Utility Scale Solar Projects in California: an Initial Survey

Total Page:16

File Type:pdf, Size:1020Kb

Utility Scale Solar Projects in California: an Initial Survey UTILITY SCALE SOLAR PROJECTS IN CALIFORNIA: AN INITIAL SURVEY A Thesis presented to the Faculty of California Polytechnic State University, San Luis Obispo In Partial Fulfillment of the Requirements for the Degree Master of City and Regional Planning By Meaghan Mroz-Barrett June 2015 2015 Meaghan Mroz-Barrett ALL RIGHTS RESERVED ii COMMITTEE MEMBERSHIP TITLE: Utility Scale Solar Projects in California: An Initial Survey AUTHOR: Meaghan Mroz-Barrett DATE SUBMITTED: June 2015 COMMITTEE CHAIR: Adrienne Greve, Ph.D. Associate Professor of City and Regional Planning COMMITTEE MEMBER: Michael Boswell, Ph.D. Professor of City and Regional Planning COMMITTEE MEMBER: Chris Clark, J.D. Lecturer of City and Regional Planning iii ABSTRACT Utility Scale Solar Projects in California: An Initial Survey Meaghan Mroz-Barrett The lack of a comprehensive database for both concentrating and photovoltaic utility-scale solar power projects, those with a generation capacity of greater than 50 MW, hinders the ability of researchers and policy makers to examine the state of solar development in the state of California. This research project seeks to fill this gap in understanding by creating a database of proposed and developed projects in order to examine trends in proposals, process time, approvals, and construction starts. Existing literature was evaluated to determine potential factors for project success in approval and construction. Upon determination of these factors, the project database was developed through use of publicly available data and extensive Internet searches of planning documents, industry releases, and articles on existing and proposed projects. The completed database, containing eighty projects, was analyzed to provide an initial look at the overall state of solar project development in California. This report details these early findings as well as areas for further research. The analysis indicates that, while California has a high amount of proposed projects and generation capacity, many projects do not reach the end of the public approval process and fewer still enter construction and operation. iv TABLE OF CONTENTS LIST OF TABLES .............................................................................................. viii LIST OF FIGURES .............................................................................................. x CHAPTER 1: INTRODUCTION ......................................................................... 1 1.1 Background .......................................................................................... 1 1.2 Project Scope ....................................................................................... 3 CHAPTER 2: LITERATURE REVIEW ............................................................... 4 2.1 Status of Renewable Energy Development ........................................... 4 Current State of Renewable Energy Development ................................ 4 Potential for Renewable Energy Growth ............................................... 6 2.2 Status of Renewable Energy in California ............................................. 8 History .................................................................................................. 8 Potential for Renewable Energy Development in the State ................. 10 Trends in Solar Development in the State ........................................... 10 2.3 Solar Technologies ............................................................................. 11 Photovoltaic Systems ......................................................................... 14 Concentrating Solar Power ................................................................. 15 2.4 Landscape Impacts ............................................................................. 16 2.5 Public Acceptance of Utility Scale Solar Energy ................................. 17 2.6 Factors for Successful Development................................................... 19 Financial Factors ................................................................................ 20 Governmental Factors ........................................................................ 20 v Public Factors ..................................................................................... 21 2.7 Solar Power Plant Public Planning Approval Process ......................... 21 California Energy Commission Process .............................................. 22 County Process .................................................................................. 23 CHAPTER 3: METHODOLOGY ...................................................................... 27 3.1 Project Rational .................................................................................. 27 3.2 Complications to Creating Database ................................................... 29 3.3 Primary Sources ................................................................................. 30 3.4 Database Topics ................................................................................. 30 Base Topics ........................................................................................ 31 Location Topics................................................................................... 32 Technology Topics .............................................................................. 33 Jurisdiction Topics .............................................................................. 35 Process Topics ................................................................................... 36 Process Time Topics .......................................................................... 38 Construction Topics ............................................................................ 39 3.5 Criteria for Database Inclusion ............................................................ 39 CHAPTER 4: ANALYSIS ................................................................................. 41 4.1 Basic Project Numbers ....................................................................... 41 4.2 California Energy Commission Jurisdiction ......................................... 50 4.3 County Jurisdiction ............................................................................. 52 4.4 Trends Over Time ............................................................................... 56 vi CHAPTER 5: CONCLUSIONS ........................................................................ 63 5.1 General Findings ................................................................................ 63 5.2 Comparing the California Energy Commission and County Jurisdictions ........................................................................................ 64 5.3 Trends Over Time ............................................................................... 65 5.4 Further Research ................................................................................ 65 BIBLIOGRAPHY ................................................................................................ 67 APPENDICES APPENDIX A: DATABASE BASE TOPICS ..................................................... 82 APPENDIX B: DATABASE LOCATION TOPICS ............................................ 85 APPENDIX C: DATABASE TECHNOLOGY TOPICS ..................................... 88 APPENDIX D: DATABASE LAND USE TOPICS ............................................ 92 APPENDIX E: DATABASE JURISDICTION AND PROCESS TOPICS ........... 96 APPENDIX F: DATABASE PROCESS TIME TOPICS .................................. 100 APPENDIX G: DATABASE CONSTRUCTION TOPICS ............................... 104 vii LIST OF TABLES Table 2.1 California’s Renewable Energy Potential (CEC, 2011c) ..................... 11 Table 3.1 Rational for Base Topics .................................................................... 31 Table 3.2 Project Status Definitions ................................................................... 33 Table 3.3 Rational for Location Topics ............................................................... 33 Table 3.4 Rational for Technology Database Topics .......................................... 34 Table 3.5 Rational for Land Use Topics ............................................................. 35 Table 3.6 Rational for Jurisdiction Topics .......................................................... 36 Table 3.7 Rational for Process Topics ............................................................... 37 Table 3.8 Approval Status Definitions ................................................................ 38 Table 3.9 Rational for Process Time ................................................................. 39 Table 3.10 Rational for Construction Topics ...................................................... 40 Table 4.1 Project Numbers ................................................................................ 42 Table 4.2 Projects by Jurisdiction ...................................................................... 42 Table 4.3 Projects by Project Status .................................................................. 43 Table 4.4 Projects by Operational Status ........................................................... 44 Table 4.5 Projects by Approval Status ............................................................... 44 Table 4.6 Projects by Power Purchaser ............................................................. 45 Table 4.7 Site Acreage ...................................................................................... 46 Table 4.8 Total Site Acreage
Recommended publications
  • California Renewable Energy Projects in Development with Existing And
    A B C D E F G H I J California ¨¦§5 2 ¤£101 !( Crescent Renewable Energy Projects in Development City Yreka D e l N o r t e !( C o u n t y S i s k i y o u M o d o c with Existing and Approved Transmission Lines C o u n t y C o u n t y Alturas !( Including Desert Renewable Energy Conservation Plan Boundary ¤£395 and Preferred Development Focus Areas Updated 12/17/2015 3 Prepared by the California Energy Commission S h a s t a H u m b o l d t C o u n t y Renewable Energy Projects Eureka C o u n t y Land Ownerships Other Features !( L a s s e n In Development C o u n t y Biomass/ Solar PV Bureau of Land Management (! City Weaverville (! !( [[ !( Landfill Gas 1 - 20 MW )" [ [ Existing Substation* [ Department of Defense 5 (! Geothermal (! )" ¨¦§ 21 - 200 MW Bureau of Indian Affairs Approved Substation* 101 Redding !( ¤£ T r i n i t y !( (! Small Hydro C o u n t y (! 201 - 2,400 MW California State Park Road (! Wind State Owned Land County Boundary Susanville !( (! Solar Thermal Williamson Act NOTE: Williamson Act for Alpine, Del Norte, Inyo, Mono, Orange, San Benito, San Francisco and Yuba Counties not available Desert Renewable Energy Existing Transmission Line Conservation Plan Boundary Private Land 4 Red 345 - 500kV Bluff DRECP Conservation Lands !( 200 - 287kV Te h a m a Prohibited, Restricted & Limited Lands C o u n t y 110 - 161kV Mohave Ground Squirrel ¤£395 Category I Lands Key Population Center Energy Development Prohibited or Restricted by Policy Quincy !( Federal Energy Corridors P l u m a s Category II Lands Dry Lake C o u n t
    [Show full text]
  • 2015-SVTC-Solar-Scorecard.Pdf
    A PROJECT OF THE SILICON VALLEY TOXICS COALITION 2015 SOLAR SCORECARD ‘‘ www.solarscorecard.com ‘‘ SVTC’s Vision The Silicon Valley Toxics Coalition (SVTC) believes that we still have time to ensure that the PV sector is safe The PV industry’s rapid growth makes for the environment, workers, and communities. SVTC it critical that all solar companies envisions a safe and sustainable solar PV industry that: maintain the highest sustainability standards. 1) Takes responsibility for the environmental and health impacts of its products throughout their life- cycles, including adherence to a mandatory policy for ‘‘The Purpose responsible recycling. The Scorecard is a resource for consumers, institutional purchasers, investors, installers, and anyone who wants 2) Implements and monitors equitable environmental to purchase PV modules from responsible product and labor standards throughout product supply chains. stewards. The Scorecard reveals how companies perform on SVTC’s sustainability and social justice benchmarks 3) Pursues innovative approaches to reducing and to ensure that the PV manufacturers protect workers, work towards eliminating toxic chemicals in PV mod- communities, and the environment. The PV industry’s ule manufacturing. continued growth makes it critical to take action now to reduce the use of toxic chemicals, develop responsible For over three decades, SVTC has been a leader in recycling systems, and protect workers throughout glob- encouraging electronics manufacturers to take lifecycle al PV supply chains. Many PV companies want to pro- responsibility for their products. This includes protecting duce truly clean and green energy systems and are taking workers from toxic exposure and preventing hazardous steps to implement more sustainable practices.
    [Show full text]
  • Renewable Energy Risking Rights & Returns
    ` RENEWABLE ENERGY RISKING RIGHTS & RETURNS: An analysis of solar, bioenergy and geothermal companies’ human rights commitments SEPTEMBER 2018 CONTENTS CONTENTS Executive summary 1 Introduction 4 Analysis 6 1. Leaders and laggards 6 2. Public commitment to human rights 12 3. Commitment to community consultations 12 4. Access to remedy 14 5. Labour rights 16 6. Supply chain monitoring 17 Recommendations 19 Annex 21 Photo credit: Andreas Gücklhorn/Unsplash EXECUTIVE SUMMARY EXECUTIVE SUMMARY Key messages Renewable energy is key for our transition to a low-carbon economy, but companies’ human rights policies and practices are not yet strong enough to ensure this transition is both fast and fair. Evidence shows failure to respect human rights can result in project delays, legal procedures and costs for renewable energy companies, underlying the urgency to strengthen human rights due diligence. We cannot afford to slow the critical transition to renewable energy with these kinds of impediments. As renewable energy investments expand in countries with weak human rights pro- tections, investors must step up their engagement to ensure projects respect human rights. Renewable energy has experienced a fourfold bioenergy and geothermal industries, increase in investment in the past decade. echoing findings from ourprevious analysis of Starting at $88 billion in 2005, new wind and hydropower companies. investments hit $349 billion in 2015.1 This eye-catching rise in investments is a welcome Alongside the moral imperative, companies trend and reflects international commitments can also avoid significant legal risks, project to combatting climate change and providing delays and financial costs by introducing access to energy in the Paris climate rigorous human rights due diligence policies agreement and the Sustainable Development and processes.
    [Show full text]
  • Another Record Year for Energy Mergers and Acquisitions
    February 15, 2016 TO: CLIENTS AND OTHER FRIENDS OF THE FIRM 2015 – Another Record Year for Energy Mergers and Acquisitions Each year around this time we take the opportunity to review the transactions and other significant industry developments over the past year and offer our views on what they may mean for the coming year. Mergers and acquisitions activity in the energy industry during 2015 was, to Contributors: say the least, robust. The low interest rate environment and favorable James H. Barkley economic conditions that contributed to record deal volume in 2014 persisted Brooksany Barrowes into 2015. With the tailwind of economic conditions and interest rates, total Emil Barth transaction volume exceeded the all-time high watermark of $184 billion established in 2014 by almost $20 billion.1 By the end of 2015, approximately Megan Berge $202 billion of transactions had been announced. 2016 also is off to a fast start William M. Bumpers with roughly $20 billion of transactions announced in the first 6 weeks of the Michael Didriksen year. Jessica Fore More than half the 2015 activity involved pipelines, midstream companies and Jerrod Harrison MLPs. In that sector, deal volume maintained its robust activity, increasing Hillary H. Holmes slightly in 2015 to $133.3 billion as compared to 130.8 billion for 2014. Transactions among regulated electric utilities notched a similarly modest William S. Lamb increase, from roughly $30 billion in 2014 to almost $34 billion in 2015. Luckey McDowell Among LDCs, volume shot up from $3.4 billion to over $18 billion, driven by Steven R. Miles transactions involving AGL Resources and Piedmont Natural Gas Company.
    [Show full text]
  • Environmental and Economic Benefits of Building Solar in California Quality Careers — Cleaner Lives
    Environmental and Economic Benefits of Building Solar in California Quality Careers — Cleaner Lives DONALD VIAL CENTER ON EMPLOYMENT IN THE GREEN ECONOMY Institute for Research on Labor and Employment University of California, Berkeley November 10, 2014 By Peter Philips, Ph.D. Professor of Economics, University of Utah Visiting Scholar, University of California, Berkeley, Institute for Research on Labor and Employment Peter Philips | Donald Vial Center on Employment in the Green Economy | November 2014 1 2 Environmental and Economic Benefits of Building Solar in California: Quality Careers—Cleaner Lives Environmental and Economic Benefits of Building Solar in California Quality Careers — Cleaner Lives DONALD VIAL CENTER ON EMPLOYMENT IN THE GREEN ECONOMY Institute for Research on Labor and Employment University of California, Berkeley November 10, 2014 By Peter Philips, Ph.D. Professor of Economics, University of Utah Visiting Scholar, University of California, Berkeley, Institute for Research on Labor and Employment Peter Philips | Donald Vial Center on Employment in the Green Economy | November 2014 3 About the Author Peter Philips (B.A. Pomona College, M.A., Ph.D. Stanford University) is a Professor of Economics and former Chair of the Economics Department at the University of Utah. Philips is a leading economic expert on the U.S. construction labor market. He has published widely on the topic and has testified as an expert in the U.S. Court of Federal Claims, served as an expert for the U.S. Justice Department in litigation concerning the Davis-Bacon Act (the federal prevailing wage law), and presented testimony to state legislative committees in Ohio, Indiana, Kansas, Oklahoma, New Mexico, Utah, Kentucky, Connecticut, and California regarding the regulations of construction labor markets.
    [Show full text]
  • Appendix O, Existing Renewable Energy Projects Within DRECP
    Appendix O Existing Renewable Energy Projects Within DRECP Plan Area Draft DRECP and EIR/EIS APPENDIX O. EXISTING RENEWABLE ENERGY PROJECTS WITHIN PLAN AREA O EXISTING RENEWABLE ENERGY PROJECTS WITHIN PLAN AREA Background. The list of projects included in this file was developed to help define the number and capacity of existing renewable energy projects in the Plan Area. These projects are considered part of the affected environment in the EIR/EIS Volume III. A map indicating the locations of these projects is presented as Figure III.1-2. Existing projects include those that are either operational or under construction as of October 2013. Two tables are attached: Table O-1: Summary of Existing RE Projects (data summarized from Table O-2) Table O-2: Existing RE Projects (all projects) Table O-1 below presents the acreage of existing renewable energy projects in the DRECP Plan Area. For informational purposes, 57% (50,337 acres) of the land affected by existing renewable energy projects are located in the Preferred Alternative DFAs, as defined in Volume II. This represents less than 2.5% of the DFA acreage for the Preferred Alternative. Table O-1 Summary of Existing Renewable Energy (RE) Projects in the DRECP Plan Area Generation Capacity Acreage Percent of Percent Total Acres Total Total of Percent of RE Projects Acres of RE Project Total Total of Total in the RE Projects Acreage MW MW Acres Plan Area in DFAs* in DFAs* BLM-Administered 1,805 29% 28% 24,593 8,686 35% Public Lands – Total Wind 615 34% 61% 15,028 2,592 11% Solar 1,190 66% 39% 9,565 6,094 25% Private Lands and 4,445 71% 72% 64,463 41,634 65% Other Public Lands – Total Wind 2,015 45% 69% 44,643 23,222 36% Solar 2,330 53% 31% 19,265 18,419 29% Geothermal 100 2% 0.1% 545 545 0.1% Total RE Projects 6,250 100% 100% 89,046 50,337 57% *The DFA locations for the Preferred Alternative are used to define in this exercise.
    [Show full text]
  • Design and Experiment of a Sun-Powered Smart Building Envelope with Automatic Control
    Energy & Buildings 223 (2020) 110173 Contents lists available at ScienceDirect Energy & Buildings journal homepage: www.elsevier.com/locate/enb Design and experiment of a sun-powered smart building envelope with automatic control Qiliang Lin a, Yanchu Zhang a, Arnaud Van Mieghem b, Yi-Chung Chen c, Nanfang Yu d, Yuan Yang d, ⇑ Huiming Yin a, a Department of Civil Engineering and Engineering Mechanics, Columbia University, United States b Department of Electrical Engineering ESAT, Katholieke Universiteit Leuven, Belgium c Department of Electrical and Computer Engineering, Tennessee State University, United States d Department of Applied Physics and Applied Mathematics, Columbia University, United States article info abstract Article history: A novel sun-powered smart window blind (SPSWB) system has been designed and developed for the Received 26 February 2020 smart control of building envelopes to achieve the optimal internal comfort with minimum energy Revised 15 May 2020 expenditure. Its self-powered sensing, controlling, and actuation significantly simplify the installation Accepted 21 May 2020 and maintenance of the system. The energy is harvested by the attached thin-film photovoltaic cells, after Available online 29 May 2020 which it is voltage-regulated for the permanent storage into a rechargeable battery with 55% energy effi- ciency. The excessive heat absorbed by the solar cells is dissipated by a PVdF-HFP porous coating with Keywords: more than 9% temperature reduction. The smart control of the energy harvesting and the cooling is Smart building envelope achieved based on the blinds’ surface temperature by an Arduino-based sensing, controlling, and actuat- Window blinds Energy harvesting ing system, whose energy consumption is closely monitored.
    [Show full text]
  • DOE Solar Energy Technologies Program FY 2005 Annual
    DOE Solar Energy Technologies Program Cover Photos (clockwise from lower right): On August 8, 2005, President George W. Bush visited the National Solar Thermal Test Facility at Sandia National Laboratories as part of his signing of the Energy Bill. R.J. Montoya Photo National Renewable Energy Laboratory researchers use a computer-controlled data acquisition system at the laboratory’s Outdoor Test Facility to characterize the performance and reliability of PV cells and modules. Jim Yost, PIX14094 A Cornell University student cleans the solar-powered rooftop of his team’s entry in preparation for the 2005 Solar Decathlon competition in Washington, D.C. Stefano Paltera/Solar Decathlon Global Solar Energy, a member of the Thin Film PV Partnership, produces PV material by depositing CIGS (copper indium gallium diselenide) on a lightweight, flexible polymide substrate in roll form. Global Solar Energy, PIX13419 The DOE Solar Energy Technologies Program Raymond A. Sutula, Manager, DOE Solar Energy Technologies Program The Solar Energy Technologies Program, within the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE), is responsible for developing solar energy technologies that can convert sunlight to useful energy and make that energy available to satisfy a significant portion of our nation's energy needs in a cost-effective way. The Solar Program supports research and development that addresses a wide range of applications, including on- site electricity generation, thermal energy for space heating and hot water, and large-scale power production. This is a great time to be involved with solar energy. Photovoltaic (PV) systems are being installed in the United States and around the world in unprecedented quantities.
    [Show full text]
  • Regional Assessment for Desert Stateline
    REGIONAL ASSESSMENT STATELINE SOLAR FARM PROJECT BLM CASE FILE NUMBER CACA-48669 Prepared for: Prepared by: Desert Stateline, LLC NatureServe 525 Market Street 4600 North Fairfax Drive 15th Floor 7th Floor San Francisco, California 94105 Arlington, Virginia 22203 Date: 27 July 2012 Cover photo credit: Geoffrey Hammerson NatureServe Project Team Mary Harkness Patrick Crist Conservation Planner/Project Manager Director, Conservation Planning and Ecosystem Management Ian Varley Jacquie Bow Conservation Planner GIS Analyst Jon Hak Geoffrey Hammerson Ecologist/Senior GIS Analyst Research Zoologist Suzanne Young Conservation Biologist and Data Analyst Suggested citation: NatureServe. 2012. Regional assessment: Stateline solar farm project. Technical report prepared for Desert Stateline, LLC. NatureServe, Arlington, VA. Regional Assessment: Stateline Solar Farm Project Page 2 of 94 1 Introduction .......................................................................................................................................... 8 1.1 Purpose and overview of assessment ........................................................................................... 8 1.2 Assessment approach ................................................................................................................... 8 1.3 Assessment areas and context ...................................................................................................... 8 1.3.1 Ivanpah Valley Watershed ...................................................................................................
    [Show full text]
  • Habitat Connectivity Planning for Selected Focal Species in the Carrizo Plain
    Habitat Connectivity Planning for Selected Focal Species in the Carrizo Plain BLM Chuck Graham Chuck Graham Agena Garnett-Ruskovich Advisory Panel Members: Paul Beier, Ph.D., Northern Arizona University Patrick Huber, Ph.D., University of California Davis Steve Kohlmann, Ph.D., Tierra Resource Management Bob Stafford, California Department of Fish and Game Brian Cypher, Ph.D., University of Stanislaus Endangered Species Recovery Program also served as an Advisory Panel Member when this project was under the California Energy Commission’s jurisdiction. Preferred Citation: Penrod, K., W. Spencer, E. Rubin, and C. Paulman. April 2010. Habitat Connectivity Planning for Selected Focal Species in the Carrizo Plain. Prepared for County of San Luis Obsipo by SC Wildlands, http://www.scwildlands.org Habitat Connectivity Planning for Selected Focal Species in the Carrizo Plain Table of Contents 1. Executive Summary 2. Introduction 2.1. Background and Project Need 3. Project Setting 3.1. The Study Area 3.1.1. Location 3.1.2. Physical Features 3.1.3. Biological Features 3.1.4. Human Features 3.2. The Proposed Energy Projects 3.2.1. Topaz Solar Farm 3.2.2. SunPower – California Valley Solar Ranch 4. The Focal Species 4.1. Pronghorn antelope 4.2. Tule elk 4.3. San Joaquin kit fox 5. Conservation Planning Approach 5.1. Modeling Baseline Conditions Of Habitat Suitability And Connectivity For Each Focal Species 5.1.1. Compilation And Refinement Of Digital Data Layers 5.1.2. Modeling Habitat Suitability 5.1.3. Modeling Landscape Permeability 5.1.4. Species-Specific Model Input Data And Conceptual Basis For Model Development 5.1.4.1.
    [Show full text]
  • Solar Is Driving a Global Shift in Electricity Markets
    SOLAR IS DRIVING A GLOBAL SHIFT IN ELECTRICITY MARKETS Rapid Cost Deflation and Broad Gains in Scale May 2018 Tim Buckley, Director of Energy Finance Studies, Australasia ([email protected]) and Kashish Shah, Research Associate ([email protected]) Table of Contents Executive Summary ......................................................................................................... 2 1. World’s Largest Operational Utility-Scale Solar Projects ........................................... 4 1.1 World’s Largest Utility-Scale Solar Projects Under Construction ............................ 8 1.2 India’s Largest Utility-Scale Solar Projects Under Development .......................... 13 2. World’s Largest Concentrated Solar Power Projects ............................................... 18 3. Floating Solar Projects ................................................................................................ 23 4. Rooftop Solar Projects ................................................................................................ 27 5. Solar PV With Storage ................................................................................................. 31 6. Corporate PPAs .......................................................................................................... 39 7. Top Renewable Energy Utilities ................................................................................. 44 8. Top Solar Module Manufacturers .............................................................................. 49 Conclusion .....................................................................................................................
    [Show full text]
  • Ab307 Application Summary Proposed Project Applicant App
    AB307 APPLICATION SUMMARY PROPOSED PROJECT APPLICANT APP. RCVD. TYPE COUNTY SIZE Bordertown to California 120kV NV Energy 6/27/2012 Powerline Washoe 120 kV North Elko Pipeline Prospector Pipeline Comp. 7/11/2012 Nat Gas Pipeline Elko, Eureka Wild Rose ORNI 47 7/17/2012 Geothermal Mineral 30 MW New York Canyon New York Canyon LLC 8/14/2012 Geothermal Persh., Church. 70 MW Mountain View Solar Energy Mountain View Solar LLC 9/24/2012 Solar Clark 20 MW Mahacek to Mt. Hope 230kV Eureka Moly LLC 10/23/2012 Powerline Eureka 230 kV Moapa Solar Energy Center Moapa Solar LLC 11/5/2012 Powerline Clark 230 kV, 500 kV Pahrump Valley Solar Project Abengoa Solar Inc. 11/14/2012 Solar Clark, Nye 225 MW Copper Rays Solar Farm Element Power Solar Dev. LLC 11/26/2012 Solar Nye 180 MW Boulder City Solar Project Techren Solar 1/2/2013 Solar Clark 300 MW Townsite Solar Project KOWEPO America LLC/Skylar Res. LP 1/15/2013 Solar Clark 180 MW Copper Mountain Solar 3 CMS-3 LLC (Sempra Energy) 1/16/2013 Solar Clark 250 MW Crescent Peak Wind Crescent Peak Renewables LLC 1/23/2013 Wind Clark 500 MW Silver State Solar South Silver State Solar Power South LLC 1/23/2013 Solar Clark 350 MW Toquop Power Project Toquop Power Holdings LLC 1/23/2013 Fossil Fuel Lincoln 1,100 MW Hidden Hills 230kV Transmission Valley Electric Transmission Assoc. LLC 1/28/2013 Powerline Nye, Clark 230 kV Boulder Solar Project Boulder Solar Power LLC 1/25/2013 Solar Clark 350 MW ARES Regulation Energy Mgmt.
    [Show full text]