Max-Planck-Gesellschaft Japan Academic Network in Europe (JANET) Forum 2017

Total Page:16

File Type:pdf, Size:1020Kb

Max-Planck-Gesellschaft Japan Academic Network in Europe (JANET) Forum 2017 Max-Planck-Gesellschaft Japan Academic Network in Europe (JANET) Forum 2017 Introduction to Max Planck Society: Mission and philosophy and collaboration with Japan M A X - P L A N C K - G E S E L L S C H A F T | JANET Forum 2017 Max-Planck-Gesellschaft: Facts and Figures • Non-profit organization under private law in the form of a (private) registered association • Established in 1948 (successor of Kaiser Wilhelm Society, founded in 1911) • President: Professor Dr Martin STRATMANN Martin Stratmann STAFF SCIENTISTS BUDGET Total 22,995* 6,488 Staff Scientists* EUR 2,1 bn p.a.* including additional funds (plus 3,614 grantees and visiting scientists) *as per 31 Dec 2016 M A X - P L A N C K - G E S E L L S C H A F T | JANET Forum 2017 | page 1 Max Planck Society in Germany Universities research basic research & education “theoria cum praxi” Universities of Applied Science applied research applied large research research infrastructures & education MM A AX X- P- PL LA AN NC CK K- G- GE ES SE EL LL LS SC CH HA AF FT T | |International JANET Forum Relations 2017 | |page page 2 3 Mission and Guiding Principles • Basic research at cutting-edge, strictly curiosity-driven and quality-oriented • Scientific autonomy: “scientists decide on science” • Harnack principle – “promoting people, not programs” • Flexible, dynamic, interdisciplinary research units: Max Planck Institutes “Insight must with precede application.” • Long-term high-trust system significant institutional core funding for Max Planck, 1858 - 1947 “high-risk” projects Founder of quantum theory • Stringent quality assurance (informed peer Nobel Prize 1918 review) M A X - P L A N C K - G E S E L L S C H A F T | JANET Forum 2017 | page 3 18 Nobel Prize Laureates since 1948 2014 - Nobel Prize for Chemistry 1988 - Nobel Prize for Chemistry Stefan W. Hell Johann Deisenhofer 2007 - Nobel Prize for Chemistry 1986 - Nobel Prize in Physics Gerhard Ertl Ernst Ruska 2005 - Nobel Prize in Physics 1985 - Nobel Prize in Physics Theodor Hänsch Klaus von Klitzing 1995 - Nobel Prize in Medicine 1984 - Nobel Prize in Medicine Christiane Nüsslein-Volhard Georges Köhler 1995 - Nobel Prize for Chemistry 1973 - Nobel Prize in Medicine Paul Crutzen J. Konrad Lorenz 1991 - Nobel Prize in Medicine 1967 - Nobel Prize for Chemistry Erwin Neher Manfred Eigen 1991 - Nobel Prize in Medicine 1964 - Nobel Prize in Medicine Bert Sakmann Feodor Lynen 1988 - Nobel Prize for Chemistry 1963 - Nobel Prize for Chemistry Robert Huber Karl Ziegler 1988 - Nobel Prize for Chemistry 1954 - Nobel Prize in Physics Hartmut Michel Walter Bothe M A X - P L A N C K - G E S E L L S C H A F T | JANET Forum 2017 | page 4 Scientific Sections Biology and Medicine Chemistry, Physics, and Humanities and Social Section Technology Section Sciences Section 40 %* 50 %* 10 %* *estimated proportion of total budget M A X - P L A N C K - G E S E L L S C H A F T | JANET Forum 2017 | page 5 Sites of Max Planck Research Institutes and Associated Institutes 84 MAX PLANCK INSTITUTES* *as per Jan 2017 MAX PLANCK INSTITUTES ABROAD USA, FLORIDA Max Planck Florida Institute for Neuroscience, Jupiter THE NETHERLANDS MPI for Psycholinguistics, Nijmegen LUXEMBOURG MPI Luxembourg for International, European and Regulatory Procedural Law, Luxembourg ITALY Bibliotheca Hertziana, Rome Art History Institute, Florence M A X - P L A N C K - G E S E L L S C H A F T | JANET Forum 2017 | page 6 Decentralized Management Each Max Planck Institute … …manages its own budget …recruits personnel …acquires third-party funds (research grants) …elects research topics …identifies cooperation partners in Germany and worldwide …shapes its research structure (projects/departments) M A X - P L A N C K - G E S E L L S C H A F T | JANET Forum 2017 | page 7 International Scientific Staff International share of staff Directors 1 304 • From outside Germany 109 35.9% Max Planck Research Group Leaders 1 125 (without Senior Research Scientists W2) 50 40.0% • From outside Germany Postdocs 1 2,693 • From outside Germany 1,938 72.0% Visiting scientists 1 1,765 • From outside Germany 955 54.1% PhD students 1 3,339 ¹ As per 31 Dec 2016 • From outside Germany 1,829 54.8% M A X - P L A N C K - G E S E L L S C H A F T | JANET Forum 2017 | page 8 Scientific Cooperation with Japan . MPG-RIKEN Agreement since 1984 . 175 visiting scientists from Japan (2016) . 4 Max Planck Directors from Japan − MPI for Physics: Prof. Masahiro Teshima − MPI for Neurocience (Florida): Prof. Ryohei Yasuda − MPI for Astrophysics: Prof. Eiichiro Komatsu − MPI for Solid State Research: Prof. Hidenori Takagi . 122 collaborative projects (2016) − 67 Chemistry, Physics and Technology Section − 28 Biology and Medicine Section − 27 Human Sciences Section . RIKEN – Max Planck Joint Research Center for Systems Chemical Biology (since 2011) . Max Planck – The University of Tokyo Center for Integrative Inflammology (since January 2014) . Max Planck – UBC – UTokyo Centre for Quantum Materials (since April 2017) M A X - P L A N C K - G E S E L L S C H A F T | JANET Forum 2017 | page 9 Max Planck Centers in Japan Collaboration with outstanding research partners Platforms for a Joint training of varied means of junior researchers collaboration • Exchange of researchers, International Max Planck Research Schools, Postdocs, Research Groups, Joint use of Workshops, Summer Schools infrastructure • Legally non-independent • Quality control through scientific advisory board • Limited duration of five years (+ one-time extension possible) M A X - P L A N C K - G E S E L L S C H A F T | JANET Forum 2017 | page 10 Opportunities for doctoral students from Japan • 66 IMPRS (> 3,100 PhD students) • Structured PhD student training in co- operation with universities • 78 Max Planck Institutes involved • 38 universities in Germany involved • About 55% of PhD students are from outside Germany > No tuition fee < (As per 01/2017) © Franz Luthe M A X - P L A N C K - G E S E L L S C H A F T | JANET Forum 2017 | page 11 Thank you for your attention! Dr. Sebastian Höpfner Scientific Officer, Asia cooperation Division for International Relations Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V Tel.: +49-89-2108-1365 E-mail: [email protected].
Recommended publications
  • 書 名 等 発行年 出版社 受賞年 備考 N1 Ueber Das Zustandekommen Der
    書 名 等 発行年 出版社 受賞年 備考 Ueber das Zustandekommen der Diphtherie-immunitat und der Tetanus-Immunitat bei thieren / Emil Adolf N1 1890 Georg thieme 1901 von Behring N2 Diphtherie und tetanus immunitaet / Emil Adolf von Behring und Kitasato 19-- [Akitomo Matsuki] 1901 Malarial fever its cause, prevention and treatment containing full details for the use of travellers, University press of N3 1902 1902 sportsmen, soldiers, and residents in malarious places / by Ronald Ross liverpool Ueber die Anwendung von concentrirten chemischen Lichtstrahlen in der Medicin / von Prof. Dr. Niels N4 1899 F.C.W.Vogel 1903 Ryberg Finsen Mit 4 Abbildungen und 2 Tafeln Twenty-five years of objective study of the higher nervous activity (behaviour) of animals / Ivan N5 Petrovitch Pavlov ; translated and edited by W. Horsley Gantt ; with the collaboration of G. Volborth ; and c1928 International Publishing 1904 an introduction by Walter B. Cannon Conditioned reflexes : an investigation of the physiological activity of the cerebral cortex / by Ivan Oxford University N6 1927 1904 Petrovitch Pavlov ; translated and edited by G.V. Anrep Press N7 Die Ätiologie und die Bekämpfung der Tuberkulose / Robert Koch ; eingeleitet von M. Kirchner 1912 J.A.Barth 1905 N8 Neue Darstellung vom histologischen Bau des Centralnervensystems / von Santiago Ramón y Cajal 1893 Veit 1906 Traité des fiévres palustres : avec la description des microbes du paludisme / par Charles Louis Alphonse N9 1884 Octave Doin 1907 Laveran N10 Embryologie des Scorpions / von Ilya Ilyich Mechnikov 1870 Wilhelm Engelmann 1908 Immunität bei Infektionskrankheiten / Ilya Ilyich Mechnikov ; einzig autorisierte übersetzung von Julius N11 1902 Gustav Fischer 1908 Meyer Die experimentelle Chemotherapie der Spirillosen : Syphilis, Rückfallfieber, Hühnerspirillose, Frambösie / N12 1910 J.Springer 1908 von Paul Ehrlich und S.
    [Show full text]
  • Tomaso A. Poggio
    BK-SFN-NEUROSCIENCE-131211-09_Poggio.indd 362 16/04/14 5:25 PM Tomaso A. Poggio BORN: Genova, Italy September 11, 1947 EDUCATION: University of Genoa, PhD in Physics, Summa cum laude (1971) APPOINTMENTS: Wissenschaftlicher Assistant, Max Planck Institut für Biologische Kybernetik, Tubingen, Germany (1978) Associate Professor (with tenure), Department of Psychology and Artificial Intelligence Laboratory, Massachusetts Institute of Technology (1981) Uncas and Helen Whitaker Chair, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology (1988) Eugene McDermott Professor, Department of Brain and Cognitive Sciences, Computer Science and Artificial Intelligence Laboratory and McGovern Institute for Brain Research, Massachusetts Institute of Technology (2002) HONORS AND AWARDS (SELECTED): Otto-Hahn-Medaille of the Max Planck Society (1979) Member, Neurosciences Research Program (1979) Columbus Prize of the Istituto Internazionale delle Comunicazioni Genoa, Italy (1982) Corporate Fellow, Thinking Machines Corporation (1984) Founding Fellow, American Association of Artificial Intelligence (1990) Fellow, American Academy of Arts and Sciences (1997) Foreign Member, Istituto Lombardo dell’Accademia di Scienze e Lettere (1998) Laurea Honoris Causa in Ingegneria Informatica, Bicentenario dell’Invezione della Pila, Pavia, Italia, March (2000) Gabor Award, International Neural Network Society (2003) Okawa Prize (2009) Fellow, American Association for the Advancement of Science (2009) Tomaso Poggio began his career in collaboration
    [Show full text]
  • Nobel Prizes
    W W de Herder Heroes in endocrinology: 1–11 3:R94 Review Nobel Prizes Open Access Heroes in endocrinology: Nobel Prizes Correspondence Wouter W de Herder should be addressed to W W de Herder Section of Endocrinology, Department of Internal Medicine, Erasmus MC, ’s Gravendijkwal 230, 3015 CE Rotterdam, Email The Netherlands [email protected] Abstract The Nobel Prize in Physiology or Medicine was first awarded in 1901. Since then, the Nobel Key Words Prizes in Physiology or Medicine, Chemistry and Physics have been awarded to at least 33 " diabetes distinguished researchers who were directly or indirectly involved in research into the field " pituitary of endocrinology. This paper reflects on the life histories, careers and achievements of 11 of " thyroid them: Frederick G Banting, Roger Guillemin, Philip S Hench, Bernardo A Houssay, Edward " adrenal C Kendall, E Theodor Kocher, John J R Macleod, Tadeus Reichstein, Andrew V Schally, Earl " neuroendocrinology W Sutherland, Jr and Rosalyn Yalow. All were eminent scientists, distinguished lecturers and winners of many prizes and awards. Endocrine Connections (2014) 3, R94–R104 Introduction Endocrine Connections Among all the prizes awarded for life achievements in In 1901, the first prize was awarded to the German medical research, the Nobel Prize in Physiology or physiologist Emil A von Behring (3, 4). This award heralded Medicine is considered the most prestigious. the first recognition of extraordinary advances in medicine The Swedish chemist and engineer, Alfred Bernhard that has become the legacy of Nobel’s prescient idea to Nobel (1833–1896), is well known as the inventor of recognise global excellence.
    [Show full text]
  • Balcomk41251.Pdf (558.9Kb)
    Copyright by Karen Suzanne Balcom 2005 The Dissertation Committee for Karen Suzanne Balcom Certifies that this is the approved version of the following dissertation: Discovery and Information Use Patterns of Nobel Laureates in Physiology or Medicine Committee: E. Glynn Harmon, Supervisor Julie Hallmark Billie Grace Herring James D. Legler Brooke E. Sheldon Discovery and Information Use Patterns of Nobel Laureates in Physiology or Medicine by Karen Suzanne Balcom, B.A., M.L.S. Dissertation Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy The University of Texas at Austin August, 2005 Dedication I dedicate this dissertation to my first teachers: my father, George Sheldon Balcom, who passed away before this task was begun, and to my mother, Marian Dyer Balcom, who passed away before it was completed. I also dedicate it to my dissertation committee members: Drs. Billie Grace Herring, Brooke Sheldon, Julie Hallmark and to my supervisor, Dr. Glynn Harmon. They were all teachers, mentors, and friends who lifted me up when I was down. Acknowledgements I would first like to thank my committee: Julie Hallmark, Billie Grace Herring, Jim Legler, M.D., Brooke E. Sheldon, and Glynn Harmon for their encouragement, patience and support during the nine years that this investigation was a work in progress. I could not have had a better committee. They are my enduring friends and I hope I prove worthy of the faith they have always showed in me. I am grateful to Dr.
    [Show full text]
  • 365-369 POSTERS Sunda
    365-369 POSTERS Sunda as a cold-sensitive allele in vivo. Our earlier analyses have the relaxed fiber at an ionic strength of 30 mM. Despite differences revealed that: (1) G680V exhibits reduced basal and actin-activated in magnitude, in all cases the frequency dependent stiffness ATPase activities; (2) it cannot move actin filaments and inhibits showed similar characteristics. The stiffness of the relaxed fiber at movement by wild type myosin in mixed assays; (3) it cosediments low ionic strength and the rigor stiffness after unloading at 30 mM with actin even in the presence of ATP, but not in the presence of closely coincided. No indication of attachment and/or detachment ATPyS; (4) its defects in vivo are suppressed by combining with a of cross bridges was observed in the spectrum of stiffness of the second mutation that accelerates Pi release. Here we report that relaxed fiber (in agreement with Bagni et al, G680V SI was unable to quench fluorescence of pyrene-actin in J.Electromyogr.Kinesiol.,1999). The present results indicate that the presence of ATP. In contrast, it quenched the pyrene the remainder of stiffness of the unloaded rigor is carried by fluorescence in the presence of ADP, indicating that an extended unloaded cross bridges. ADP-bound state cannot account for its excessive actin binding in the presence of ATP. Taken together, it was suggested that the Muscle Regulatory Proteins ATPase cycle of acto-G680V is blocked in a strongly bound 1 A.S .ADP.Pi state, or the "A state" of the 3G model (Geeves et al., 368-Pos Board # B224 1984).
    [Show full text]
  • Guidelines and Information for Feodor Lynen Research Fellows Contents Page
    Guidelines and Information for Feodor Lynen Research Fellows Contents Page PREFACE 4 A. FEODOR LYNEN RESEARCH FELLOWSHIP GUIDELINES 6 A.1. The Feodor Lynen Research Fellowship ....................................... 7 A.1.1. Acceptance ............................................................................. 7 A.1.2. Commencement ...................................................................... 8 A.1.3. Duration .................................................................................. 8 A.1.4. Extension ................................................................................ 8 A.1.5. Calculation of monthly fellowship grant ................................... 9 A.1.5.1. Base fellowship ................................................................. 9 A.1.5.2. Foreign allowance ............................................................. 9 A.1.5.3. Family allowance for marital partners .............................. 11 A.1.5.4. Family allowance for children .......................................... 11 A.1.5.4.1. Child allowance ......................................................... 11 A.1.5.4.2. Substitutional payment for child benefit according to the German Income Tax Act (Einkommensteuergesetz, EStG) . 12 A.1.5.5. Allowance for direct research costs ................................. 13 A.1.6. Host contribution ................................................................... 13 A.1.7. Additional earnings ................................................................ 13 A.1.8. Change of circumstances
    [Show full text]
  • The 2009 Lindau Nobel Laureate Meeting: Erwin Neher, Physiology Or Medicine 1991
    Journal of Visualized Experiments www.jove.com Video Article The 2009 Lindau Nobel Laureate Meeting: Erwin Neher, Physiology or Medicine 1991 Erwin Neher1 1 URL: http://www.jove.com/video/1563 DOI: doi:10.3791/1563 Keywords: Cellular Biology, Issue 33, electrophysiology, Nobel Prize, Nobel Laureate Meeting, Physiology or Medicine, 1991, single ion channels, patch- clamp Date Published: 11/11/2009 Citation: Neher, E. The 2009 Lindau Nobel Laureate Meeting: Erwin Neher, Physiology or Medicine 1991. J. Vis. Exp. (33), e1563, doi:10.3791/1563 (2009). Abstract Erwin Neher, born in 1944 in Landsberg Germany, shared the 1991 Nobel Prize in Physiology or Medicine with Bert Sakmann for their pioneering work measuring the activity of single ion channels in cells. Their techniques have been developed into an array of cell recording methods, including cell-attached and whole cell recording patch clamp recordings. Inspired in part by Hodgkin and Huxley s work modeling action potentials in the squid giant axon, Neher pursued a career in biophysics, a field that had not yet been fully established. Following completion of his Ph.D. and post- doctoral work under H.D. Lux at the Max Planck Institute f r Psychiatrie, he joined a physical chemistry lab to learn how to perform single channel recordings in artificial membranes. Wishing to perform these types of recordings in living cells, Neher, with his friend and colleague Bert Sakmann, modified existing recording methods in hopes of significantly reducing background noise. Instead of puncturing the cell membrane, they placed the pipette onto the surface of the cell. This isolated a small patch of membrane, which they hoped would decrease the size of the signal source and increase impedance.
    [Show full text]
  • Andrew Fielding Huxley College (1925–30) and Westminster Schools Command and Later for the Admiralty (1917–2012) (1930–5), Where He Was Inspired by J
    J Physiol 590.15 (2012) pp 3415–3420 3415 IN MEMORIAM Andrew Fielding Huxley College (1925–30) and Westminster Schools Command and later for the Admiralty (1917–2012) (1930–5), where he was inspired by J. F. for the rest of the war, developing radar Rudwick’s teaching to turn from Classics control of antiaircraft guns and naval Christopher L.-H. Huang to physical sciences. He chose to apply to gunnery. This was after a brief interlude Physiological Laboratory, University of Trinity College, Cambridge, through his working as an experimental subject for Cambridge, Downing Street, Cambridge family’s friendship with George Trevelyan, Robert McCance and Elsie Widdowson, CB2 3EG, UK where he won a major Entrance Scholarship who had been making physiological analyses Email: [email protected] (1935). His interests eventually turned to of calorific values of food before the war, Physiology through his contact with Delisle and were then conducting studies on food If I have seen further, it is by standing Burns, and then with E. D. Adrian, Jack rationing. The wartime research sharpened on the shoulders of giants.(Isaac Roughton, William Rushton, Alan Hodgkin his already considerable mathematical and Newton, in a letter to Robert Hooke and Glenn Millikan amongst others. To this engineering skills: this interest and aptitude (1676). From The correspondence of end his studies proceeded along a medical in engineering dated from his receiving, as Isaac Newton,vol.1,1661–1675,ed. direction pursuing Anatomy in 1937–8 and a gift from his parents as a young boy, Turnbull, HW, 1959, p. 416.) Physiology in Part II of the Natural Sciences a lathe which he continued to use in the Tripos in Cambridge in 1938–39.
    [Show full text]
  • Federation Member Society Nobel Laureates
    FEDERATION MEMBER SOCIETY NOBEL LAUREATES For achievements in Chemistry, Physiology/Medicine, and PHysics. Award Winners announced annually in October. Awards presented on December 10th, the anniversary of Nobel’s death. (-H represents Honorary member, -R represents Retired member) # YEAR AWARD NAME AND SOCIETY DOB DECEASED 1 1904 PM Ivan Petrovich Pavlov (APS-H) 09/14/1849 02/27/1936 for work on the physiology of digestion, through which knowledge on vital aspects of the subject has been transformed and enlarged. 2 1912 PM Alexis Carrel (APS/ASIP) 06/28/1873 01/05/1944 for work on vascular suture and the transplantation of blood vessels and organs 3 1919 PM Jules Bordet (AAI-H) 06/13/1870 04/06/1961 for discoveries relating to immunity 4 1920 PM August Krogh (APS-H) 11/15/1874 09/13/1949 (Schack August Steenberger Krogh) for discovery of the capillary motor regulating mechanism 5 1922 PM A. V. Hill (APS-H) 09/26/1886 06/03/1977 Sir Archibald Vivial Hill for discovery relating to the production of heat in the muscle 6 1922 PM Otto Meyerhof (ASBMB) 04/12/1884 10/07/1951 (Otto Fritz Meyerhof) for discovery of the fixed relationship between the consumption of oxygen and the metabolism of lactic acid in the muscle 7 1923 PM Frederick Grant Banting (ASPET) 11/14/1891 02/21/1941 for the discovery of insulin 8 1923 PM John J.R. Macleod (APS) 09/08/1876 03/16/1935 (John James Richard Macleod) for the discovery of insulin 9 1926 C Theodor Svedberg (ASBMB-H) 08/30/1884 02/26/1971 for work on disperse systems 10 1930 PM Karl Landsteiner (ASIP/AAI) 06/14/1868 06/26/1943 for discovery of human blood groups 11 1931 PM Otto Heinrich Warburg (ASBMB-H) 10/08/1883 08/03/1970 for discovery of the nature and mode of action of the respiratory enzyme 12 1932 PM Lord Edgar D.
    [Show full text]
  • Gerald Edelman - Wikipedia, the Free Encyclopedia
    Gerald Edelman - Wikipedia, the free encyclopedia Create account Log in Article Talk Read Edit View history Gerald Edelman From Wikipedia, the free encyclopedia Main page Gerald Maurice Edelman (born July 1, 1929) is an Contents American biologist who shared the 1972 Nobel Prize in Gerald Maurice Edelman Featured content Physiology or Medicine for work with Rodney Robert Born July 1, 1929 (age 83) Current events Porter on the immune system.[1] Edelman's Nobel Prize- Ozone Park, Queens, New York Nationality Random article winning research concerned discovery of the structure of American [2] Fields Donate to Wikipedia antibody molecules. In interviews, he has said that the immunology; neuroscience way the components of the immune system evolve over Alma Ursinus College, University of Interaction the life of the individual is analogous to the way the mater Pennsylvania School of Medicine Help components of the brain evolve in a lifetime. There is a Known for immune system About Wikipedia continuity in this way between his work on the immune system, for which he won the Nobel Prize, and his later Notable Nobel Prize in Physiology or Community portal work in neuroscience and in philosophy of mind. awards Medicine in 1972 Recent changes Contact Wikipedia Contents [hide] Toolbox 1 Education and career 2 Nobel Prize Print/export 2.1 Disulphide bonds 2.2 Molecular models of antibody structure Languages 2.3 Antibody sequencing 2.4 Topobiology 3 Theory of consciousness Беларуская 3.1 Neural Darwinism Български 4 Evolution Theory Català 5 Personal Deutsch 6 See also Español 7 References Euskara 8 Bibliography Français 9 Further reading 10 External links Hrvatski Ido Education and career [edit] Bahasa Indonesia Italiano Gerald Edelman was born in 1929 in Ozone Park, Queens, New York to Jewish parents, physician Edward Edelman, and Anna Freedman Edelman, who worked in the insurance industry.[3] After עברית Kiswahili being raised in New York, he attended college in Pennsylvania where he graduated magna cum Nederlands laude with a B.S.
    [Show full text]
  • The Molecular Machinery of Neurotransmitter Release Nobel Lecture, 7 December 2013
    The Molecular Machinery of Neurotransmitter Release Nobel Lecture, 7 December 2013 by Thomas C. Südhof Dept. of Molecular and Cellular Physiology, and Howard Hughes Medical Institute, Stanford University, USA. 1. THE NEUROTRANSMITTER RELEASE ENIGMA Synapses have a long history in science. Synapses were frst functionally demon- strated by Emil duBois-Reymond (1818–1896), were morphologically identifed by classical neuroanatomists such as Rudolf von Kölliker (1817–1905) and San- tiago Ramon y Cajal (1852–1934), and named in 1897 by Michael Foster (1836– 1907). Although the chemical nature of synaptic transmission was already sug- gested by duBois-Reymond, it was long disputed because of its incredible speed. Over time, however, overwhelming evidence established that most synapses use chemical messengers called neurotransmitters, most notably with the pioneer- ing contributions by Otto Loewi (1873–1961), Henry Dale (1875–1968), Ulf von Euler (1905–1983), and Julius Axelrod (1912–2004). In parallel, arguably the most important advance to understanding how synapses work was provided by Bernard Katz (1911–2003), who elucidated the principal mechanism of syn- aptic transmission (Katz, 1969). Most initial studies on synapses were carried out on the neuromuscular junction, and central synapses have only come to the fore in recent decades. Here, major contributions by many scientists, including George Palade, Rodolfo Llinas, Chuck Stevens, Bert Sakmann, Eric Kandel, and Victor Whittaker, to name just a few, not only confrmed the principal results obtained in the neuromuscular junction by Katz, but also revealed that synapses 259 6490_Book.indb 259 11/4/14 2:29 PM 260 The Nobel Prizes exhibit an enormous diversity of properties as well as an unexpected capacity for plasticity.
    [Show full text]
  • Close to the Edge: Co-Authorship Proximity of Nobel Laureates in Physiology Or Medicine, 1991 - 2010, to Cross-Disciplinary Brokers
    Close to the edge: Co-authorship proximity of Nobel laureates in Physiology or Medicine, 1991 - 2010, to cross-disciplinary brokers Chris Fields 528 Zinnia Court Sonoma, CA 95476 USA fi[email protected] January 2, 2015 Abstract Between 1991 and 2010, 45 scientists were honored with Nobel prizes in Physiology or Medicine. It is shown that these 45 Nobel laureates are separated, on average, by at most 2.8 co-authorship steps from at least one cross-disciplinary broker, defined as a researcher who has published co-authored papers both in some biomedical discipline and in some non-biomedical discipline. If Nobel laureates in Physiology or Medicine and their immediate collaborators can be regarded as forming the intuitive “center” of the biomedical sciences, then at least for this 20-year sample of Nobel laureates, the center of the biomedical sciences within the co-authorship graph of all of the sciences is closer to the edges of multiple non-biomedical disciplines than typical biomedical researchers are to each other. Keywords: Biomedicine; Co-authorship graphs; Cross-disciplinary brokerage; Graph cen- trality; Preferential attachment Running head: Proximity of Nobel laureates to cross-disciplinary brokers 1 1 Introduction It is intuitively tempting to visualize scientific disciplines as spheres, with highly produc- tive, well-funded intellectual and political leaders such as Nobel laureates occupying their centers and less productive, less well-funded researchers being increasingly peripheral. As preferential attachment mechanisms as well as the economics of employment tend to give the well-known and well-funded more collaborators than the less well-known and less well- funded (e.g.
    [Show full text]