.41 10.55 10.32 22.33 17.60 20.32 17.92 19.72 21.55 31.09 15.54 27.05 10.79 51.80 14.61 27.08 45.60 11.74 39.34 11.59 28.55 13.26 15.58 12.50 68.59 59.13 11.20 19.20 17.86 Avg Length (mm) 7.87 8.89 8.89 5.52 7.62 5.24 7.23 7.99 7.46 8.84 4.21 9.50 9.02 7.75 9.68 9.64 7.88 5.83 8.20 5.58 8.73 8.62 5.83 8.16 9.29 8.39 9.46 8.14 15.31 11.09 12.98 15.21 27.83 27.86 14.02 11.66 45.92 16.23 52.23 15.43 23.34 10.81 14.50 13.45 41.93 18.55 23.27 22.19 22.11 12.90 10.47 SA/V (mm^-1) 0.42 0.86 0.75 0.63 1.80 1.74 0.14 1.75 0.12 4.57 4.94 8.41 0.58 5.02 1.16 4.16 1.85 0.03 5.07 0.68 2.47 5.76 0.42 1.25 1.52 0.03 2.42 5.65 0.21 5.15 5.05 1.45 1.29 6.73 0.46 0.71 0.06 0.26 0.31 0.25 0.41 0.97 7.90 1.69 3.52 1.03 3.48 15.95 10.58 10.83 11.24 V (mm3) 6.35 9.57 9.73 9.64 3.77 3.31 8.10 9.28 1.20 6.45 6.84 1.71 4.98 6.72 9.56 2.32 4.84 7.25 5.45 8.95 9.78 14.16 15.45 15.56 25.21 37.67 44.06 36.29 31.08 21.61 44.84 67.18 22.28 44.68 12.06 14.62 83.36 37.33 32.98 42.22 28.15 12.67 13.90 58.03 12.48 82.71 63.06 91.72 15.74 29.49 28.32 SA (mm2) 0.27 0.37 0.31 0.27 0.52 0.46 0.15 0.46 0.15 0.75 0.53 0.78 0.29 0.56 0.53 0.54 0.35 0.09 0.46 0.97 0.44 0.45 0.52 0.25 0.42 0.42 0.08 0.51 0.26 0.70 0.17 0.49 0.74 0.47 0.38 0.47 0.28 0.30 0.10 0.22 0.17 0.18 0.18 0.31 0.38 0.70 0.49 0.44 0.48 0.44 0.50 Primary Elements Avg. Width (mm) 7.47 8.07 9.74 8.35 8.21 7.20 8.75 5.37 4.29 4.43 8.59 8.87 7.04 9.09 8.33 7.48 9.93 7.64 6.93 9.45 6.93 11.41 10.47 10.55 10.32 22.33 17.60 20.32 17.92 19.72 31.09 21.55 15.54 27.05 10.79 51.80 45.60 14.61 27.08 11.74 11.59 39.34 13.26 15.58 12.50 68.59 28.55 59.13 11.20 19.20 17.86 Avg. Length (mm) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Number 0.27 0.37 0.27 0.31 0.46 0.52 0.46 0.15 0.15 0.75 0.53 0.78 0.56 0.29 0.54 0.35 0.53 0.46 0.97 0.09 0.45 0.52 0.44 0.42 0.25 0.42 0.51 0.26 0.70 0.08 0.49 0.74 0.17 0.38 0.47 0.17 0.47 0.18 0.28 0.31 0.38 0.30 0.10 0.70 0.22 0.18 0.49 0.44 0.48 0.50 0.44 Canopy Height (mm) ZA_178 ZA_177 ZA_175 ZA_194 ZA_193 ZA_169 ZA_190 ZA_166 ZA_183 ZA_182C ZA_182B ZA_179E ZA_179C ZA_179B ZA_173B ZA_172B ZA_195B ZA_171B ZA_170C ZA_170B ZA_192C ZA_191B ZA_192B ZA_167E ZA_189B ZA_167B ZA_167C ZA_184B ZA_186C ZA_187B ZA_187C ZA_163C ZA_163B ZA_182D ZA_182A ZA_179D ZA_179A ZA_173A ZA_196A ZA_171A ZA_192D ZA_170A ZA_191A ZA_192A ZA_167D ZA_186D ZA_187D ZA_189A ZA_167A ZA_184A ZA_163D Specimen

89

9.90 7.96 7.83 5.90 5.36 7.19 7.24 6.20 6.70 9.14 7.57 9.72 6.12 6.32 5.06 8.86 7.11 3.74 5.37 5.37 5.72 7.38 8.29 7.22 8.10 9.48 6.21 9.76 5.18 8.86 7.78 12.65 10.90 11.84 10.11 12.11 32.77 12.84 29.26 13.82 25.44 12.84 15.99 18.12 18.37 14.99 11.21 16.25 20.48 45.44 14.01 SA/V (mm^-1) 3.44 0.84 4.62 3.91 3.52 3.95 6.97 3.40 7.31 5.71 4.63 1.22 3.73 2.19 5.27 1.17 1.02 2.75 1.08 0.73 0.10 1.60 6.51 0.06 1.68 0.14 1.60 4.10 7.31 1.87 2.62 0.78 3.07 0.12 4.13 3.15 0.16 0.68 0.26 1.17 0.35 0.03 3.66 1.08 6.08 17.53 19.08 10.42 16.29 21.16 18.46 V (mm3) 8.84 3.16 1.83 3.53 2.20 2.34 7.66 4.26 7.11 1.14 34.09 10.58 90.76 36.77 30.62 18.89 28.44 50.42 21.07 48.98 95.25 43.23 45.04 13.25 22.80 13.86 26.67 10.34 12.02 19.53 10.93 20.54 24.37 87.41 23.19 20.49 21.99 41.79 29.90 19.36 14.19 25.43 33.42 29.85 11.43 32.44 15.17 47.32 112.61 152.72 114.63 SA (mm2) Total 0.41 0.32 0.78 0.51 0.52 0.68 0.79 0.57 0.56 0.67 0.60 0.44 0.53 0.41 0.37 0.68 0.67 0.82 0.47 0.34 0.58 0.41 0.34 0.12 0.31 1.17 0.75 0.14 0.29 0.16 0.31 0.78 0.71 0.25 0.56 0.22 0.49 0.56 0.23 0.50 0.43 0.28 0.37 0.65 0.25 0.42 0.20 0.09 0.46 0.29 0.52 Avg. Width (mm) 7.26 9.73 6.30 9.90 6.82 8.40 8.18 8.12 6.03 4.13 6.99 8.60 2.99 2.50 6.46 5.25 8.46 4.05 26.48 10.34 36.62 22.80 18.57 52.25 15.72 28.50 25.52 68.88 25.51 34.44 11.13 10.42 10.99 10.47 20.67 36.59 25.23 20.63 18.31 37.81 10.81 20.25 16.28 87.20 21.03 22.11 56.01 11.40 22.43 16.63 28.78 Avg Length (mm) 9.90 5.18 7.96 7.83 5.90 5.36 7.19 6.20 7.24 6.70 9.14 7.57 9.72 6.32 5.06 6.12 8.86 3.74 7.11 5.37 5.37 5.72 7.38 8.29 7.22 8.10 9.48 6.21 9.76 8.86 7.78 12.65 10.90 11.84 10.11 12.11 32.77 12.84 29.26 13.82 25.44 12.84 15.99 18.12 18.37 14.99 11.21 16.25 20.48 45.44 14.01 SA/V (mm^-1) 0.84 3.44 4.62 3.91 3.52 3.95 3.40 6.97 7.31 1.22 5.71 4.63 2.19 5.27 3.73 1.17 1.02 1.08 0.73 0.10 1.60 6.51 2.75 0.06 1.68 0.14 1.60 4.10 1.87 0.78 7.31 2.62 0.12 3.07 0.16 4.13 0.68 3.15 0.26 1.17 0.35 0.03 1.08 3.66 6.08 17.53 19.08 10.42 16.29 21.16 18.46 V (mm3) 8.84 3.16 1.83 3.53 2.20 2.34 7.66 4.26 7.11 1.14 10.58 34.09 90.76 36.77 30.62 18.89 28.44 21.07 50.42 48.98 95.25 13.25 43.23 45.04 13.86 26.67 22.80 10.34 12.02 10.93 20.54 24.37 19.53 23.19 20.49 21.99 87.41 29.90 14.19 41.79 19.36 25.43 33.42 29.85 11.43 15.17 32.44 47.32 112.61 152.72 114.63 SA (mm2) 0.32 0.41 0.78 0.51 0.52 0.79 0.68 0.57 0.67 0.56 0.60 0.44 0.37 0.53 0.41 0.67 0.82 0.68 0.47 0.34 0.41 0.34 0.12 0.31 1.17 0.58 0.14 0.29 0.16 0.31 0.78 0.75 0.25 0.22 0.71 0.56 0.23 0.49 0.56 0.28 0.50 0.37 0.43 0.25 0.42 0.65 0.20 0.09 0.29 0.46 0.52 Primary Elements Avg. Width (mm) 7.26 9.73 6.30 9.90 6.82 8.40 8.18 8.12 6.03 4.13 6.99 8.60 2.99 2.50 6.46 5.25 8.46 4.05 10.34 26.48 36.62 22.80 18.57 52.25 15.72 28.50 25.52 68.88 11.13 25.51 34.44 10.42 10.99 20.67 10.47 25.23 20.63 36.59 37.81 20.25 18.31 10.81 16.28 87.20 21.03 22.11 56.01 11.40 16.63 22.43 28.78 Avg. Length (mm) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 3.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Number 0.32 0.41 0.78 0.51 0.52 0.68 0.79 0.57 0.56 0.67 0.60 0.44 0.37 0.53 0.41 0.68 0.34 0.67 0.82 0.31 0.47 0.58 0.29 0.41 0.34 0.31 0.12 1.17 0.75 0.14 0.25 0.16 0.22 0.78 0.71 0.56 0.49 0.56 0.23 0.50 0.43 0.28 0.37 0.65 0.20 0.25 0.29 0.42 0.09 0.46 0.52 Canopy Height (mm) ZA_211 ZA_210 ZA_209 ZA_208 ZA_205 ZA_204 ZA_222 ZA_203 ZA_219 ZA_202 ZA_201 ZA_212E ZA_212C ZA_212B ZA_206E ZA_206B ZA_206C ZA_233B ZA_221C ZA_220C ZA_221B ZA_220B ZA_200C ZA_218C ZA_200B ZA_218B ZA_217F ZA_197B ZA_217E ZA_196F ZA_214B ZA_217B ZA_196E ZA_196C ZA_196B ZA_212D ZA_214A ZA_212A ZA_206D ZA_206A ZA_223A ZA_220D ZA_221A ZA_221D ZA_218D ZA_220A ZA_200A ZA_218A ZA_197A ZA_196D ZA_217A Specimen

90

7.77 3.07 5.63 6.42 9.42 9.08 5.85 6.10 8.11 7.57 4.97 8.66 8.23 8.53 9.76 9.10 5.97 5.05 5.08 7.21 4.22 1.51 9.64 4.45 10.48 10.37 10.95 32.73 29.34 10.94 11.28 12.44 11.87 24.46 29.24 13.26 29.08 13.03 13.04 10.30 12.41 11.18 12.66 13.01 10.18 14.91 11.93 16.43 16.45 14.99 14.72 SA/V (mm^-1) 4.63 1.37 3.90 3.10 1.91 6.38 0.11 0.21 2.89 2.08 3.23 0.66 2.76 3.36 1.68 0.57 7.86 1.12 0.12 0.55 0.33 0.91 3.48 2.13 2.60 5.73 5.91 4.98 1.53 2.46 0.94 0.69 1.02 6.40 1.98 2.96 0.32 0.47 7.31 0.57 0.49 0.27 0.68 54.40 51.77 16.69 22.98 10.61 11.85 21.14 17.08 V (mm3) 3.69 6.19 7.40 8.48 3.46 7.27 9.70 8.75 4.82 5.60 9.39 8.12 4.05 9.99 81.99 36.01 14.34 40.41 17.47 20.94 40.92 27.20 18.90 35.32 97.64 34.37 20.47 19.92 14.00 63.79 11.89 30.17 17.54 33.97 59.04 50.46 48.59 13.88 30.59 10.54 63.30 59.81 13.26 46.13 20.17 72.11 28.57 32.50 158.83 114.25 107.48 SA (mm2) Total 3.42 0.52 0.39 0.39 1.33 0.75 0.37 0.63 0.12 0.14 0.43 0.45 0.37 0.69 0.37 0.32 0.68 0.34 0.16 0.50 0.56 0.81 0.14 0.31 0.14 0.31 0.47 0.50 0.31 0.39 0.47 0.41 0.45 0.32 0.37 0.68 0.81 0.32 0.79 0.31 0.56 0.40 0.97 0.42 0.28 0.35 0.94 0.25 0.25 0.28 0.28 Avg. Width (mm) 5.93 7.06 9.50 6.28 9.25 4.53 7.91 7.36 9.60 9.01 8.49 5.45 4.97 4.55 21.75 11.57 32.98 37.45 17.88 20.27 14.31 19.98 13.21 30.38 44.79 33.73 18.49 27.11 40.71 44.40 22.32 12.02 20.34 10.99 34.97 48.01 33.81 37.35 29.91 29.40 23.23 42.71 13.42 25.91 15.94 23.27 21.51 10.54 12.04 10.39 11.44 Avg Length (mm) 1.51 5.63 7.77 3.07 6.42 9.42 9.08 5.85 6.10 7.57 8.11 4.97 8.66 8.23 9.10 8.53 9.76 5.97 5.05 5.08 7.21 4.22 9.64 4.45 10.48 10.37 10.95 32.73 29.34 10.94 11.28 12.44 11.87 24.46 29.24 13.26 29.08 13.03 13.04 10.30 12.41 11.18 12.66 13.01 10.18 14.91 11.93 16.43 16.45 14.99 14.72 SA/V (mm^-1) 1.37 3.90 3.10 4.63 1.91 0.11 0.21 6.38 3.23 2.89 0.66 2.76 2.08 3.36 1.68 0.57 1.12 7.86 0.12 0.55 0.33 0.91 2.60 5.73 3.48 2.13 1.53 2.46 5.91 4.98 0.94 0.69 1.02 1.98 6.40 0.32 0.47 2.96 0.57 0.49 0.27 0.68 7.31 54.40 51.77 16.69 22.98 10.61 11.85 21.14 17.08 V (mm3) 3.69 6.19 7.40 8.48 3.46 7.27 9.70 8.75 4.82 5.60 9.39 8.12 4.05 9.99 81.99 14.34 40.41 17.47 36.01 20.94 40.92 35.32 27.20 34.37 18.90 20.47 19.92 14.00 97.64 63.79 11.89 33.97 59.04 30.17 17.54 13.88 30.59 50.46 48.59 10.54 13.26 20.17 63.30 59.81 46.13 72.11 28.57 32.50 158.83 114.25 107.48 SA (mm2) 3.42 0.39 0.39 0.75 0.52 0.37 1.33 0.12 0.14 0.63 0.37 0.43 0.37 0.32 0.45 0.68 0.34 0.16 0.69 0.56 0.50 0.14 0.31 0.14 0.31 0.81 0.31 0.39 0.47 0.50 0.45 0.32 0.47 0.41 0.37 0.32 0.31 0.40 0.68 0.81 0.79 0.56 0.97 0.28 0.35 0.42 0.25 0.25 0.28 0.28 0.94 Primary Elements Avg. Width (mm) 5.93 7.06 9.50 6.28 9.25 4.53 7.91 7.36 9.60 9.01 8.49 5.45 4.97 4.55 11.57 32.98 21.75 17.88 37.45 14.31 20.27 30.38 19.98 33.73 13.21 18.49 27.11 44.79 40.71 22.32 12.02 44.40 34.97 48.01 20.34 10.99 29.91 33.81 37.35 13.42 15.94 29.40 23.23 42.71 25.91 23.27 21.51 12.04 10.39 11.44 10.54 Avg. Length (mm) 1.00 1.00 1.00 1.00 3.00 1.00 1.00 1.00 1.00 3.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Number 0.39 0.39 3.42 0.52 0.37 1.33 0.75 0.14 0.63 0.12 0.37 0.43 0.32 0.45 0.34 0.16 0.69 0.37 0.50 0.68 0.14 0.31 0.56 0.81 0.31 0.39 0.14 0.31 0.47 0.50 0.32 0.47 0.41 0.45 0.31 0.37 0.40 0.68 0.81 0.32 0.79 0.56 0.97 0.42 0.25 0.25 0.28 0.28 0.35 0.94 0.28 Canopy Height (mm) ZA_236 ZA_230 ZA_250 ZA_229 ZA_249 ZA_227 ZA_226 ZA_225 ZA_233 ZA_238B ZA_238C ZA_240B ZA_238E ZA_254B ZA_235C ZA_235B ZA_253B ZA_253C ZA_231C ZA_232C ZA_234B ZA_231B ZA_251E ZA_252B ZA_252C ZA_251B ZA_251C ZA_228C ZA_241C ZA_243B ZA_246B ZA_240C ZA_224B ZA_244C ZA_224E ZA_224F ZA_238A ZA_238D ZA_254A ZA_235A ZA_252D ZA_231A ZA_251A ZA_251D ZA_228A ZA_246A ZA_241A ZA_243A ZA_224G ZA_224A ZA_224D Specimen

91

4.72 4.95 8.88 8.83 6.83 9.33 8.79 7.73 7.53 8.04 6.80 8.93 8.71 7.95 6.07 8.06 7.99 7.58 8.38 6.11 9.05 7.23 8.53 4.87 3.23 9.31 10.28 19.16 17.92 19.63 10.06 10.35 14.55 36.98 10.48 15.03 14.76 26.24 11.96 12.45 10.67 10.93 12.49 13.57 17.38 18.28 12.94 12.33 10.26 17.96 16.11 SA/V (mm^-1) 0.67 9.98 7.22 2.26 0.99 0.63 1.27 2.96 0.56 3.70 2.88 2.57 9.40 2.55 2.06 3.35 0.07 6.53 2.50 1.19 4.14 0.83 1.13 0.38 0.73 0.09 0.69 0.39 1.60 1.87 2.37 2.36 2.73 4.76 2.19 4.39 0.84 1.62 0.50 1.23 0.40 0.18 0.43 1.66 1.65 0.44 0.58 1.52 13.79 15.04 131.44 V (mm3) 6.84 2.42 7.37 5.65 6.33 2.26 8.27 4.90 7.65 6.76 8.85 6.89 3.37 5.61 7.98 9.40 47.08 35.72 20.11 10.16 12.15 22.84 26.09 10.95 25.26 29.02 23.99 82.64 26.39 29.94 25.91 49.17 20.09 12.49 28.15 16.95 17.05 14.84 83.79 19.10 25.82 21.84 36.09 18.35 26.80 20.23 14.19 20.37 73.31 14.16 424.05 SA (mm2) Total 0.41 0.87 0.83 0.46 0.40 0.21 0.22 0.46 0.21 0.60 0.40 0.43 0.46 0.39 0.28 0.53 0.11 0.54 0.51 0.39 0.60 0.47 0.27 0.28 0.49 0.16 0.34 0.33 0.38 0.52 0.66 0.51 0.37 0.51 0.53 0.49 0.67 0.46 0.32 0.30 0.59 0.23 0.22 0.32 0.48 0.33 0.83 0.23 0.25 1.25 0.44 Avg. Width (mm) 5.18 7.91 7.01 4.76 6.36 3.88 4.56 7.53 4.52 8.86 5.04 7.00 4.48 9.31 4.69 5.46 9.15 16.80 13.22 13.75 18.32 32.35 17.87 16.91 13.13 22.85 17.39 57.36 21.35 34.41 15.42 28.95 12.34 10.03 14.64 20.01 14.10 39.86 11.74 22.10 13.38 21.26 11.76 12.34 19.78 19.68 27.61 11.19 11.81 10.05 107.68 Avg Length (mm) 4.72 4.95 8.88 8.83 6.83 9.33 8.79 7.73 8.93 7.53 8.71 8.04 6.80 7.95 6.07 8.06 7.99 7.58 9.05 8.38 7.23 6.11 8.53 4.87 3.23 9.31 10.26 10.28 19.16 17.92 19.63 10.06 10.35 14.55 36.98 10.48 15.03 14.76 26.24 11.96 12.45 10.67 10.93 12.49 13.57 17.38 18.28 12.94 12.33 17.96 16.11 SA/V (mm^-1) 0.67 9.98 7.22 0.99 0.63 1.27 0.56 2.88 2.26 2.55 2.96 2.06 3.70 2.57 0.07 9.40 1.19 3.35 0.83 1.13 6.53 0.38 0.73 2.50 4.14 0.09 0.69 0.39 1.60 1.87 2.36 2.37 2.73 4.76 0.84 1.62 2.19 0.50 1.23 4.39 0.40 0.18 0.43 1.66 1.65 0.44 0.58 1.52 13.79 15.04 131.44 V (mm3) 6.84 2.42 7.37 5.65 6.33 2.26 8.27 4.90 7.65 6.76 8.85 6.89 3.37 5.61 7.98 9.40 47.08 35.72 10.16 12.15 22.84 10.95 29.02 20.11 26.39 26.09 29.94 25.26 23.99 82.64 12.49 25.91 16.95 49.17 20.09 28.15 17.05 14.84 25.82 83.79 19.10 21.84 36.09 20.23 18.35 26.80 14.19 20.37 73.31 14.16 424.05 SA (mm2) 0.41 0.87 0.83 0.40 0.21 0.22 0.21 0.40 0.46 0.39 0.46 0.28 0.60 0.43 0.11 0.46 0.39 0.53 0.47 0.27 0.54 0.28 0.49 0.51 0.60 0.16 0.34 0.33 0.38 0.52 0.37 0.66 0.51 0.51 0.53 0.46 0.32 0.49 0.30 0.59 0.67 0.23 0.22 0.32 0.48 0.33 0.23 0.25 0.83 1.25 0.44 Primary Elements Avg. Width (mm) 5.18 7.91 7.01 4.76 6.36 3.88 4.56 7.53 4.52 8.86 5.04 7.00 4.48 9.31 4.69 5.46 9.15 16.80 13.22 18.32 32.35 16.91 22.85 13.75 21.35 17.87 34.41 13.13 17.39 57.36 10.03 15.42 20.01 28.95 12.34 14.64 14.10 22.10 39.86 11.74 13.38 21.26 19.78 11.76 12.34 19.68 11.19 11.81 27.61 10.05 107.68 Avg. Length (mm) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 3.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Number 0.41 0.87 0.83 0.21 0.22 0.21 0.40 0.46 0.40 0.39 0.46 0.28 0.60 0.43 0.46 0.39 0.53 0.11 0.27 0.54 0.51 0.60 0.47 0.28 0.38 0.49 0.16 0.34 0.37 0.33 0.52 0.66 0.51 0.51 0.53 0.32 0.49 0.67 0.46 0.30 0.59 0.23 0.33 0.22 0.23 0.32 0.25 0.48 0.83 1.25 0.44 Canopy Height (mm) ZA_269 ZA_278 ZA_263 ZA_276 ZA_275 ZA_257 ZA_256 ZA_273B ZA_268B ZA_270C ZA_271E ZA_270B ZA_271C ZA_267C ZA_282B ZA_283B ZA_264C ZA_267B ZA_264B ZA_280C ZA_281B ZA_280B ZA_262C ZA_277C ZA_262B ZA_277B ZA_261C ZA_258B ZA_261B ZA_274B ZA_274C ZA_274A ZA_273A ZA_271D ZA_268A ZA_270A ZA_270D ZA_283D ZA_267A ZA_282A ZA_283A ZA_280D ZA_264A ZA_280A ZA_281A ZA_277D ZA_262A ZA_277A ZA_261A ZA_274D ZA_258A Specimen

92

7.47 7.57 8.54 9.41 9.41 7.61 8.26 8.21 7.15 9.70 5.32 9.89 4.15 9.90 9.65 8.45 6.27 4.36 5.37 4.79 4.61 3.93 4.23 8.22 8.98 7.57 4.44 8.98 9.23 9.55 6.48 6.50 6.09 5.16 6.19 5.52 8.79 11.45 11.99 10.49 11.71 13.71 13.63 11.13 23.12 12.94 40.11 14.56 11.74 11.28 10.65 SA/V (mm^-1) 0.91 7.69 6.92 6.81 2.21 1.65 2.34 0.51 1.84 2.33 2.72 2.37 2.16 7.41 3.35 2.35 2.66 3.50 8.34 1.24 4.76 4.78 9.99 4.26 4.33 3.89 1.04 4.54 1.43 0.37 0.96 2.11 2.57 0.14 6.09 0.99 7.01 4.81 4.29 1.71 2.50 2.29 15.02 27.65 16.61 19.23 71.47 24.26 69.41 11.42 106.35 V (mm3) 6.14 8.48 5.58 10.28 57.43 52.41 58.19 20.77 18.89 21.98 13.99 19.25 22.29 24.83 25.29 52.93 32.48 79.96 23.21 26.36 33.76 70.46 17.02 64.94 29.94 89.22 92.03 46.11 35.04 38.86 29.41 11.59 40.73 13.18 12.47 20.16 16.69 39.60 14.44 42.70 24.81 26.57 20.04 63.09 22.01 24.38 114.80 463.73 280.82 102.63 308.39 SA (mm2) Total 0.36 0.54 0.53 0.47 0.43 0.35 0.43 0.34 0.54 0.49 0.50 0.39 0.34 0.57 0.42 0.76 0.41 0.98 0.41 0.42 0.48 0.29 0.29 0.65 0.92 0.75 0.85 0.89 1.02 0.96 0.49 0.45 0.54 0.90 0.37 0.45 0.44 0.17 0.31 0.43 0.64 0.10 0.63 0.28 0.67 0.81 0.66 0.34 0.73 0.46 0.38 Avg. Width (mm) 8.86 5.51 7.92 9.91 9.24 7.96 9.36 33.60 31.05 39.11 15.13 16.87 16.03 12.17 14.07 20.35 23.24 29.55 24.66 33.13 17.87 36.97 20.37 25.51 46.90 18.29 70.20 14.28 37.41 34.22 16.04 86.82 33.60 22.44 27.34 17.18 28.67 15.43 12.53 14.89 17.72 19.86 16.46 20.02 12.43 18.38 27.01 14.94 20.29 160.07 108.19 Avg Length (mm) 7.47 7.57 8.54 9.41 7.61 9.41 8.26 8.21 7.15 9.70 5.32 9.89 4.15 9.90 9.65 8.45 6.27 4.36 5.37 4.79 4.61 3.93 4.23 8.22 8.98 7.57 4.44 9.23 6.48 8.98 9.55 5.16 6.50 6.09 6.19 5.52 8.79 11.28 11.45 11.99 10.49 11.71 13.71 13.63 11.13 23.12 12.94 40.11 14.56 11.74 10.65 SA/V (mm^-1) 0.91 7.69 6.92 1.65 6.81 2.21 0.51 1.84 2.34 2.37 2.16 2.33 2.72 7.41 3.35 2.35 1.24 4.76 2.66 3.50 8.34 4.78 9.99 4.26 4.33 1.04 3.89 1.43 0.37 0.96 2.57 0.14 4.54 0.99 2.11 4.81 6.09 1.71 7.01 4.29 2.29 2.50 15.02 27.65 16.61 19.23 71.47 24.26 69.41 11.42 106.35 V (mm3) 6.14 8.48 5.58 10.28 57.43 52.41 18.89 58.19 20.77 13.99 21.98 24.83 25.29 19.25 22.29 52.93 32.48 79.96 23.21 17.02 64.94 26.36 33.76 70.46 29.94 89.22 92.03 46.11 35.04 38.86 11.59 29.41 13.18 12.47 16.69 40.73 14.44 20.16 24.81 39.60 20.04 42.70 26.57 63.09 24.38 22.01 114.80 463.73 280.82 102.63 308.39 SA (mm2) 0.36 0.54 0.53 0.35 0.47 0.43 0.34 0.54 0.43 0.39 0.34 0.49 0.50 0.57 0.42 0.76 0.41 0.98 0.29 0.29 0.41 0.42 0.48 0.65 0.92 0.75 0.85 0.89 1.02 0.96 0.49 0.45 0.37 0.54 0.90 0.44 0.17 0.31 0.64 0.10 0.45 0.28 0.43 0.81 0.63 0.34 0.67 0.66 0.73 0.38 0.46 Primary Elements Avg. Width (mm) 8.86 5.51 7.92 9.91 9.24 7.96 9.36 33.60 31.05 16.87 39.11 15.13 16.03 20.35 23.24 12.17 14.07 29.55 24.66 33.13 17.87 36.97 18.29 70.20 20.37 25.51 46.90 14.28 37.41 34.22 16.04 86.82 33.60 22.44 27.34 17.18 15.43 12.53 17.72 28.67 16.46 14.89 19.86 18.38 20.02 12.43 27.01 20.29 14.94 160.07 108.19 Avg. Length (mm) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Number 0.36 0.54 0.53 0.35 0.47 0.43 0.43 0.39 0.34 0.34 0.54 0.49 0.50 0.57 0.42 0.76 0.41 0.98 0.29 0.29 0.41 0.42 0.48 0.65 0.92 0.75 0.85 0.89 1.02 0.96 0.49 0.45 0.54 0.90 0.17 0.31 0.37 0.10 0.45 0.28 0.44 0.43 0.64 0.63 0.34 0.67 0.81 0.66 0.73 0.38 0.46 Canopy Height (mm) ZA_304 ZA_299 ZA_298 ZA_296 ZA_295 ZA_311 ZA_294 ZA_293 ZA_307 ZA_287 ZA_286 ZA_306B ZA_302B ZA_301B ZA_315B ZA_315C ZA_300B ZA_314F ZA_314B ZA_314C ZA_314E ZA_297B ZA_313B ZA_310B ZA_292B ZA_292C ZA_292E ZA_306E ZA_306F ZA_289B ZA_291B ZA_306C ZA_283E ZA_285B ZA_306A ZA_302A ZA_301A ZA_315A ZA_315D ZA_314H ZA_300A ZA_314G ZA_314A ZA_314D ZA_297A ZA_313A ZA_292A ZA_292D ZA_306D ZA_289A ZA_291A Specimen

93

9.87 4.84 6.70 9.29 9.43 7.75 7.27 8.73 8.53 5.53 6.92 9.14 9.39 7.62 7.90 5.49 5.81 8.03 8.72 6.88 7.80 5.16 6.69 4.16 4.91 7.84 5.38 7.20 7.97 8.53 7.12 6.85 4.97 6.38 7.92 7.91 14.85 14.87 10.74 10.80 47.29 37.73 15.97 18.98 10.35 17.85 10.16 21.00 SA/V (mm^-1) 5.41 5.56 3.75 2.27 0.72 5.72 1.55 1.92 7.17 4.70 2.44 8.03 5.86 2.00 2.42 2.70 6.80 0.05 7.48 0.05 3.35 6.40 2.56 0.18 0.16 5.31 0.48 3.21 0.27 6.29 4.73 9.07 3.49 2.36 5.88 1.06 23.07 32.55 10.60 26.35 12.29 13.19 16.47 37.16 31.92 10.36 21.84 10.36 V (mm3) 7.69 2.33 1.94 2.91 3.02 4.92 4.80 42.86 54.93 55.74 33.73 53.13 14.64 14.90 52.13 41.04 20.82 44.43 40.56 21.65 22.11 25.39 80.72 53.77 71.39 65.21 26.14 42.83 50.89 20.07 28.60 23.14 50.11 40.34 64.60 23.91 66.13 23.99 46.49 22.20 111.73 217.92 144.61 105.92 113.36 191.77 132.84 108.64 SA (mm2) Total 0.51 0.41 0.83 0.27 0.27 0.60 0.38 0.43 0.43 0.53 0.56 0.46 0.48 0.74 0.59 0.37 0.44 0.43 0.53 0.51 0.73 0.70 0.50 0.09 0.46 0.11 0.58 0.52 0.78 0.61 0.97 0.83 0.52 0.26 0.22 0.77 0.41 0.57 0.23 0.51 0.47 0.57 0.60 0.81 0.63 0.40 0.51 0.19 Avg. Width (mm) 6.18 8.65 8.69 5.71 3.43 4.34 3.64 6.59 26.51 42.78 42.25 65.61 39.65 38.86 10.55 29.64 28.06 13.66 18.83 21.75 18.25 15.64 18.55 48.42 33.32 62.46 32.32 67.21 44.82 61.52 15.72 78.01 22.20 43.04 19.06 12.01 11.47 12.69 31.28 26.92 36.06 12.43 42.20 32.95 19.00 28.78 36.92 115.56 Avg Length (mm) 7.92 9.87 4.84 6.70 9.29 7.75 9.43 7.27 8.73 8.53 5.53 6.92 9.14 9.39 7.62 7.90 5.49 5.81 8.03 8.72 6.88 7.80 5.16 6.69 4.16 4.91 7.84 5.38 7.20 7.97 8.53 7.12 6.85 4.97 6.38 7.91 14.87 14.85 10.74 10.80 47.29 37.73 18.98 15.97 10.35 17.85 10.16 21.00 SA/V (mm^-1) 5.41 2.27 3.75 5.56 0.72 5.72 1.92 1.55 7.17 4.70 2.00 2.44 8.03 5.86 2.42 2.70 6.80 0.05 0.05 7.48 3.35 6.40 0.16 0.18 2.56 0.48 5.31 0.27 3.21 6.29 4.73 2.36 9.07 3.49 1.06 5.88 23.07 32.55 10.60 26.35 12.29 13.19 16.47 37.16 31.92 10.36 21.84 10.36 V (mm3) 7.69 2.33 1.94 3.02 2.91 4.92 4.80 42.86 33.73 55.74 54.93 53.13 14.90 14.64 52.13 41.04 21.65 20.82 44.43 40.56 22.11 25.39 80.72 53.77 71.39 65.21 26.14 42.83 50.89 20.07 28.60 23.14 50.11 40.34 23.99 64.60 23.91 22.20 66.13 46.49 111.73 217.92 144.61 105.92 113.36 191.77 132.84 108.64 SA (mm2) 0.51 0.27 0.27 0.41 0.83 0.38 0.60 0.43 0.53 0.43 0.56 0.46 0.37 0.48 0.74 0.59 0.44 0.43 0.53 0.51 0.73 0.09 0.70 0.50 0.11 0.46 0.58 0.52 0.78 0.61 0.22 0.97 0.26 0.83 0.52 0.41 0.77 0.23 0.57 0.51 0.47 0.40 0.57 0.60 0.81 0.19 0.63 0.51 Primary Elements Avg. Width (mm) 6.18 8.65 8.69 5.71 4.34 3.43 3.64 6.59 26.51 39.65 65.61 42.78 42.25 38.86 10.55 29.64 28.06 18.25 13.66 18.83 21.75 15.64 18.55 48.42 33.32 62.46 32.32 67.21 44.82 61.52 15.72 78.01 22.20 43.04 19.06 12.01 11.47 12.69 31.28 26.92 19.00 36.06 12.43 42.20 36.92 32.95 28.78 115.56 Avg. Length (mm) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Number 0.51 0.27 0.27 0.41 0.83 0.60 0.38 0.43 0.43 0.53 0.56 0.46 0.37 0.48 0.74 0.59 0.44 0.43 0.53 0.51 0.73 0.70 0.50 0.09 0.46 0.11 0.58 0.52 0.78 0.61 0.97 0.86 0.22 0.52 0.26 0.77 0.41 0.57 0.23 0.51 0.47 0.40 0.57 0.19 0.60 0.81 0.63 0.51 Canopy Height (mm) ZA_340 ZA_336 ZA_334 ZA_332 ZA_331 ZA_355 ZA_353 ZA_326 ZA_351 ZA_324 ZA_323 ZA_344 ZA_316 ZA_343 ZA_335B ZA_330C ZA_330B ZA_356B ZA_329B ZA_329C ZA_354B ZA_328B ZA_325B ZA_350B ZA_349B ZA_321C ZA_345C ZA_321B ZA_345B ZA_318C ZA_317C ZA_318B ZA_317B ZA_335A ZA_330A ZA_356A ZA_329A ZA_354A ZA_328A ZA_325A ZA_350A ZA_349A ZA_345D ZA_346A ZA_321A ZA_345A ZA_318A ZA_317A Specimen

94

8.03 7.56 7.89 9.60 8.57 9.97 9.97 7.18 8.67 7.94 8.44 5.88 6.43 8.66 9.26 9.62 7.69 7.22 7.22 8.47 8.00 8.54 7.58 8.50 8.52 8.46 7.20 7.52 8.47 7.87 8.47 6.26 8.47 8.78 5.59 7.51 19.13 14.05 10.96 19.14 24.97 15.11 10.40 31.12 31.08 24.92 15.08 16.52 11.36 22.66 11.23 SA/V (mm^-1) 0.82 7.15 2.96 0.82 4.38 3.63 3.90 8.50 5.66 4.69 3.67 2.66 1.82 6.66 0.26 1.61 6.68 0.33 2.81 1.53 3.04 4.32 6.04 0.24 0.35 2.51 0.57 2.99 1.18 3.33 2.48 5.36 5.84 0.75 2.15 2.24 3.68 3.83 6.55 1.77 3.22 14.94 17.95 12.10 15.43 13.53 10.33 16.56 10.84 10.73 12.55 V (mm3) 4.96 8.32 7.51 9.47 18.59 56.34 28.40 15.72 37.54 36.18 38.91 40.66 40.71 29.15 22.42 20.00 71.11 42.85 13.95 61.83 27.01 23.18 23.37 31.20 62.79 10.78 18.10 14.25 25.32 28.47 37.33 45.61 49.72 12.36 24.45 74.41 91.82 17.62 90.90 23.01 33.68 36.62 19.91 24.17 119.87 135.69 119.48 116.86 114.51 124.48 106.30 SA (mm2) Total 0.50 0.18 0.53 0.51 0.42 0.21 0.47 0.40 0.40 0.29 0.56 0.47 0.51 0.48 0.37 0.69 0.63 0.21 0.47 0.43 0.16 0.42 0.27 0.53 0.56 0.39 0.13 0.13 0.57 0.16 0.48 0.52 0.47 0.27 0.53 0.47 0.47 0.47 0.24 0.36 0.53 0.56 0.47 0.52 0.47 0.66 0.47 0.46 0.73 0.36 0.54 Avg. Width (mm) 7.34 9.14 9.83 5.50 76.10 33.36 81.11 34.86 21.27 23.73 25.15 28.32 30.47 22.68 27.65 17.91 14.57 17.07 32.57 21.31 45.16 16.37 20.27 27.61 13.78 17.37 51.61 18.47 26.54 28.10 16.59 18.89 44.56 69.96 30.41 33.24 76.70 16.00 21.76 73.97 42.12 61.46 10.51 60.84 10.79 71.18 23.09 15.57 17.44 13.91 133.38 Avg Length (mm) 8.03 7.56 7.89 9.60 8.57 9.97 9.97 7.18 8.67 7.94 8.44 5.88 8.66 6.43 7.22 9.26 9.62 8.00 7.69 7.22 8.47 8.54 7.58 8.50 8.52 8.46 7.52 7.20 8.47 7.87 8.47 6.26 8.47 8.78 5.59 7.51 22.66 19.13 14.05 10.96 19.14 24.97 15.11 10.40 31.12 31.08 24.92 15.08 16.52 11.36 11.23 SA/V (mm^-1) 0.82 0.82 7.15 2.96 4.38 3.63 8.50 3.90 5.66 4.69 1.82 3.67 2.66 0.26 1.61 0.33 1.53 6.66 6.04 0.24 0.35 2.51 6.68 0.57 2.81 1.18 3.04 4.32 2.48 2.99 3.33 5.36 0.75 2.15 5.84 2.24 3.68 1.77 3.83 6.55 3.22 14.94 17.95 12.10 15.43 13.53 16.56 10.33 10.84 10.73 12.55 V (mm3) 4.96 8.32 7.51 9.47 18.59 15.72 56.34 28.40 37.54 36.18 38.91 40.66 40.71 20.00 29.15 22.42 13.95 71.11 23.18 42.85 62.79 10.78 18.10 61.83 14.25 27.01 23.37 31.20 37.33 25.32 28.47 45.61 12.36 24.45 49.72 74.41 91.82 17.62 90.90 23.01 19.91 33.68 36.62 24.17 119.87 135.69 119.48 116.86 114.51 124.48 106.30 SA (mm2) 0.18 0.50 0.53 0.21 0.51 0.42 0.47 0.40 0.40 0.29 0.56 0.47 0.37 0.51 0.48 0.21 0.47 0.69 0.16 0.27 0.63 0.39 0.13 0.13 0.57 0.43 0.16 0.42 0.52 0.53 0.56 0.27 0.48 0.47 0.53 0.47 0.24 0.36 0.47 0.47 0.53 0.56 0.47 0.52 0.47 0.66 0.47 0.36 0.46 0.73 0.54 Primary Elements Avg. Width (mm) 7.34 9.14 9.83 5.50 33.36 76.10 81.11 23.73 34.86 21.27 25.15 28.32 30.47 22.68 27.65 17.07 17.91 14.57 32.57 16.37 27.61 21.31 51.61 18.47 26.54 45.16 28.10 20.27 13.78 17.37 44.56 16.59 18.89 69.96 30.41 16.00 21.76 33.24 76.70 73.97 42.12 61.46 10.51 60.84 10.79 71.18 17.44 23.09 15.57 13.91 133.38 Avg. Length (mm) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Number 0.18 0.50 0.53 0.21 0.51 0.42 0.47 0.40 0.40 0.29 0.56 0.47 0.37 0.51 0.48 0.69 0.16 0.27 0.63 0.21 0.47 0.39 0.13 0.13 0.43 0.16 0.42 0.53 0.56 0.57 0.27 0.48 0.52 0.47 0.53 0.47 0.24 0.36 0.47 0.47 0.53 0.56 0.47 0.52 0.47 0.66 0.47 0.36 0.46 0.73 0.54 Canopy Height (mm) ZA_384 ZA_394 ZA_369 ZA_363 ZA_358 ZA_388C ZA_388B ZA_381C ZA_381B ZA_380C ZA_380B ZA_379B ZA_404B ZA_378B ZA_398C ZA_403B ZA_375C ZA_397B ZA_397C ZA_398B ZA_402C ZA_375B ZA_402B ZA_392F ZA_392E ZA_366B ZA_367B ZA_392C ZA_359B ZA_392B ZA_357C ZA_357B ZA_388A ZA_381A ZA_380A ZA_379A ZA_404A ZA_378A ZA_402D ZA_375D ZA_397A ZA_398D ZA_398A ZA_402A ZA_375A ZA_366A ZA_392D ZA_367A ZA_359A ZA_392A ZA_357A Specimen

95

Appendix E: Morphological measurements, dichotomous branching 7.05 4.48 4.84 7.65 9.64 8.63 5.79 6.06 6.97 6.38 8.06 7.11 8.76 7.81 7.25 8.15 6.92 6.64 6.36 6.64 6.30 18.82 13.61 13.51 12.61 21.57 13.93 20.34 17.71 19.61 12.23 13.94 45.98 10.59 15.09 13.50 14.91 29.39 13.44 16.32 SA/V (mm^-1) 0.19 4.29 0.74 0.65 0.23 0.14 0.27 0.26 0.34 2.13 0.12 4.00 0.50 2.51 0.41 0.02 1.04 0.70 2.53 0.83 5.69 4.34 0.38 3.35 1.09 0.87 0.07 2.00 3.53 0.88 4.37 1.38 1.29 2.51 1.46 0.37 9.73 11.75 30.84 14.37 V (mm3) 3.63 8.84 2.93 2.97 3.81 5.35 6.07 2.44 6.10 5.65 1.06 5.64 7.77 7.65 2.17 7.17 9.14 9.69 6.11 30.25 10.06 52.63 16.32 38.52 21.68 83.20 10.96 10.50 15.32 11.18 39.61 27.67 26.96 15.64 25.54 30.19 17.38 15.99 61.27 149.36 SA(mm2) 0.22 0.58 0.30 0.30 0.34 0.92 0.19 0.83 0.30 0.20 0.23 0.54 0.21 0.42 0.34 0.47 0.70 0.29 0.09 0.39 0.27 0.69 0.30 0.58 0.64 0.27 0.50 0.61 0.48 0.14 0.53 0.56 0.52 0.59 0.65 0.30 0.66 0.65 0.25 0.64 Secondary ElementsSecondary Avg. Width (mm) 5.22 9.21 2.59 4.91 3.92 8.47 8.33 9.39 3.59 5.59 5.98 3.81 8.85 6.68 6.42 3.77 4.84 4.94 9.19 4.12 4.15 7.42 4.45 7.69 30.08 16.41 10.60 17.84 56.76 29.14 14.42 37.67 12.34 11.72 21.38 13.40 16.79 14.17 16.03 18.30 Avg. Length (mm) 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 Number 5.97 5.96 3.27 4.43 9.35 8.52 4.98 6.77 9.79 8.17 5.58 4.99 7.02 7.36 5.46 9.33 7.94 8.70 8.59 9.26 6.16 6.22 7.27 9.84 24.18 10.11 26.37 51.57 32.18 14.96 10.38 12.88 15.55 13.25 47.05 15.80 17.40 29.10 11.53 10.15 SA/V (mm^-1) 6.91 0.05 0.81 4.23 0.05 0.03 0.06 3.07 0.59 0.82 1.06 1.02 0.49 2.72 4.53 2.41 0.84 0.01 8.77 0.20 8.42 1.71 3.17 3.36 3.36 1.03 0.15 0.26 1.68 1.20 1.20 0.94 4.34 1.41 6.39 3.09 1.36 37.21 20.16 14.62 V (mm3) 1.22 4.80 1.37 1.70 1.84 8.83 8.48 6.47 8.21 0.36 3.22 8.53 8.16 2.62 7.67 8.74 41.28 42.76 89.26 28.75 13.66 15.88 23.16 22.55 16.32 71.68 46.96 22.23 24.72 79.86 31.32 14.61 10.31 13.87 26.71 14.27 39.76 22.46 13.38 121.72 SA (mm2) 0.68 0.17 1.05 0.40 0.16 0.08 1.25 0.13 0.92 0.43 0.27 0.40 0.31 0.26 0.31 0.48 0.85 0.61 0.42 0.09 0.49 0.26 0.73 0.97 0.58 0.55 0.74 0.43 0.53 0.24 0.14 0.47 0.48 0.35 0.45 0.67 0.40 0.65 0.56 0.42 Primary Elements Avg. Width (mm) 2.16 0.93 2.73 6.89 4.59 6.60 6.52 8.08 8.17 5.97 1.25 3.78 2.32 4.61 3.38 9.65 6.56 5.99 18.93 34.01 30.44 30.54 20.98 10.25 13.70 19.40 15.23 46.15 20.12 11.83 13.93 34.00 22.82 17.63 12.37 12.42 11.13 19.04 12.42 10.06 Avg. Length (mm) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Number 6.26 9.58 6.60 6.52 8.17 1.25 3.78 9.77 8.97 6.56 5.99 60.26 14.75 17.46 42.83 30.44 10.13 30.54 20.98 10.25 13.70 19.40 15.23 27.78 11.39 60.49 20.12 25.49 11.83 13.93 34.00 22.82 17.63 20.25 19.00 12.42 31.27 19.04 12.42 20.20 Canopy Height (mm) ZA_82J ZA_216 ZA_115 ZA_385 ZA_111 ZA_373 ZA_79B ZA_368 ZA_78C ZA_78B ZA_77B ZA_73B ZA_61C ZA_53B ZA_42B ZA_32B ZA_265 ZA_55A ZA_253A ZA_252A ZA_241B ZA_240A ZA_239B ZA_239A ZA_234A ZA_217C ZA_196G ZA_187A ZA_186B ZA_186A ZA_172A ZA_195A ZA_136A ZA_403A ZA_346B ZA_342B ZA_342A ZA_283C ZA_271B ZA_271A Specimen

96

6.28 8.43 7.77 5.70 7.51 8.21 6.16 6.88 3.56 4.68 9.73 9.39 9.09 5.93 5.69 6.98 6.81 8.69 7.59 7.33 6.27 6.26 7.06 10.03 11.14 10.03 10.10 11.73 11.24 19.92 10.63 14.45 17.44 24.69 16.61 12.55 15.99 46.24 15.25 29.16 SA/V (mm^-1) 4.49 7.04 9.81 1.24 2.54 2.12 1.02 3.68 2.08 2.70 1.73 0.24 5.09 4.97 0.71 0.27 0.19 3.35 0.85 1.16 3.19 1.15 3.22 0.03 0.90 8.85 7.69 0.34 6.71 4.73 5.31 5.71 8.91 4.55 14.99 16.64 48.96 51.00 16.78 10.94 V (mm3) 4.85 4.62 4.81 1.42 9.84 44.99 44.22 82.64 13.87 19.71 85.50 15.93 10.26 30.25 21.04 31.65 19.49 35.05 52.81 10.22 32.56 14.19 14.55 29.98 18.32 29.26 99.52 13.72 62.27 61.84 52.38 58.28 35.85 38.94 35.85 55.75 32.15 102.55 174.34 238.62 SA(mm2) 0.36 0.66 0.36 0.63 0.44 0.51 0.57 0.36 0.50 0.44 0.35 0.33 0.66 0.19 0.81 0.35 0.23 0.21 1.08 0.16 0.87 0.37 0.24 0.31 0.43 0.23 0.41 0.66 0.09 0.27 0.71 0.58 0.60 0.47 0.14 0.52 0.52 0.66 0.66 0.60 Total Width (mm) 8.38 8.23 7.39 9.48 9.50 5.06 35.66 22.50 11.95 55.01 14.04 40.42 18.83 16.49 29.44 17.75 49.01 17.34 44.61 11.93 48.28 87.30 24.90 18.71 14.94 23.09 22.99 45.84 20.82 16.12 26.80 33.21 27.34 39.60 22.57 20.72 22.02 16.57 26.46 16.88 Length (mm) 78.45 57.67 53.68 72.25 42.35 36.44 85.43 38.11 66.67 61.56 76.74 22.84 56.98 58.52 61.93 15.36 69.15 59.20 50.41 51.40 42.60 52.77 76.71 48.46 42.34 96.34 77.11 63.12 54.09 70.74 76.11 76.87 69.57 41.67 64.79 53.39 56.43 55.62 82.39 64.14 Branching angle (deg)Branching ZA_82J ZA_385 ZA_368 ZA_373 ZA_265 ZA_216 ZA_115 ZA_111 ZA_79B ZA_78C ZA_78B ZA_77B ZA_73B ZA_61C ZA_53B ZA_42B ZA_32B ZA_55A ZA_195A ZA_403A ZA_346B ZA_342B ZA_342A ZA_283C ZA_271B ZA_271A ZA_253A ZA_252A ZA_241B ZA_240A ZA_239B ZA_239A ZA_234A ZA_217C ZA_196G ZA_187A ZA_186B ZA_186A ZA_172A ZA_136A

Specimen

97

Appendix F: Morphological measurements, single monopodial 6.01 9.72 7.19 6.22 5.83 8.22 7.26 5.19 4.12 4.26 10.97 17.33 SA/V (mm^-1) 3.89 4.07 5.16 7.40 7.24 5.69 5.97 7.14 9.03 5.39 21.83 10.94 SA/V (mm^-1) 3.24 2.76 5.49 3.22 2.27 5.75 7.71 1.04 13.28 29.34 42.65 46.38 V (mm3) 0.60 5.55 4.41 1.40 3.08 3.07 2.54 2.64 39.54 45.10 27.56 11.82 19.45 26.84 39.50 77.45 20.02 24.91 47.25 56.01 18.08 152.20 175.54 197.74 V (mm3) SA (mm2) Total 0.65 0.34 0.57 0.66 0.55 0.37 0.46 0.57 0.78 0.68 0.81 0.28 Width (mm) 12.99 67.28 18.41 21.91 22.99 14.19 41.05 31.92 15.29 153.65 183.56 142.12 SA (mm2) 8.40 9.09 21.27 21.47 34.79 21.02 31.41 31.25 61.28 70.58 58.17 26.61 Primary Elements Length (mm) 0.18 1.04 0.99 0.78 0.71 0.70 0.57 0.45 0.80 0.55 0.56 0.37 Width (mm) 42.18 80.67 85.48 40.92 50.86 28.64 78.62 36.70 49.12 22.40 99.31 66.27 Branching angle (deg)Branching 8.72 7.26 6.97 6.92 5.66 7.04 17.70 11.67 11.03 11.41 11.04 11.34 8.04 5.26 22.40 46.49 58.50 57.56 29.78 11.87 16.08 23.63 17.84 12.94 SA/V (mm^-1) Length (mm) 0.60 0.22 0.14 2.42 1.46 0.87 1.34 2.16 1.28 1.78 0.45 3.11 V (mm3) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Number 5.26 3.85 1.61 9.63 5.08 17.59 10.17 15.33 14.96 14.17 10.08 21.89 SA(mm2) Secondary ElementsSecondary 0.50 0.23 0.41 0.57 0.37 0.61 0.36 0.60 0.37 0.78 0.37 0.58 Width (mm) 8.04 5.26 22.40 46.49 58.50 57.56 29.78 11.87 16.08 12.94 23.63 17.84 3.14 5.19 1.05 9.60 8.08 5.01 7.63 3.72 4.22 13.57 12.08 11.69 Canopy Height (mm) Length (mm) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Number ZA_7B ZA_7F ZA_7G ZA_7H ZA_50J ZA_158 ZA_66A ZA_23C ZA_49B ZA_107A ZA_285A ZA_310A ZA_7B ZA_7F Specimen ZA_7G ZA_7H ZA_50J ZA_158 ZA_66A ZA_49B ZA_23C ZA_310A ZA_285A ZA_107A Specimen

98

Appendix G: Morphological measurements, fan-shaped 21.02120283 12.29559505 13.01647521 SA/V (mm^-1) 21.02120283 13.01647521 12.29559505 SA/V (mm^-1) 0.197694784 0.699474891 0.981343356 Volume (mm3) 8.60046 4.15578215 12.77363147 0.197694784 0.981343356 0.699474891 Surface Area (mm2) Total Volume (mm3) Primary Elements 0.193 0.332 0.311 Average Width (mm) 8.60046 4.15578215 12.77363147 6.761 8.084 12.925 Average Length (mm) Total Surface Area (mm2) 3 2 3 Number 7.803 0.332 0.311 0.193 0.332 0.311 Canopy Height (mm) fan fan fan Total Average Width (mm) Morphotype 6.761 8.084 12.925 Location Total Length (mm) Zuun-Arts Fm, Zavkhan Province, Mongolia Fm, Zavkhan Zuun-Arts Zuun-Arts Fm, Zavkhan Province, Mongolia Fm, Zavkhan Zuun-Arts Zuun-Arts Fm, Zavkhan Province, Mongolia Fm, Zavkhan Zuun-Arts ZA_365 ZA_232A ZA_232B Specimen ZA_365 ZA_232B ZA_232A Specimen

99

Appendix H:

Morphological measurements, small non-branching 31.78461641 23.09745151 SA/V (mm^-1) 23.09745151 31.78461641 SA/V (mm^-1) 0.05153764 0.048114647 Volume (mm3) 1.5293056 1.19038813 0.05153764 0.048114647 Surface Area (mm2) Total Volume (mm3) 0.128 0.181 Primary Elements Average Width (mm) 1.5293056 1.19038813 3.741 2.004 Average Length (mm) Total Surface Area (mm2) 1 1 Number 0.181 0.128 0.128 0.181 Canopy Height (mm) Total Average Width (mm) small small Morphotype 2.004 3.741 Total Length (mm) Location Zuun-Arts Fm, Zavkhan Province, Mongolia Fm, Zavkhan Zuun-Arts Province, Mongolia Fm, Zavkhan Zuun-Arts ZA_213C ZA_213B Specimen ZA_213B ZA_213C Specimen

100

Appendix I:

Morphological measurements, shrub-like 18.80681818 13.35797797 SA/V (mm^-1) 18.80681818 13.35797797 SA/V (mm^-1) 0.1215808 0.331778523 Volume (mm3) 0.1215808 0.331778523 2.286548 4.4318902 Total Volume (mm3) Surface Area (mm2) Primary Elements 0.22 0.31 Average Width (mm) 2.286548 4.4318902 3.2 Total Surface Area (mm2) 4.398 Average Length (mm) 1 6 Number 0.22 0.31 0.22 0.31 Canopy Height (mm) Total Average Width (mm) shrub shrub Morphotype 3.2 4.398 Total Length (mm) Location ZA_245 ZA_130A Specimen Zuun-Arts Fm, Zavkhan Province, Mongolia Fm, Zavkhan Zuun-Arts Province, Mongolia Fm, Zavkhan Zuun-Arts

101

Appendix J:

XRD patterns 30

20 2-Theta - Scale upper 10

2 1 2 3 6 5 4 10 20 30 40 80 70 60 50 90

Log (Counts) Log

102

103

104

30 20 2-Theta - Scale ZA_378EG

10

2 6 5 4 3 2 1 60 50 40 30 20 10 100

Log (Counts) Log

105

30 20 2-Theta - Scale ZA_173

10

2 4 3 2 1 6 5 50 40 30 20 10

Log (Counts) Log

106

107

30

20 2-Theta - Scale ZA_22

10

2 2 1 3 4 6 5 10 20 30 50 40 60 100

Log (Counts) Log

108