Status of Drill-Stem Testing Techniques and Analysis

Total Page:16

File Type:pdf, Size:1020Kb

Status of Drill-Stem Testing Techniques and Analysis Status of Drill-Stem Testing Techniques and Analysis H. K. VAN POOLLEN THE OHIO OIL CO. MEMBER AIME LITTLETON, OHIO Abstract if the theoretical PI is low; but if the theoretical PI is Downloaded from http://onepetro.org/JPT/article-pdf/13/04/333/2237597/spe-1647-g-pa.pdf by guest on 28 September 2021 high, chances for stimulating the well are still good (either This paper is a compilation of the latest drill-stem testing 2 4 by removal of the skin surrounding the wellbore - or by techniques. New tools are described, together with present­ further penetration of the productive zone) . day interpretation techniques, and their limitations are given. The importance of proper times for shut-in and The reservoir pressure aids reservoir engineers in their flow periods are stressed. A number of suggestions for the reserve calculations. It is important in exploration studies future are given, and a rather complete list of references dealing with entrapment of oil under hydrodynamic con­ in the field of drill-stem testing has been supplied for use ditions. by interested readers. Trends in Drill-Stem Testing With more and more emphasis on detailed interpretation, Introduction the trend in drill-stem testing has been toward: (1) the use A drill-stem test (DST) is a temporary completion. It of double closed-in pressure tests;* (2) more accurate consists of a combination of a packer arrangement and pressure recording devices; (3) more accurate and detailed drill pipe or tubing. Valves are present in this arrange­ reading of pressure charts; (4) on-the-spot pressure eval­ ment to open and close the tool, and pressure and temp­ uation of tests and calculations; (5) calculations by means erature recording devices are employed. Upon completion of digital computers; and (6) new tools enabling up-hole of the test, the entire arrangement is withdrawn from the testing, continuous testing and testing while drilling. well. The purpose of a DST is (1) to determine whether or Basic Tools not to complete the well and (2) to obtain reservoir or Drill-stem testing can be divided into two main cate­ aquifer information for exploration applications. The DST gories - open-hole and hook-wall. Since the operating and will render a wealth of information - e.g., a sample of mechanical principles of the two strings of tools are the the fluid itself, the actual productivity index, the reservoir same, only the open-hole string will be discussed. pressure, the theoretical productivity index and the amount Trends in modern drill-stem testing have led to more of well bore damage. versatile and, consequently, more complete tools.'-1O The The fluid will show whether the well can be completed various components that make up a test string can be as­ as an oil well, a condensate well or a gas well; or, it will sembled in any number of combinations. Only the parts of show if the formation should be abandoned (for being a the string considered most important for interpretation will water producer or for being dry). Tests can be run on the be discussed (Fig. 1). sample to determine the hydrocarbons present, viscosity Starting at the bottom of the string, the most commori of the mixture, API gravity, paraffin content, pour point testing tools and their main function are as follows: or gas-oil ratio. The water produced can be analyzed for salinity and electrolytes present to aid in stratigraphic The blanked-off pressure recorder (outside gauge) pro­ correlation, and the resistivity of the water will aid the vides a step-by-step graphic story of the drill-stem test. By logging engineer in his evaluation of the electric logs. The comparison with other gauges in the string, it will reveal DST further aids in determining gas-oil or oil-water con­ the proper function of the testing string. No flow of fluids tacts, and the proximity of pinchouts or faults. from the formation passes by this gauge; consequently, all pressures are recorded directly from the annulus below Two different productivity indices (PI) can be obtained the packer. during the DST - (1) the actual PI and (2) the theoreti­ cal PI. Normally, the actual PI is lower than the theoretical The perforated anchor supports the testing string and PI. A high actual PI shown by a given well probably will keeps the packer seated in the well bore. The anchor is be the deciding factor in favor of completing that well. provided with small holes (approximately 3/16 in.) to If the actual PI is low, however, the well possibly should allow passage of formation fluids and to screen debris that be abandoned. In all probability, it should be abandoned might otherwise plug the fluid passages in the tool. 2References given at end of paper. Original manuscript received in Society of Petroleum Engineers office ~'Where air chambers originally were used for the determination of Nov. 22. 1960. Revised manuscript received Feb. 23. 1961. Paper presented initial closed-in pressures, present-day practice trends toward the method at 5PE Formation Evalu.. tion Symposium. Nov. 21·22. 1960. in Houston. of initial flow followed by initial shut-in. APRIL, 1961 SPE 1647-G Reprinted from the Aprii. 1961. Is.ue of JOUR:--lAL OF PETROLEUM TECH:--lOLOGY 333 The packer assembly provides a bridge in the well bore Then it is shut in to record the initial closed-in pressure. between the drilling fluid and the zone to be tested. The The initial flow and shut-in periods also may be estab­ hydrostatic head is withheld from the formation by means lished by means of a conventional tester valve. After the of the packer. packer is set, the by-pass closes and the tester valve opens. The flow-stream gauge (inside gauge.) also will give a This is the beginning of the initial flow period. To shut-in concise picture of the testing operation. This pressure the well, the pipe is lifted enough to close the tester valve recorder is placed in the flow stream above the packer and but not enough to unseat the packer. A special arrange­ below the tester valve. All pressure fluctuations must pass ment keeps the by-pass from opening." through the perforated anchor to reach this recorder. Important optional components of a testing string are The tester valve prevents entry of drilling fluids into the safety joints, jars, bottom-hole choke, reversing sub, etc. empty drill pipe while the pipe is being run into the hole. (Local conditions will govern location of the tools in the It also retains a sample of the formation fluids recovered string and their application.) while pulling out of the hole. Several improvements on the tester valve have been offered the industry in recent Testing Without Use of Anchor Pipe years. The air-chamber gauge generally is run inside the air It is frequently desired to test only a certain part of a chamber on tests where an initial closed-in pressure is formation. In this case, two packer arrangements are used taken and provides a means of checking the air chamber in such a manner that they "straddle" the zone of interest. The anchor pipe is blanked off. The lower packer separates for fluid entry prior to the opening of the tester valve. Downloaded from http://onepetro.org/JPT/article-pdf/13/04/333/2237597/spe-1647-g-pa.pdf by guest on 28 September 2021 the bottom of the hole from the formation, and the upper An auxiliary valve placed at a distance above the tester packer separates the formation from the annular space valve provides an air chamber into which compressed mud above the upper packer. In straddle-packer testing, long below the packer can expand when the tester valve is anchor pipes frequently are used, extending from the zone opened. This method allows the pressure beneath the of interest to total depth. packer to drop below reservoir pressure, followed by a It is possible now to perform straddle tests without the rapid build-up of the formation pressure prior to any use of anchor pipe.",5l The tool which replaces the anchor appreciable amount of production. pipe consists of mechanical slips mounted on a wedge­ Two types of auxiliary valves are available for the dual shaped body, a set of open-hole type drag springs, and a closed-in pressure procedure." One is the disc valve, which J-slot locking mechanism to hold the slips in the unset consists of a steel body with a fluid passage blanked-off by position while going into the hole. To set the tool, the drill an aluminum disc. This type of valve is opened by dropping stem is picked up slightly, rotated and lowered, releasing a steel bar to rupture the disc. Another valve is a rotation the J-slot locking mechanism and allowing the slips to type which has a three-position sleeve. The valve is run expand. After the slips are set against the wall of the hole, into the hole in the closed position and is opened by they provide support for the drill-pipe weight that must rotation. Further rotation will again close the valve and be applied to set the packers and open the tester valve. To provide a final closed-in pressure. release the slips, the drill stem is picked up, which reposi­ Also available to the industry is another rotation-type tions the locking mechanism and readies the tool for re­ auxiliary valve!"" This newer type of auxiliary valve offers setting. two advantages over the other equipment. It eliminates the additional piece of equipment necessary to reverse out the Testing Procedures recovery obtained on the DST, and the air-chamber is DST's can he classified as (1) conventional, (2) double eliminated.
Recommended publications
  • Best Research Support and Anti-Plagiarism Services and Training
    CleanScript Group – best research support and anti-plagiarism services and training List of oil field acronyms The oil and gas industry uses many jargons, acronyms and abbreviations. Obviously, this list is not anywhere near exhaustive or definitive, but this should be the most comprehensive list anywhere. Mostly coming from user contributions, it is contextual and is meant for indicative purposes only. It should not be relied upon for anything but general information. # 2D - Two dimensional (geophysics) 2P - Proved and Probable Reserves 3C - Three components seismic acquisition (x,y and z) 3D - Three dimensional (geophysics) 3DATW - 3 Dimension All The Way 3P - Proved, Probable and Possible Reserves 4D - Multiple Three dimensional's overlapping each other (geophysics) 7P - Prior Preparation and Precaution Prevents Piss Poor Performance, also Prior Proper Planning Prevents Piss Poor Performance A A&D - Acquisition & Divestment AADE - American Association of Drilling Engineers [1] AAPG - American Association of Petroleum Geologists[2] AAODC - American Association of Oilwell Drilling Contractors (obsolete; superseded by IADC) AAR - After Action Review (What went right/wrong, dif next time) AAV - Annulus Access Valve ABAN - Abandonment, (also as AB) ABCM - Activity Based Costing Model AbEx - Abandonment Expense ACHE - Air Cooled Heat Exchanger ACOU - Acoustic ACQ - Annual Contract Quantity (in reference to gas sales) ACQU - Acquisition Log ACV - Approved/Authorized Contract Value AD - Assistant Driller ADE - Asphaltene
    [Show full text]
  • Drill Stem Test Database (UBDST) and Documentation: Analysis of Uinta Basin, Utah Gas-Bearing Cretaceous and Tertiary Strata
    Principal drill stem test database (UBDST) and documentation: analysis of Uinta Basin, Utah gas-bearing Cretaceous and Tertiary strata by J. Ben Wesley, Craig J. Wandrey, and Thomas D. Fouchl U.S. Geological Survey, Lakewood, CO Open-File 93-193 Work Performed under contract No.: DE-AI21-83MC2042 for the U.S. Department of Energy, Office of Fossil Energy Morgantown Energy Technology Center, Morgantown, West Virginia This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards, (or with the North American Stratigraphic Code.) Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this program has been used by the U.S. Geological Survey, no warranty, expressed or implied, is made by the USGS as to the accuracy and functioning of the program and related program material, nor shall the fact of distrubution constitute any such warranty, and no responsibility is assumed by the USGS in connection therewith. 1 U.S. Geological Survey, Denver, CO 80225 Introduction................................................................................................................2 METHODS ......................................................................................................................5 Data Base Structure.....................................................................................5 Drill Stem Tests.........................................................................................................?
    [Show full text]
  • Glossary of Oilfield Production Terminology (GOT) (DEFINITIONS and ABBREVIATIONS)
    Glossary of Oilfield Production Terminology (GOT) (DEFINITIONS AND ABBREVIATIONS) FIRST EDITION, JANUARY 1, 1988 American Petroleum Institute 1220 L Street, Northwest Washington, DC 20005 Issued by AMERICAN PETROLEUM INSTITUTE Production Department FOR INFORMATION CONCERNING TECHNICAL CONTENTS OF THIS PUBLICATION CONTACT THE API PRODUCTION DEPARTMENT, 2535 ONE MAIN PLACE, DALLAS, TX 75202-3904 – (214) 748-3841. SEE BACK SIDE FOR INFORMATION CONCERNING HOW TO OBTAIN ADDITIONAL COPIES OF THIS PUBLICATION. Users of this publication should become familiar with its scope and content. This publication is intended to supplement rather than replace individual engineering judgment. OFFICIAL PUBLICATION REG U.S. PATENT OFFICE Copyright 1988 American Petroleum Institute TABLE OF CONTENTS Page FOREWORD 2 SECTION 1: LIST OF PUBLICATIONS 3 SECTION 2: ABBREVIATIONS AND DEFINITIONS 5 FOREWORD A. This publication is under the jurisdiction of the API Executive Committee on Standardization of Oilfield Equipment and Materials. B. The purpose of this publication is to provide standards writing groups access to previously used abbreviations and definitions. Standards writing groups are encouraged to adopt, when possible, the definitions found herein. Attention Users of this Publication: Portions of this publication have been changed from the previous edition. The location of changes has been marked with a bar in the margin. In some cases the changes are significant, while in other cases the changes reflect minor editorial adjustments. The bar notations in the margins are provided as an aid to users to identify those parts of this publication that have been changed from the previous edition, but API makes no warranty as to the accuracy of such bar notations.
    [Show full text]
  • Annual Information Form Year Ended December 31, 2017 March 23, 2018
    Annual Information Form Year Ended December 31, 2017 March 23, 2018 TABLE OF CONTENTS GENERAL MATTERS ................................................................................................................................ 1 Cautionary Note Regarding Forward-Looking Statements ..................................................................... 1 Reserves and Resources Advisory ........................................................................................................... 3 Currency .................................................................................................................................................. 5 Abbreviations ........................................................................................................................................... 5 CORPORATE STRUCTURE ...................................................................................................................... 5 GENERAL DEVELOPMENT OF THE BUSINESS ................................................................................... 6 Overview ................................................................................................................................................. 6 Corporate History and License Areas ...................................................................................................... 7 Corporate Social Responsibility ............................................................................................................ 11 Environmental and Safety Matters .......................................................................................................
    [Show full text]
  • Overpressure and Petroleum Generation and Accumulation in the Dongying Depression of the Bohaiwan Basin, China
    Geofluids (2001) 1, 257–271 Overpressure and petroleum generation and accumulation in the Dongying Depression of the Bohaiwan Basin, China X. XIE1,2,C.M.BETHKE2 ,S.LI1 ,X.LIU1 AND H. ZHENG3 1Faculty of Earth Resources, China University of Geosciences, Wuhan, China; 2Department of Geology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; 3Institute of Petroleum Exploration and Development, Shenli Oil Corporation, Dongying, Shandong, China ABSTRACT The occurrence of abnormally high formation pressures in the Dongying Depression of the Bohaiwan Basin, a prolific oil-producing province in China, is controlled by rapid sedimentation and the distribution of centres of active petro- leum generation. Abnormally high pressures, demonstrated by drill stem test (DST) and well log data, occur in the third and fourth members (Es3 and Es4) of the Eocene Shahejie Formation. Pressure gradients in these members com- monly fall in the range 0.012–0.016 MPa mÀ1, although gradients as high as 0.018 MPa mÀ1 have been encountered. The zone of strongest overpressuring coincides with the areas in the central basin where the principal lacustrine source rocks, which comprise types I and II kerogen and have a high organic carbon content (>2%, ranging to 7.3%), are actively generating petroleum at the present day. The magnitude of overpressuring is related not only to the burial depth of the source rocks, but to the types of kerogen they contain. In the central basin, the pressure gradient within submember Es32, which contains predominantly type II kerogen, falls in the range 0.013–0.014 MPa mÀ1. Larger gra- dients of 0.014–0.016 MPa mÀ1 occur in submember Es33 and member Es4, which contain mixed type I and II kero- gen.
    [Show full text]
  • Strengthening Deepwater for the Future Conference Program
    Conference Program 29–31 October 2019 SulAmérica Convention Center Rio de Janeiro, Brazil go.otcbrasil.org/offshoreinnovation Strengthening Deepwater for the Future OTC Brasil 2019 Theme A4 2019-09-27.indd 1 9/27/19 12:05 PM Conference Information OTC Organizations Sponsoring Organizations American Association of Petroleum Geologists American Institute of Chemical Engineers American Institute of Mining, Metallurgical, and Petroleum Engineers American Society of Civil Engineers American Society of Mechanical Engineers Institute of Electrical and Electronics Engineers, Oceanic Engineering Society CM Marine Technology Society Society of Exploration Geophysicists Society for Mining, Metallurgy, and Exploration SNAME Society of Petroleum Engineers The Minerals, Metals & Materials Society Regional Sponsoring Organization Brazilian Petroleum, Gas and Biofuels Institute Endorsing Organizations International Association of Petroleum Equipment Suppliers Association Drilling Contractors About the Offshore Technology Conference (OTC) About the Brazilian Petroleum, Gas and Biofuels Institute (IBP) OTC is where energy professionals meet to Founded in 1957, IBP is a private, non-profit organization focused on exchange ideas and opinions to advance scientific promoting the development of Brazilian oil, gas and biofuels industry in a and technical knowledge for offshore resources competitive, sustainable, ethical and socially responsible environment. Today, and environmental matters. Founded in 1969, IBP gathers more than 200 companies’ members, and it is recognized as an OTC’s flagship conference is held annually at NRG Park in Houston. important industry representative for its technical knowledge and for fostering the related to its biggest OTC has expanded technically and globally with the Arctic Technology issues. Organizer of the main oil and gas events in Brazil, such as Rio Oil & Gas and OTC Brasil, IBP Conference, OTC Brasil, and OTC Asia.
    [Show full text]
  • AOG V15-15 26July.Pdf
    Vol. 15 Issue 15 26 July 2012 AFRICA OILANDGAS BREAKING NEWS AND ANALYSIS FROM AFRICA Total prepares to hand out Moho Nord TLP The award of the initial tension leg platform contract for to be submitted in early August. Total’s US $8 Bn Moho Nord project off Congo Brazzaville is Bidders believe Total is looking for the cheapest price possi- expected any day now, with only two consortia left vying for ble as it has set the hull at only shipbuilding specification with the deal. no further specific requirements. The groups, led by old rivals While DSME, HHI and Samsung Samsung Heavy Industries (SHI) and Heavy are leading the way for the Hyundai Heavy Industries (HHI), are topsides, the hull specifications mean going to the wire after the FloaTEC Chinese yards are also involved here. and Daewoo Shipbuilding & Marine The full FPU contract is expected Engineering (DSME) groups were to be awarded around the same time eliminated. HHI had been expected to as the TLP contract and winning one be favourite for the deal because of its may provide some help in the contest long history with Total and its alliance for the second. Being awarded the with French firm Doris which worked FEED for the TLP is also likely to on the pre-FEED. However, AOG help with winning the full engin- understands that the Samsung bid ori- eering contract. HHI also won the ginally came in cheaper and HHI $410m contract for the FPU for the revised its offer after clarification original Moho project back in 2005.
    [Show full text]
  • Summary of Hydrologic Testing in Tertiary Limestone Aquifer, Tenneco Offshore Exploratory Well Atlantic OCS, Lease- Block 427 (Jacksonville NH 17-5)
    Summary of Hydrologic Testing in Tertiary Limestone Aquifer, Tenneco Offshore Exploratory Well Atlantic OCS, Lease- Block 427 (Jacksonville NH 17-5) United States Geological Survey Water-Supply Paper 2180 Summary of Hydrologic Testing in Tertiary Limestone Aquifer, Tenneco Offshore Exploratory Well Atlantic OCS, Lease- Block 427 (Jacksonville NH 17-5) By RICHARD H. JOHNSTON, PETER W. BUSH, RICHARD E. KRAUSE, JAMES A. MILLER, and CRAIG L. SPRINKLE GEOLOGICAL SURVEY WATER-SUPPLY PAPER 2180 UNITED STATES DEPARTMENT OF THE INTERIOR JAMES G. WATT, Secretary GEOLOGICAL SURVEY Dallas L. Peck, Director UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON: 1982 For sale by the Superintendent of Documents U. S. Government Printing Office Washington, DC 20402 Library of Congress Cataloging in Publication Data United States Geological Survey Summary of hydrologic testing in Tertiary limestone aquifer, Tenneco offshore exploratory well-Atlantic OCS, lease-block 427 (Jacksonville NH 17-5). (Geological Survey Water-Supply Paper 2180) Supt. of Docs. no. I 19.13:2180 1. Aquifers Atlantic coast (United States) 2. Saltwater encroachment Atlantic coast (United States) 3. Tenneco Inc. I. Johnston, Richard H. II. Title. III. Series: United States Geological Survey Water-Supply Paper 2180. GB1199.2U54 1981 553'.79'09759 80-606901 AACR1 CONTENTS Abstract 1 Introduction 1 Geologic setting 3 Drill-stem test 3 Procedures 3 Theoretical analysis 5 Results 6 Ground-water chemistry 8 Sampling procedures and analytical results 9 Discussion of analytical results 9 Regional implications offshore location of freshwater-saltwater interface and saltwater intrusion potential 10 Suggestions for conducting drill-stem tests to obtain hydrologic data in exploratory oil wells 12 Selected references 14 FIGURES 1.
    [Show full text]
  • July 2009 Martin Kennedy Permeability.Pdf
    Permeability in the Eye of the Beholder Martin Kennedy FESAus and SPE Lecture Tour 2009 Contents • Definitions • Fundamentals • Measurements • Estimation • Reconciliation Definitions COMPLEXITY Single phase Gas Single Phase Gas Reservoir Fluids ‘Ambient’ (Kair) Overburden/Reservoir Pressure(kinf) keff/krel Thin Section Directional Properties Probe kmax Core Plug k90 Whole Core SCALE WFT kv Well Test EWT Characteristics • Permeability • Porosity – Dimensions L2 – Dimensionless – 10-14 to 10+>7 mD – 0 to 0.5 – Tensor (Anisotropic) – Scalar (Isotropic) • Resistivity, acoustic • density, neutron properties capture – Dominated by largest – All pores contribute pores equally 1 D = 0.99 um2 Permeability and Fluid Flow A Q = Δp.a4 8Δl.μ = kAΔp Δl.μ k = a4 So… 8A Δl Porosity-Permeability (Capillary Bundles) Permeability-Porosity 10000 1000 100 1mm tubes D 0.1mm tubes k/m 0.01mm tubes 10 Permeability-Pore Size 10000 1 1000 0.1 0.000 0.050 0.100 0.150 0.200 100 D tube pore 3% porosity porosity k/m tube pore 30% por 10 1 0.1 0.00001 0.0001 0.001 pore diameter/m Fracture Permeability Q = Δp.h.w3 Flow through a slot A 12Δl.μ = kAΔp permeability equation Δl.μ w 3 h k = h.w 12A Δl kif = w2 Intrinsic permeability of a fracture 12 Permeability Controls in Real Rocks Field A Field B Realisations of SEM Images from the Plover sands in the Browse Basin. (2mmx2mm). Although coarser grained, the B sand has fewer paths that are more tortuous. Porosity = 0.18 Porosity = 0.16 Kh = 470mD Kh = 2 mD Pore network models constructed from the SEM images Measurement • Fluid has to move… – Laboratory – Test (including WFT) • Uncertainty and Errors.
    [Show full text]
  • Drill Stem Testing
    EXP_DST 20p_A4_new 06/04/2017 13:40 Page 1 Drill Stem Testing www.exprogroup.com EXP_DST 20p_A4_new 06/04/2017 13:40 Page 2 The accurate data we provide from every drill stem test allows our customers to plan the optimal exploitation of their reservoirs. More than successfully completed 500 DST jobs In more than 20 countries clients including For more than leading IOCs, NOCs 50 and independents 2 EXP_DST 20p_A4_new 06/04/2017 13:40 Page 3 Drill Stem Testing Expro offers the complete well test package, utilising some of the industry’s most reliable technologies. We have invested in our infrastructure and people to enhance our global capabilities in all the key exploration and appraisal markets where we operate. A drill stem test (DST) offers the fastest and safest method of evaluating the potential of a newly-discovered hydrocarbon-bearing formation. After the well has been drilled and cased, the first stage of a well test is to run a DST string in conjunction with a downhole data system with the option to include tubing conveyed sampling and tubing conveyed perforating systems. Expro’s DST Heritage Expro acquires Exal , a UK based downhole data and fluids sampling company Baker Hughes introduce the Expro DST services first universal cased hole 15k Expro acquires PowerWell established in all major DST tool string Geoservices acquires Services, incorporating geographic regions 15k DST tool assets Geoservices DST and Petrotech, from Baker Hughes performing specialised fluids along with design sampling and metering authority 2009 1993 1987 2013 2000 2006 1994 Expro establishes a DST Expro makes technology product/service line and purchase from Flight commits $50M for Refuelling Ltd to develop Expro acquires Tripoint associated R&D and growth cableless telemetry systems capital (CaTS™) under Expro – Inc., a North American TCP Wireless Well Solutions completions company based in Broussard LA.
    [Show full text]
  • [5 April, 2016] Declaration Premier Oil and Gas Services Limited
    MERRILL CORPORATION INEWLAN//29-MAR-16 09:28 DISK121:[16ZAQ1.16ZAQ16201]CS16201A.;15 mrll_0915.fmt Free: 60DM/0D Foot: 0D/ 0D VJ Seq: 1 Clr: 0 DISK024:[PAGER.PSTYLES]UNIVERSAL.BST;134 6 C Cs: 11645 RISC (UK) LIMITED [5 April, 2016] Declaration Premier Oil and Gas Services Limited (‘‘Premier’’) has commissioned RISC (UK) Ltd (‘‘RISC’’) to provide an independent valuation of the Reserves and a review of the Contingent and Prospective Resources of E.On E & P UK Limited and E.On E & P UK EU Limited (‘‘E.On’’) to form a Competent Person’s Report. The assessment of petroleum assets is subject to uncertainty because it involves judgments on many variables that cannot be precisely assessed, including reserves, future oil and gas production rates, the costs associated with producing these volumes, access to product markets, product prices and the potential impact of fiscal/regulatory changes. The statements and opinions attributable to RISC are given in good faith and in the belief that such statements are neither false nor misleading. In carrying out its tasks, RISC has considered and relied upon information obtained from a data room as well as information in the public domain. The information provided to RISC has included both hard copy and electronic information supplemented with discussions between RISC and key Premier staff. Whilst every effort has been made to verify data and resolve apparent inconsistencies, neither RISC nor its servants accept any liability for its accuracy, nor do we warrant that our enquiries have revealed all of the matters, which an extensive examination may disclose.
    [Show full text]
  • Directive PNG013: Well Data Submission Requirements
    Well Data Submission Requirements Directive PNG013 October 12, 2016 Version 1.0 Governing Legislation: Act: The Oil and Gas Conservation Act Regulation: The Oil and Gas Conservation Regulations, 2012 Order: 194/16 Well Data Submission Requirements Record of Change Version Date Author Description 1.0 October 12, 2016 Thomas Schmidt Initial Approved Version authorized by Minister’s Order 194-16 October 2016 Page 2 of 31 Well Data Submission Requirements Table of Contents 1 Introduction ...............................................................................................................................6 2 Definitions ..................................................................................................................................6 3 Legislation and Compliance .........................................................................................................8 3.1 Governing Legislation .................................................................................................................... 8 3.2 Compliance and Enforcement ....................................................................................................... 9 3.3 Licensees’ Responsibilities ............................................................................................................ 9 4 Reporting Structured Data and Submission of Supporting Documentation ................................. 10 4.1 IRIS Reporting Timelines.............................................................................................................
    [Show full text]