Breaking and Fixing Gridcoin

Total Page:16

File Type:pdf, Size:1020Kb

Breaking and Fixing Gridcoin Breaking and Fixing Gridcoin Martin Grothe, Tobias Niemann, Juraj Somorovsky, Jörg Schwenk Horst Görtz Institute for IT Security, Ruhr University Bochum {firstname.lastname}@rub.de Abstract cryptocurrencies, so called altcoins. These altcoins at- Bitcoin has been hailed as a new payment mechanism, tempt to establish new user communities by advertising and is currently accepted by millions of users. One of different technology improvements or tweaks. Nowa- the major drawbacks of Bitcoin is the resource intensive days, about 700 Bitcoin based cryptocurrencies exist [4]. Proof-of-Work computation. Proof-of-Work is used to establish the blockchain, but this proof of work does not Wasteful computation. One of the main drawbacks of bring any benefits and arguably is a waste of energy. To Bitcoin (and other Bitcoin based cryptocurrencies) is the use these available resources in a more meaningful way, resource expensive Proof-of-Work computation. Proof- several alternative cryptocurrencies have been presented. of-Work is used to establish the blockchain, which con- One of them is Gridcoin, which rewards the users for tains blocks with Bitcoin transactions. In order to con- solving BOINC problems. Gridcoin currently possesses struct a new valid block, the so called miners collect Bit- a market capitalization of $ 23,423,115. coin transactions. They attempt to hash data from the In our work we conducted the first security analysis of previous block together the transactions and some ran- Gridcoin. We identified two critical security issues. The domness so that the resulting SHA-256 value lies below first issue allows an attacker to reveal all email addresses a specific boundary (i.e., the hash value starts with a spe- of the registered Gridcoin users. Even worse, the second cific number of zeros). The search for a valid block re- issue gives an attacker the ability to steal the work per- sults in many SHA-256 computations and thus requires a formed by a BOINC user, and thus effectively steal his huge amount of energy. High rewards for the block com- Gridcoins. These attacks have severe consequences and putations, however, motivate many users to participate in completely break the Gridcoin cryptocurrency. the mining process. Increasing the overall security on the We practically evaluated and confirmed both attacks, one hand, on the other a study from 2014 suggests that and responsibly disclosed them to the Gridcoin maintain- Bitcoin’s total electrical footprint is comparable with the ers. We developed backwards compatible design changes Irish national electrical energy consumption [19]. for the Gridcoin system, in order to protect users’ trust into this promising approach. Cryptocurrencies with meaningful computations. The energy spent for Bitcoin mining is arguably waste- Keywords: Gridcoin, Attack, BOINC, Proof-of- ful since it results in meaningless hash computations. Stake, Meaningful Cryptocurrency This fact has motivated many developers to establish new altcoins. Primecoin introduces a new Proof-of-Work 1 Introduction scheme based on computation of prime number chains – Cunningham chains [1]. Filecoin and Permacoin in- Since the launch of Bitcoin in 2009 [18, 10], the new troduce a concept based on proof-of-retrievability [5, 6], peer-to-peer electronic cash system grew to be one of which rewards users for providing data storage. This way the few widely accepted payment methods in both online it is possible to create a distributed file storage systems. and retail shopping. The release of the official Bitcoin Wustrow and VanderSloot showed that it is possible to Core client, developed by the Bitcoin inventor Satoshi create a cryptocurrency based on a malicious Proof-of- Nakamoto as open source software, allowed users to fork Work [31]. Their DDoSCoin concept rewards miners for the project and apply their own design changes. Hence contributing to a distributed Denial-of-Service (DoS) at- we could observe emergence of many new Bitcoin based tack. Nevertheless, these altcoins only attempt to solve specific problems and their concepts are not applicable Responsible disclosure. We responsibly disclosed our in general. security findings to the Gridcoin maintainers on the 16th of September 2016 together with our proposed coun- termeasures. They responded to us that they are going Gridcoin. Gridcoin is an altcoin, which is in active de- to fix the vulnerabilities. Unfortunately, our proposals velopment since 2013. It claims to provide a high sus- were not implemented correctly and further security is- tainability, as it has very low energy requirements in sues were introduced with the new releases of Gridcoin. comparison to Bitcoin. It rewards users for contribut- We contacted the maintainers again in order to help them ing computation power to scientific projects, published fix the issues, but they did not respond to our following on the BOINC project platform. Although Gridcoin is contact attempts. Thus, the current mandatory release not as widespread as Bitcoin, its draft is very appeal- 3.5.9.6 still contains several security vulnerabilities.1 ing as it attempts to eliminate Bitcoin’s core problems. It possesses a market capitalization of $ 23,423,115 [3] (11th of May 2017) and its users contributed approxi- 2 BOINC mately 5% of the total scientific BOINC work done be- fore October, 2016 [2]. This motivates for the analysis of this relatively new cryptocurrency. To solve general scientific meaningful problems, Grid- coin draws on the well known Berkeley Open Infras- tructure for Network Computing (BOINC). It is a soft- Security analysis of Gridcoin. In this paper we ana- ware platform for volunteer computing, initially released lyze the security of Gridcoin. We first give an overview in 2002 and developed by the University of California, of the Gridcoin core security functionalities and its con- Berkeley. It is an open source software licensed under nection to the BOINC network. In particular, Gridcoin the GNU Lesser General Public License. The platform uses the BOINC statistics servers to reward BOINC users enables professionals in need for computation power to for their computational contributions to solving mean- distribute their tasks to volunteers. Nowadays it is widely ingful problems. The first general issue arises when con- used by researchers with limited resources to solve sci- sidering the trust into the statistics server. If the attacker entific problems, for example, healing cancer, investi- is able to take control over this server, he is able to cre- gate global warming, finding extraterrestrial intelligence ate an arbitrary number of Gridcoins. However, it is not in radio signals and finding larger prime numbers. necessary to have such a powerful attacker with server When launching a BOINC project, its maintainer is administration rights to execute practical attacks on Grid- required to setup his own BOINC server. Project vol- coin. In this paper we demonstrate a critical vulnerability unteers may then create accounts (by submitting a user- in Gridcoin, which puts the currencies market capitaliza- name, a password and an email address) and work on tion at risk. Our attacker is able to steal Gridcoins from specific project tasks, called workunits. The volunteers legitimate Gridcoin users. We provide a proof of concept can process the project tasks and transfer their solutions exploit implementation, which makes it possible to gen- with a BOINC client. The BOINC client is controlled erate illegitimate Gridcoins. Our findings break the alt- via its RPC interface using either the GUI boincmgr or coin Gridcoin in the state of version 3.5.8.6 and thereby the CLI boinccmd. The client offers a broad variety of affect all Gridcoin users and exchanges. options to limit the shared resources, such as by timer or processing unit workload, and thereby gives the volun- teer a lot of control and the ability to run it seamlessly Contributions. This work makes the following contri- in the background. The BOINC project server usually butions: deploys executables for Windows, Mac OS X, Linux or • We give the first in depth description of the Gridcoin Android systems on x86, x86_64 or ARMv7. To mea- architecture and functionality. sure how much work a machine has done BOINC imple- • We analyze the security of Gridcoin and discuss the ments a computation credit system. This system enables trust issues of this cryptocurrency. user competition and team establishment. The statistics • We present two feasible attacks on Gridcoin. First, are retrievable from the BOINC project servers as XML our attacker can affect Gridcoin privacy and extract data. To streamline the process, BOINC Credit statis- all email addresses of registered users. Second, tics websites like boincstats.com2 gather statistics from our attacker can even steal computation power per- all BOINC project servers and process them for display formed by Gridcoin users, and thus steal their Grid- in HTML markup, including graphs and rankings [27]. coins. • We developed backwards compatible design 1For more details see: http://gridcoin-attacks.org changes against the presented attacks. 2http://boincstats.com/ 2.1 BOINC Architecture of CPU time on a reference machine with 1,000 mega floating point operation per seconds [21]. The served BOINC uses a client server architecture to achieve its statistic files contain the two credit measuring values To- rich feature set. The server component handles the client tal Credit and Recent Average Credit for each participant, requests for workunits and the problem solutions up- host and team. loaded by the clients. The solutions are validated and assimilated by the server component. All workunits are Total Credit: The value Total Credit is the total number created by the server component and each workunit rep- of Cobblestones generated [21]. resents a chunk of a scientific problem which is encapsu- lated in an application. This application consists of one Recent Average Credit (RAC): RAC is defined as the or multiple in-/output files, containing binary or ASCII average number of Cobblestones per day generated encoded parameters.
Recommended publications
  • Realizing the Potential of Blockchain Technologies in Genomics
    Downloaded from genome.cshlp.org on September 29, 2021 - Published by Cold Spring Harbor Laboratory Press Perspective Realizing the potential of blockchain technologies in genomics Halil Ibrahim Ozercan,1 Atalay Mert Ileri,2 Erman Ayday,1 and Can Alkan1 1Department of Computer Engineering, Bilkent University, Ankara 06800, Turkey; 2Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA Genomics data introduce a substantial computational burden as well as data privacy and ownership issues. Data sets generated by high-throughput sequencing platforms require immense amounts of computational resources to align to reference ge- nomes and to call and annotate genomic variants. This problem is even more pronounced if reanalysis is needed for new ver- sions of reference genomes, which may impose high loads to existing computational infrastructures. Additionally, after the compute-intensive analyses are completed, the results are either kept in centralized repositories with access control, or dis- tributed among stakeholders using standard file transfer protocols. This imposes two main problems: (1) Centralized servers become gatekeepers of the data, essentially acting as an unnecessary mediator between the actual data owners and data users; and (2) servers may create single points of failure both in terms of service availability and data privacy. Therefore, there is a need for secure and decentralized platforms for data distribution with user-level data governance. A new technology, block- chain, may help ameliorate some of these problems. In broad terms, the blockchain technology enables decentralized, im- mutable, incorruptible public ledgers. In this Perspective, we aim to introduce current developments toward using blockchain to address several problems in omics, and to provide an outlook of possible future implications of the blockchain technology to life sciences.
    [Show full text]
  • YEUNG-DOCUMENT-2019.Pdf (478.1Kb)
    Useful Computation on the Block Chain The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Yeung, Fuk. 2019. Useful Computation on the Block Chain. Master's thesis, Harvard Extension School. Citable link https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37364565 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA 111 Useful Computation on the Block Chain Fuk Yeung A Thesis in the Field of Information Technology for the Degree of Master of Liberal Arts in Extension Studies Harvard University November 2019 Copyright 2019 [Fuk Yeung] Abstract The recent growth of blockchain technology and its usage has increased the size of cryptocurrency networks. However, this increase has come at the cost of high energy consumption due to the processing power needed to maintain large cryptocurrency networks. In the largest networks, this processing power is attributed to wasted computations centered around solving a Proof of Work algorithm. There have been several attempts to address this problem and it is an area of continuing improvement. We will present a summary of proposed solutions as well as an in-depth look at a promising alternative algorithm known as Proof of Useful Work. This solution will redirect wasted computation towards useful work. We will show that this is a viable alternative to Proof of Work. Dedication Thank you to everyone who has supported me throughout the process of writing this piece.
    [Show full text]
  • Linking Wallets and Deanonymizing Transactions in the Ripple Network
    Proceedings on Privacy Enhancing Technologies ; 2016 (4):436–453 Pedro Moreno-Sanchez*, Muhammad Bilal Zafar, and Aniket Kate* Listening to Whispers of Ripple: Linking Wallets and Deanonymizing Transactions in the Ripple Network Abstract: The decentralized I owe you (IOU) transac- 1 Introduction tion network Ripple is gaining prominence as a fast, low- cost and efficient method for performing same and cross- In recent years, we have observed a rather unexpected currency payments. Ripple keeps track of IOU credit its growth of IOU transaction networks such as Ripple [36, users have granted to their business partners or friends, 40]. Its pseudonymous nature, ability to perform multi- and settles transactions between two connected Ripple currency transactions across the globe in a matter of wallets by appropriately changing credit values on the seconds, and potential to monetize everything [15] re- connecting paths. Similar to cryptocurrencies such as gardless of jurisdiction have been pivotal to their suc- Bitcoin, while the ownership of the wallets is implicitly cess so far. In a transaction network [54, 55, 59] such as pseudonymous in Ripple, IOU credit links and transac- Ripple [10], users express trust in each other in terms tion flows between wallets are publicly available in an on- of I Owe You (IOU) credit they are willing to extend line ledger. In this paper, we present the first thorough each other. This online approach allows transactions in study that analyzes this globally visible log and charac- fiat money, cryptocurrencies (e.g., bitcoin1) and user- terizes the privacy issues with the current Ripple net- defined currencies, and improves on some of the cur- work.
    [Show full text]
  • On the Relationship of Cryptocurrency Price with US Stock and Gold Price Using Copula Models
    mathematics Article On the Relationship of Cryptocurrency Price with US Stock and Gold Price Using Copula Models Jong-Min Kim 1 , Seong-Tae Kim 2 and Sangjin Kim 3,* 1 Statistics Discipline, University of Minnesota at Morris, Morris, MN 56267, USA; [email protected] 2 Department of Mathematics, North Carolina A&T State University, Greensboro, NC 27411, USA; [email protected] 3 Department of Management and Information Systems, Dong-A University, Busan 49236, Korea * Correspondence: [email protected] Received: 15 September 2020; Accepted: 20 October 2020; Published: 23 October 2020 Abstract: This paper examines the relationship of the leading financial assets, Bitcoin, Gold, and S&P 500 with GARCH-Dynamic Conditional Correlation (DCC), Nonlinear Asymmetric GARCH DCC (NA-DCC), Gaussian copula-based GARCH-DCC (GC-DCC), and Gaussian copula-based Nonlinear Asymmetric-DCC (GCNA-DCC). Under the high volatility financial situation such as the COVID-19 pandemic occurrence, there exist a computation difficulty to use the traditional DCC method to the selected cryptocurrencies. To solve this limitation, GC-DCC and GCNA-DCC are applied to investigate the time-varying relationship among Bitcoin, Gold, and S&P 500. In terms of log-likelihood, we show that GC-DCC and GCNA-DCC are better models than DCC and NA-DCC to show relationship of Bitcoin with Gold and S&P 500. We also consider the relationships among time-varying conditional correlation with Bitcoin volatility, and S&P 500 volatility by a Gaussian Copula Marginal Regression (GCMR) model. The empirical findings show that S&P 500 and Gold price are statistically significant to Bitcoin in terms of log-return and volatility.
    [Show full text]
  • Vulnerability of Blockchain Technologies to Quantum Attacks
    Vulnerability of Blockchain Technologies to Quantum Attacks Joseph J. Kearneya, Carlos A. Perez-Delgado a,∗ aSchool of Computing, University of Kent, Canterbury, Kent CT2 7NF United Kingdom Abstract Quantum computation represents a threat to many cryptographic protocols in operation today. It has been estimated that by 2035, there will exist a quantum computer capable of breaking the vital cryptographic scheme RSA2048. Blockchain technologies rely on cryptographic protocols for many of their essential sub- routines. Some of these protocols, but not all, are open to quantum attacks. Here we analyze the major blockchain-based cryptocurrencies deployed today—including Bitcoin, Ethereum, Litecoin and ZCash, and determine their risk exposure to quantum attacks. We finish with a comparative analysis of the studied cryptocurrencies and their underlying blockchain technologies and their relative levels of vulnerability to quantum attacks. Introduction exist to allow the legitimate owner to recover this account. Blockchain systems are unlike other cryptosys- tems in that they are not just meant to protect an By contrast, in a blockchain system, there is no information asset. A blockchain is a ledger, and as central authority to manage users’ access keys. The such it is the asset. owner of a resource is by definition the one hold- A blockchain is secured through the use of cryp- ing the private encryption keys. There are no of- tographic techniques. Notably, asymmetric encryp- fline backups. The blockchain, an always online tion schemes such as RSA or Elliptic Curve (EC) cryptographic system, is considered the resource— cryptography are used to generate private/public or at least the authoritative description of it.
    [Show full text]
  • Using Blockchain Technology to Secure the Internet of Things
    Using Blockchain Technology to Secure the Internet of Things Presented by the Blockchain/ Distributed Ledger Working Group © 2018 Cloud Security Alliance – All Rights Reserved. You may download, store, display on your computer, view, print, and link to Using Blockchain Technology to Secure the Internet of Things subject to the following: (a) the Document may be used solely for your personal, informational, non- commercial use; (b) the Report may not be modified or altered in any way; (c) the Document may not be redistributed; and (d) the trademark, copyright or other notices may not be removed. You may quote portions of the Document as permitted by the Fair Use provisions of the United States Copyright Act, provided that you attribute the portions to the Using Blockchain Technology to Secure the Internet of Things paper. Blockchain/Distributed Ledger Technology Working Group | Using Blockchain Technology to Secure the Internet of Things 2 © Copyright 2018, Cloud Security Alliance. All rights reserved. ABOUT CSA The Cloud Security Alliance is a not-for-profit organization with a mission to promote the use of best practices for providing security assurance within Cloud Computing, and to provide education on the uses of Cloud Computing to help secure all other forms of computing. The Cloud Security Alliance is led by a broad coalition of industry practitioners, corporations, associations and other key stakeholders. For further information, visit us at www.cloudsecurityalliance.org and follow us on Twitter @cloudsa. Blockchain/Distributed Ledger Technology Working Group | Using Blockchain Technology to Secure the Internet of Things 3 © Copyright 2018, Cloud Security Alliance. All rights reserved.
    [Show full text]
  • Artificial Intelligence Integrated Blockchain Technology for Decentralized Applications and Smart Contracts
    International Journal of Advanced Science and Technology Vol. 29, No.02, (2020), pp. 1023-1031 Artificial Intelligence Integrated Blockchain Technology for Decentralized Applications and Smart Contracts MAAN NAWAF ABBOOD Al-Imam Al-Adham college Abstract In the present period, Blockchain Technology is one of the key regions of research just as execution explicitly in the space of Cryptocurrency. Presently days, various advanced digital forms of money are very conspicuous and shared all through the world in spite of enormous analysis and debates. These cryptographic forms of money incorporate BitCoin, Ethereum, LiteCoin, PeerCoin, GridCoin, PrimeCoin, Ripple, Nxt, DogeCoin, NameCoin, AuroraCoin, Dash, Neo, NEM, PotCoin, TitCoin, Verge, Stellar, VertCoin, Tether, Zcash and numerous others. These blockchain based digital forms of money don't have any middle of the road bank or installment passage to record the log of the transactions. That is the primary reason in light of which numerous nations are not permitting the cryptographic forms of money as legitimate cash transaction. In any case, these blockchain based cryptographic forms of money are extremely celebrated and utilized as a result of colossal security highlights. This manuscript is focusing on the blockchain technology that is directly associated as the application domain of artificial intelligence. Keywords: Artificial Intelligence, AI, AI based Blockchain, Blockchain Security Introduction The blockchain organize is having a square of records in which every single record is related with the dynamic cryptography so every one of the transactions can be scrambled with no likelihood of sniffing or hacking endeavors [1, 2]. In current situation, the blockchain innovation is progressively engaged towards cryptographic forms of money in which the disseminated record is kept up for the transactions [3, 4].
    [Show full text]
  • A Survey on Volatility Fluctuations in the Decentralized Cryptocurrency Financial Assets
    Journal of Risk and Financial Management Review A Survey on Volatility Fluctuations in the Decentralized Cryptocurrency Financial Assets Nikolaos A. Kyriazis Department of Economics, University of Thessaly, 38333 Volos, Greece; [email protected] Abstract: This study is an integrated survey of GARCH methodologies applications on 67 empirical papers that focus on cryptocurrencies. More sophisticated GARCH models are found to better explain the fluctuations in the volatility of cryptocurrencies. The main characteristics and the optimal approaches for modeling returns and volatility of cryptocurrencies are under scrutiny. Moreover, emphasis is placed on interconnectedness and hedging and/or diversifying abilities, measurement of profit-making and risk, efficiency and herding behavior. This leads to fruitful results and sheds light on a broad spectrum of aspects. In-depth analysis is provided of the speculative character of digital currencies and the possibility of improvement of the risk–return trade-off in investors’ portfolios. Overall, it is found that the inclusion of Bitcoin in portfolios with conventional assets could significantly improve the risk–return trade-off of investors’ decisions. Results on whether Bitcoin resembles gold are split. The same is true about whether Bitcoins volatility presents larger reactions to positive or negative shocks. Cryptocurrency markets are found not to be efficient. This study provides a roadmap for researchers and investors as well as authorities. Keywords: decentralized cryptocurrency; Bitcoin; survey; volatility modelling Citation: Kyriazis, Nikolaos A. 2021. A Survey on Volatility Fluctuations in the Decentralized Cryptocurrency Financial Assets. Journal of Risk and 1. Introduction Financial Management 14: 293. The continuing evolution of cryptocurrency markets and exchanges during the last few https://doi.org/10.3390/jrfm years has aroused sparkling interest amid academic researchers, monetary policymakers, 14070293 regulators, investors and the financial press.
    [Show full text]
  • Ethereum Classic Price Prediction 2030
    1 Ethereum Classic Price Prediction 2030 Update [06-08-2021] There are various cryptocurrencies out now in the bitcoin market, and people worldwide and mostly in the countries like United States , are investing in these digital currencies. 00000001 Ethereum max 7d low Emax 7d high- 0. And this particular blockchain allows to grants investors security and also control for all of their digital assets. Firstly, we have to be sure about the amount of ETH in our wallet to cover our transaction fees. Once OKExChain supports EVM, developers can use the development tools and languages of Ethereum to develop smart contracts on OKExChain. The contract launched the Beacon Chain, the first stage in the ETH 2. Most are confident that Ethereum 2. Ethereum s Growing Transaction Fees Shouldn t Stop Users. Is Cardano or Ethereum a Better Investment. It was developed in 2017 by Charles Hoskinson, who was previously involved in creating Ethereum itself. In other words, we have defined proof, in the per-coin values of both Bitcoin and Ethereum, that increases of 500 , 1,000 and more are not unprecedented or wildly unreasonable in this market , especially for coins that started out at a few cents. And this has given the latter a significant advantage over the former. At the same time, it is also going to take many other alts with it to new highs. A 10k price is definitely on the cards with so many Decentralized finance apps shifting to their protocols. If Ethereum could hit 10k by the end of 2021 then it would cross the 1 trillion market cap and might become the 2nd cryptocurrency to do so.
    [Show full text]
  • Impossibility of Full Decentralization in Permissionless Blockchains
    Impossibility of Full Decentralization in Permissionless Blockchains Yujin Kwon*, Jian Liuy, Minjeong Kim*, Dawn Songy, Yongdae Kim* *KAIST {dbwls8724,mjkim9394,yongdaek}@kaist.ac.kr yUC Berkeley [email protected],[email protected] ABSTRACT between achieving good decentralization in the consensus protocol Bitcoin uses the proof-of-work (PoW) mechanism where nodes earn and not relying on a TTP exists. rewards in return for the use of their computing resources. Although this incentive system has attracted many participants, power has, CCS CONCEPTS at the same time, been significantly biased towards a few nodes, • Security and privacy → Economics of security and privacy; called mining pools. In addition, poor decentralization appears not Distributed systems security; only in PoW-based coins but also in coins that adopt proof-of-stake (PoS) and delegated proof-of-stake (DPoS) mechanisms. KEYWORDS In this paper, we address the issue of centralization in the consen- Blockchain; Consensus Protocol; Decentralization sus protocol. To this end, we first define ¹m; ε; δº-decentralization as a state satisfying that 1) there are at least m participants running 1 INTRODUCTION a node, and 2) the ratio between the total resource power of nodes Traditional currencies have a centralized structure, and thus there run by the richest and the δ-th percentile participants is less than exist several problems such as a single point of failure and corrup- or equal to 1 + ε. Therefore, when m is sufficiently large, and ε and tion. For example, the global financial crisis in 2008 was aggravated δ are 0, ¹m; ε; δº-decentralization represents full decentralization, by the flawed policies of banks that eventually led to many bank which is an ideal state.
    [Show full text]
  • Exploring the Interconnectedness of Cryptocurrencies Using Correlation Networks
    Exploring the Interconnectedness of Cryptocurrencies using Correlation Networks Andrew Burnie UCL Computer Science Doctoral Student at The Alan Turing Institute [email protected] Conference Paper presented at The Cryptocurrency Research Conference 2018, 24 May 2018, Anglia Ruskin University Lord Ashcroft International Business School Centre for Financial Research, Cambridge, UK. Abstract Correlation networks were used to detect characteristics which, although fixed over time, have an important influence on the evolution of prices over time. Potentially important features were identified using the websites and whitepapers of cryptocurrencies with the largest userbases. These were assessed using two datasets to enhance robustness: one with fourteen cryptocurrencies beginning from 9 November 2017, and a subset with nine cryptocurrencies starting 9 September 2016, both ending 6 March 2018. Separately analysing the subset of cryptocurrencies raised the number of data points from 115 to 537, and improved robustness to changes in relationships over time. Excluding USD Tether, the results showed a positive association between different cryptocurrencies that was statistically significant. Robust, strong positive associations were observed for six cryptocurrencies where one was a fork of the other; Bitcoin / Bitcoin Cash was an exception. There was evidence for the existence of a group of cryptocurrencies particularly associated with Cardano, and a separate group correlated with Ethereum. The data was not consistent with a token’s functionality or creation mechanism being the dominant determinants of the evolution of prices over time but did suggest that factors other than speculation contributed to the price. Keywords: Correlation Networks; Interconnectedness; Contagion; Speculation 1 1. Introduction The year 2017 saw the start of a rapid diversification in cryptocurrencies.
    [Show full text]
  • Research and Applied Perspective to Blockchain Technology: a Comprehensive Survey
    applied sciences Review Research and Applied Perspective to Blockchain Technology: A Comprehensive Survey Sumaira Johar 1,* , Naveed Ahmad 1, Warda Asher 1, Haitham Cruickshank 2 and Amad Durrani 1 1 Department of Computer Science, University of Peshawar, Peshawar 25000, Pakistan; [email protected] (N.A.); [email protected] (W.A.); [email protected] (A.D.) 2 Institute of Communication Systems, University of Surrey, Guildford GU2 7JP, UK; [email protected] * Correspondence: [email protected] Abstract: Blockchain being a leading technology in the 21st century is revolutionizing each sector of life. Services are being provided and upgraded using its salient features and fruitful characteristics. Businesses are being enhanced by using this technology. Countries are shifting towards digital cur- rencies i.e., an initial application of blockchain application. It omits the need of central authority by its distributed ledger functionality. This distributed ledger is achieved by using a consensus mechanism in blockchain. A consensus algorithm plays a core role in the implementation of blockchain. Any application implementing blockchain uses consensus algorithms to achieve its desired task. In this paper, we focus on provisioning of a comparative analysis of blockchain’s consensus algorithms with respect to the type of application. Furthermore, we discuss the development platforms as well as technologies of blockchain. The aim of the paper is to provide knowledge from basic to extensive from blockchain architecture to consensus methods, from applications to development platform, from challenges and issues to blockchain research gaps in various areas. Citation: Johar, S.; Ahmad, N.; Keywords: blockchain; applications; consensus mechanisms Asher, W.; Cruickshank, H.; Durrani, A.
    [Show full text]