Thesis Submitted to the in Partial Fulfilment of the Requirements for The

Total Page:16

File Type:pdf, Size:1020Kb

Thesis Submitted to the in Partial Fulfilment of the Requirements for The ECHINODERMS OF THE SOUTH EASTERN ARABIAN SEA: SYSTEMATICS & ECOLOGY Thesis submitted to the COCHIN UNIVERSITY OF SCIENCE AND TECHNOLOGY In partial fulfilment of the requirements for the award of the Degree of DOCTOR OF PHILOSOPHY in MARINE BIOLOGY under the FACULTY OF MARINE SCIENCES USHA V. PARAMESWARAN Centre for Marine Living Resources & Ecology Ministry of Earth Sciences Kochi 682037 SEPTEMBER 2016 Echinoderms of the south eastern Arabian Sea: Systematics & Ecology Ph. D. Thesis in Marine Biology Author Usha V. Parameswaran Centre for Marine Living Resources & Ecology Ministry of Earth Sciences, Government of India Block C, 6th Floor, Kendriya Bhavan, Kakkanad Kochi 682037, Kerala, India Email: [email protected] Supervising Guide Dr. V. N. Sanjeevan Former Director Centre for Marine Living Resources & Ecology Ministry of Earth Sciences, Government of India Block C, 6th Floor, Kendriya Bhavan, Kakkanad Kochi 682037, Kerala, India Email: [email protected] September 2016 Front Cover Brittle star Ophiothrix (Acanthophiothrix) purpurea, collected onboard FORV Sagar Sampada from the study area. CERTIFICATE This is to certify that the thesis entitled “Echinoderms of the south eastern Arabian Sea: Systematics & Ecology” is an authentic record of the research work carried out by Ms. Usha V. Parameswaran (Reg. No.: 4423), under my scientific supervision and guidance at the Centre for Marine Living Resources & Ecology (CMLRE), Kochi, in partial fulfilment of the requirements for award of the degree of Doctor of Philosophy of the Cochin University of Science & Technology and that no part thereof has been presented before for the award of any other degree, diploma or associateship in any University. Further certified that all relevant corrections and modifications suggested during the pre-synopsis seminar and recommended by the Doctoral Committee have been incorporated in the thesis. Dr. V. N. Sanjeevan Former Director Centre for Marine Living Resources & Ecology Ministry of Earth Sciences Kendriya Bhavan, Kakkanad Kochi 682037, Kerala, India Kochi September, 2016 DECLARATION I hereby declare that the thesis entitled “Echinoderms of the south eastern Arabian Sea: Systematics & Ecology” is an authentic record of research work conducted by me under the supervision of Dr. V. N. Sanjeevan, Former Director, Centre for Marine Living Resources & Ecology (CMLRE), Kochi and no part of it has been presented for any other degree or diploma in any University. Usha V. Parameswaran (Reg. No.: 4423) Kochi September, 2016 ACKNOWLEDGEMENTS My deepest gratitude goes first and foremost to Dr. V. N. Sanjeevan, my supervising guide and former Director, CMLRE for his scientific guidance and constant encouragement. The freedom of work accorded by him and his patient, timely, measured criticism has been invaluable to me in my research career. I also express my deepest gratitude to Dr. M. Sudhakar (Director, CMLRE) and Dr. P. Madeshwaran (Former Director, CMLRE) for providing facilities and for their encouragement. This work was carried out as part of the project ‘Marine Benthos of the Indian EEZ’ under the Marine Living Resources (MLR) Programme of the Ministry of Earth Sciences, Government of India, implemented at the Centre for Marine Living Resources & Ecology. I express my gratitude to Dr. G. V. M. Gupta (Scientist F), Dr. T. Shunmugaraj (Scientist F), Dr. A. Shivaji (Scientist E) and Dr. Anil Kumar Vijayan (Scientist D) who have coordinated the project during the period of this work (2008-2016). I also than Dr. Rosamma Philip (Head, Dept. of Marine Biology, Microbiology & Biochemistry, CUSAT) and Dr. R. Damodaran (Retd. Faculty of Marine Sciences, CUSAT) for granting access to samples collected through the MLR project ‘Marine benthos of the continental slope of the Arabian Sea & Bay of Bengal’ between 2003 and 2007. I acknowledge, with deepest gratitude, the scientific advice and unconditional support provided by Dr. Abdul Jaleel K. U. (Project Scientist, CMLRE) during the period of this work. I am also tremendously grateful to Dr. Smitha B. R. (Scientist C, CMLRE) for all the inspiration, encouragement, friendship and support. The scientific guidance and encouragement given by Dr. Sabine Stöhr (Swedish Museum of Natural History) is acknowledged with thanks. I thank Dr. Hashim M. (Scientist C), Mr. N. Saravanane (Scientist E), Dr. Sherine S. Cubelio (Scientist D), Mrs. Ashadevi C. R. (Scientist D), Mr. Telson Noronha (Scientist B), Mr. C. Vasu (Scientist B) and Mr. M. Subramanian (Scientist B) and Mr. B. Kishore Kumar (RTO) of CMLRE for their encouragement. I thank the current and former Dean and Director of the School of Marine Sciences, CUSAT and Registrar, CUSAT for their support. I also gratefully acknowledge the support and encouragement provided by my teachers, Prof. Rosamma Philip (HOD), Prof. A. V. Saramma, Prof. Babu Philip, Dr. A. A. Mohamed Hatha and Dr. Bijoy Nandan of the Department of Marine Biology, Microbiology & Biochemistry, CUSAT. The collection of samples was made possible by the continuous support and cooperation from the FORV Sagar Sampada Vessel Management team at CMLRE. I express sincere thanks to them as well as the Captain, Crew, Chief Scientists and scientific team of FORVSS Cruises. Most invaluable of all during sampling, was the unconditional cooperation extended by the Fishing Hands, Mr. Tapan Kumar Malo, Mr. S. B. Prakash, Mr. Pradeep, Mr. Binoy V., Mr. Rathinavel and Mr. Sunil Kumar. Analysis of sediment texture was carried out at the National Centre for Earth Science Studies (NCESS), Trivandrum, and I express sincere thanks to the Director (NCESS), as well as Dr. T. N. Prakash (Scientist), Dr. Reji Sreenivas (Scientist), Dr. Tiju Varghese, Ms. Praseetha and supporting staff of the Sedimentology Lab, NCESS for their help. I have been most fortunate to work in close association with Dr. Abdul Jaleel K. U., Ms. Aiswarya Gopal, Mr. Vinu Jacob, Ms. Jini Jacob and Ms. Shruthi Venugopal, who all share my passion for science and comedy. I thank them for the long-winding scientific discussions (or arguments), the unending laughter, which has made lab work a pure joy. Most of all, I thank them the help accorded to me in preparing this thesis and also for the constancy of their friendship. I am equally fortunate and grateful for the kindness and timely support extended to me by Ms. Nikitha S. Linda, Mr. Muhammed Rafeeq, Ms. Sreerenjima G., Dr. Priyaja P. and Mr. Kevin P. V. during the preparation of this thesis. I thank colleagues Ms. Meera K. M., Mr. Sumod K. S., Mr. Rajeesh Kumar M. P., Ms. Chippy Khader, Mr. Thomy R., Mr. Maneesh T. P., Dr. Lathika Cicily Thomas, Ms. Anu Shaji, Mr. Sudheesh Keloth, Ms. Deepa K. P., Mrs. Mini M. K. and all project staff at CMLRE for the help extended to me during the period of this work. Encouragement provided by Mr. Niyas M. A., Mr. Anil Kumar P. R., Dr. T. Ganesh, Dr. K. J. Jayalakshmi, Dr. Rajool Shanis and Dr. Sabu P. is gratefully acknowledged. During a critical juncture in my life, I benefitted from timely advice from Dr. M. Bhasi (SMS, CUSAT), who with a few kind words, inadvertently set me on the path to writing this thesis. I express my deepest gratitude to him. I sincerely thank my friends Ms. Gayathri B. Menon, Ms. Trupti Dabade, Ms. Annie John, Ms. Dhanya N., Dr. Kavya Nambiar, Mr. Arun Jacob, Ms. Racheal Chacko, Lt. Cdr. Vivek Kuriakose, Ms. Kamala Suryanarayanan and Ms. Megha Mangalam for all their encouragement and support. I also thank Ms. Supriya Rangarajan, Ms. Vaidehi Powani, Mr. Mohammed Azil and little Ms. Fathima for being sources joy. At the junction between ‘friends’ and ‘family’, I have a small but significant set of benevolent and enthusiastic supporters. Whether I refer to them ‘friends of the family’ or ‘families of friends’ is matter of mere technicality. I thank Dr. B. Rajendran, Mrs. Saraswati Rajendran and Ms. Meera Rajendran; Mr. Vaidyanathan P., Mrs. Lalitha Vaidyanathan, Dr. Ranjini Vaidyanathan and Mr. Raghav Vaidyanathan; Mr. K. K. Shenoy, Mrs. Purnima Shenoy, Ms. Radhika Shenoy and Ms. Renuka Shenoy; Dr. Abdul Jaleel K. U and Mrs. Suleikha; Mr. Abhilash K. S. and Dr. Vrinda Sukumaran for all the love and for being pillars of support to me and my family. In this regard, I also thank the Mr. Abraham Mathew, Mrs. Bindu Abraham, and last but not least Mr. Mahesh Gupta, Mr. Biju Neelambran, Mr. Anil Unnikrishnan, and all staff of RBG Commodities Ltd., Kochi. I am fortunate to have been raised by a group of people comprising of parents, grandparents, aunts and uncles. They have made me understand the value of hard work, honesty and commitment and have variously instilled in me a sense of insatiable inquisitiveness, of wonder and of humour. I sincerely thank them and my brother for making me who I am and for their ardent encouragement for all my pursuits. Usha For my father INDEX Acknowledgements List of tables List of figures List of acronyms & abbreviations 1 Introduction 1 1.1 General Introduction 1 1.2 The Echinoderms 4 1.2.1 Phylum Echinodermata: definition 4 1.2.2 General characteristics 4 1.2.3 Evolutionary position 7 1.2.4 Systematics & diversity 8 1.2.5 Ecological roles 19 1.2.6 Global diversity & distribution 21 1.3 Echinoderms of Indian waters: status of knowledge 23 1.4 Echinoderms of the south eastern Arabian Sea (SEAS): relevance of present study 27 1.5 Objectives 28 1.6 Outline of the thesis 29 2 Study area, sampling design & analysis 33 2.1 The south eastern Arabian Sea 33 2.1.1 Geomorphology & sediment nature 33 2.1.2 Hydrography
Recommended publications
  • High Level Environmental Screening Study for Offshore Wind Farm Developments – Marine Habitats and Species Project
    High Level Environmental Screening Study for Offshore Wind Farm Developments – Marine Habitats and Species Project AEA Technology, Environment Contract: W/35/00632/00/00 For: The Department of Trade and Industry New & Renewable Energy Programme Report issued 30 August 2002 (Version with minor corrections 16 September 2002) Keith Hiscock, Harvey Tyler-Walters and Hugh Jones Reference: Hiscock, K., Tyler-Walters, H. & Jones, H. 2002. High Level Environmental Screening Study for Offshore Wind Farm Developments – Marine Habitats and Species Project. Report from the Marine Biological Association to The Department of Trade and Industry New & Renewable Energy Programme. (AEA Technology, Environment Contract: W/35/00632/00/00.) Correspondence: Dr. K. Hiscock, The Laboratory, Citadel Hill, Plymouth, PL1 2PB. [email protected] High level environmental screening study for offshore wind farm developments – marine habitats and species ii High level environmental screening study for offshore wind farm developments – marine habitats and species Title: High Level Environmental Screening Study for Offshore Wind Farm Developments – Marine Habitats and Species Project. Contract Report: W/35/00632/00/00. Client: Department of Trade and Industry (New & Renewable Energy Programme) Contract management: AEA Technology, Environment. Date of contract issue: 22/07/2002 Level of report issue: Final Confidentiality: Distribution at discretion of DTI before Consultation report published then no restriction. Distribution: Two copies and electronic file to DTI (Mr S. Payne, Offshore Renewables Planning). One copy to MBA library. Prepared by: Dr. K. Hiscock, Dr. H. Tyler-Walters & Hugh Jones Authorization: Project Director: Dr. Keith Hiscock Date: Signature: MBA Director: Prof. S. Hawkins Date: Signature: This report can be referred to as follows: Hiscock, K., Tyler-Walters, H.
    [Show full text]
  • Final Thesis File (7.170Mb)
    A TAXONOMIC REVISION OF THE TERTIARY ECHINOID GENUS MONOSTYCHIA Tony Sadler ORCID: 0000-0002-3406-8885 Submitted for the total fulfilment of the requirements of the degree of Doctor of Philosophy July 2020 School of Earth Sciences The University of Melbourne ABSTRACT For over 100 years the genus Monostychia (Echinoidea: Clypeasteroida) and its type species M. australis Laube, 1869 have been a taxonomic home for a wide range of genera and species with the commonality of a rounded to pentagonal, discoidal test and a submarginal periproct. The specimens comprising this group are all extinct and from the Tertiary strata of southern Australia. While there have been a few minor species identified beyond M. australis, notably M. etheridgei Woods, 1877 and P. loveni (Duncan, 1877), it has been clear to many researchers that the variability remaining in M. australis was representative of numerous other taxa awaiting discovery. Recent taxonomic works on the Clypeasteroida suggested that the number of interambulacral plates on the oral surface of the test of some species was a useful diagnostic character. Of interest were the plates that first come into contact with the periproct. However, there appeared little evidence in the literature that it had been established that the number of such plates remained constant with test length and age, or that the variability in each taxon, of those plate numbers, has been determined. Without understanding those two issues the utility of plate numbers was questionable. This study set out to resolve some of those issues for Monostychia and its relatives. It was found that the number of interambulacral and ambulacral plates on the oral surface was fixed and did not change with increasing test length and therefore there was potential utility for plate numbers as a taxonomic tool.
    [Show full text]
  • Late Cretaceous-Early Palaeogene Echinoderms and the K/T Boundary in the Southeast Netherlands and Northeast Belgium — Part 6: Conclusions
    pp 507-580 15-01-2007 14:51 Pagina 505 Late Cretaceous-Early Palaeogene echinoderms and the K/T boundary in the southeast Netherlands and northeast Belgium — Part 6: Conclusions John W.M. Jagt Jagt, J.W.M. Late Cretaceous-Early Palaeogene echinoderms and the K/T boundary in the southeast Netherlands and northeast Belgium — Part 6: Conclusions. — Scripta Geol., 121: 505-577, 8 figs., 9 tables, Leiden, December 2000. John W.M. Jagt, Natuurhistorisch Museum Maastricht, Postbus 882, NL-6200 AW Maastricht, The Netherlands, E-mail: [email protected] Key words: Echinodermata, Late Cretaceous, Early Palaeogene, palaeobiology, K/T boundary, extinc- tion. The palaeobiology of echinoderms occurring in the Meerssen and Geulhem members is discussed and changes in diversity across the K/T boundary are documented. Using literature data on the ecology of extant faunas, the various echinoderm groups are considered. Naturally, such data can only be applied with due caution to fossil forms, whose skeletal morphology is often incompletely known. This holds especially true for asteroids, ophiuroids, and crinoids, which, upon death, rapidly disinte- grate into jumbles of dissociated ossicles. Bioturbation, scavenging, and current winnowing all con- tribute to blurring the picture still further. However, data on extant forms do allow a preliminary sub- division of fossil species into various ecological groups, which are discussed herein. Combining recently published data on K/T boundary sections in Jylland and Sjælland (Denmark) with the pic- ture drawn here for the Maastricht area results in the following best constrained scenario. The demise of the highly diverse latest Maastrichtian echinoderm faunas, typical of shallow-water settings with local palaeorelief and associated unconsolidated bottoms, was rapid, suggestive of a catastrophic event (e.g.
    [Show full text]
  • Evidence for Cospeciation Events in the Host–Symbiont System Involving Crinoids (Echinodermata) and Their Obligate Associates, the Myzostomids (Myzostomida, Annelida)
    Molecular Phylogenetics and Evolution 54 (2010) 357–371 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Evidence for cospeciation events in the host–symbiont system involving crinoids (Echinodermata) and their obligate associates, the myzostomids (Myzostomida, Annelida) Déborah Lanterbecq a,*, Grey W. Rouse b, Igor Eeckhaut a a Marine Biology Laboratory, University of Mons, 6 Av. du Champ de Mars, Bât. Sciences de la vie, B-7000 Mons, Belgium b Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093-0202, USA article info abstract Article history: Although molecular-based phylogenetic studies of hosts and their associates are increasingly common Received 14 April 2009 in the literature, no study to date has examined the hypothesis of coevolutionary process between Revised 3 August 2009 hosts and commensals in the marine environment. The present work investigates the phylogenetic Accepted 12 August 2009 relationships among 16 species of obligate symbiont marine worms (Myzostomida) and their echino- Available online 15 August 2009 derm hosts (Crinoidea) in order to estimate the phylogenetic congruence existing between the two lin- eages. The combination of a high species diversity in myzostomids, their host specificity, their wide Keywords: variety of lifestyles and body shapes, and millions years of association, raises many questions about Coevolution the underlying mechanisms triggering their diversification. The phylogenetic
    [Show full text]
  • Coastal and Marine Ecological Classification Standard (2012)
    FGDC-STD-018-2012 Coastal and Marine Ecological Classification Standard Marine and Coastal Spatial Data Subcommittee Federal Geographic Data Committee June, 2012 Federal Geographic Data Committee FGDC-STD-018-2012 Coastal and Marine Ecological Classification Standard, June 2012 ______________________________________________________________________________________ CONTENTS PAGE 1. Introduction ..................................................................................................................... 1 1.1 Objectives ................................................................................................................ 1 1.2 Need ......................................................................................................................... 2 1.3 Scope ........................................................................................................................ 2 1.4 Application ............................................................................................................... 3 1.5 Relationship to Previous FGDC Standards .............................................................. 4 1.6 Development Procedures ......................................................................................... 5 1.7 Guiding Principles ................................................................................................... 7 1.7.1 Build a Scientifically Sound Ecological Classification .................................... 7 1.7.2 Meet the Needs of a Wide Range of Users ......................................................
    [Show full text]
  • Predator and Scavenger Aggregation to Discarded By-Catch from Dredge Fisheries: Importance of Damage Level
    Journal of Sea Research 51 (2004) 69–76 www.elsevier.com/locate/seares Short Communication Predator and scavenger aggregation to discarded by-catch from dredge fisheries: importance of damage level S.R. Jenkinsa,b,*, C. Mullena, A.R. Branda a Port Erin Marine Laboratory (University of Liverpool), Port Erin, Isle of Man, British Isles, IM9 6JA, UK b Marine Biological Association, Citadel Hill, Plymouth, PL1 2PB, UK Received 23 October 2002; accepted 22 May 2003 Abstract Predator and scavenger aggregation to simulated discards from a scallop dredge fishery was investigated in the north Irish Sea using an in situ underwater video to determine differences in the response to varying levels of discard damage. The rate and magnitude of scavenger and predator aggregation was assessed using three different types of bait, undamaged, lightly damaged and highly damaged individuals of the great scallop Pecten maximus. In each treatment scallops were agitated for 40 minutes in seawater to simulate the dredging process, then subjected to the appropriate damage level before being tethered loosely in front of the video camera. The density of predators and scavengers at undamaged scallops was low and equivalent to recorded periods with no bait. Aggregation of a range of predators and scavengers occurred at damaged bait. During the 24 hour period following baiting there was a trend of increasing magnitude of predator abundance with increasing damage level. However, badly damaged scallops were eaten quickly and lightly damaged scallops attracted a higher overall magnitude of predator abundance over a longer 4 day period. Large scale temporal variability in predator aggregation to simulated discarded biota was examined by comparison of results with those of a previous study, at the same site, 4 years previously.
    [Show full text]
  • Diversity and Phylogeography of Southern Ocean Sea Stars (Asteroidea)
    Diversity and phylogeography of Southern Ocean sea stars (Asteroidea) Thesis submitted by Camille MOREAU in fulfilment of the requirements of the PhD Degree in science (ULB - “Docteur en Science”) and in life science (UBFC – “Docteur en Science de la vie”) Academic year 2018-2019 Supervisors: Professor Bruno Danis (Université Libre de Bruxelles) Laboratoire de Biologie Marine And Dr. Thomas Saucède (Université Bourgogne Franche-Comté) Biogéosciences 1 Diversity and phylogeography of Southern Ocean sea stars (Asteroidea) Camille MOREAU Thesis committee: Mr. Mardulyn Patrick Professeur, ULB Président Mr. Van De Putte Anton Professeur Associé, IRSNB Rapporteur Mr. Poulin Elie Professeur, Université du Chili Rapporteur Mr. Rigaud Thierry Directeur de Recherche, UBFC Examinateur Mr. Saucède Thomas Maître de Conférences, UBFC Directeur de thèse Mr. Danis Bruno Professeur, ULB Co-directeur de thèse 2 Avant-propos Ce doctorat s’inscrit dans le cadre d’une cotutelle entre les universités de Dijon et Bruxelles et m’aura ainsi permis d’élargir mon réseau au sein de la communauté scientifique tout en étendant mes horizons scientifiques. C’est tout d’abord grâce au programme vERSO (Ecosystem Responses to global change : a multiscale approach in the Southern Ocean) que ce travail a été possible, mais aussi grâce aux collaborations construites avant et pendant ce travail. Cette thèse a aussi été l’occasion de continuer à aller travailler sur le terrain des hautes latitudes à plusieurs reprises pour collecter les échantillons et rencontrer de nouveaux collègues. Par le biais de ces trois missions de recherches et des nombreuses conférences auxquelles j’ai activement participé à travers le monde, j’ai beaucoup appris, tant scientifiquement qu’humainement.
    [Show full text]
  • The Sea Stars (Echinodermata: Asteroidea): Their Biology, Ecology, Evolution and Utilization OPEN ACCESS
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/328063815 The Sea Stars (Echinodermata: Asteroidea): Their Biology, Ecology, Evolution and Utilization OPEN ACCESS Article · January 2018 CITATIONS READS 0 6 5 authors, including: Ferdinard Olisa Megwalu World Fisheries University @Pukyong National University (wfu.pknu.ackr) 3 PUBLICATIONS 0 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Population Dynamics. View project All content following this page was uploaded by Ferdinard Olisa Megwalu on 04 October 2018. The user has requested enhancement of the downloaded file. Review Article Published: 17 Sep, 2018 SF Journal of Biotechnology and Biomedical Engineering The Sea Stars (Echinodermata: Asteroidea): Their Biology, Ecology, Evolution and Utilization Rahman MA1*, Molla MHR1, Megwalu FO1, Asare OE1, Tchoundi A1, Shaikh MM1 and Jahan B2 1World Fisheries University Pilot Programme, Pukyong National University (PKNU), Nam-gu, Busan, Korea 2Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna, Bangladesh Abstract The Sea stars (Asteroidea: Echinodermata) are comprising of a large and diverse groups of sessile marine invertebrates having seven extant orders such as Brisingida, Forcipulatida, Notomyotida, Paxillosida, Spinulosida, Valvatida and Velatida and two extinct one such as Calliasterellidae and Trichasteropsida. Around 1,500 living species of starfish occur on the seabed in all the world's oceans, from the tropics to subzero polar waters. They are found from the intertidal zone down to abyssal depths, 6,000m below the surface. Starfish typically have a central disc and five arms, though some species have a larger number of arms. The aboral or upper surface may be smooth, granular or spiny, and is covered with overlapping plates.
    [Show full text]
  • The Crinoids of Madagascar
    Bull. Mus. nain. Hist, nat., Paris, 4e sér., 3, 1981, section A, n° 2 : 379-413. The Crinoids of Madagascar by Janet I. MARSHALL and F. W. E. ROWE * Abstract. — A collection of crinoids from the vicinity of the Malagasy Republic, held in the Muséum national d'Histoire naturelle, in Paris, is identified. Three new species are described in the genera Chondrometra, Iridometra and Pentametrocrinus. The nominal species Comissia hartmeyeri A. H. Clark is considered to be conspecific with C. ignota A. H. Clark, and Dichro- metra afra A. H. Clark with D. flagellata (J. Müller). Comments are included on several syste- matic problems which have arisen during the study of this collection. Résumé. — Détermination d'une collection de Crinoïdes de Madagascar, déposée au Muséum national d'Histoire naturelle de Paris. Trois nouvelles espèces sont décrites pour les genres Chon- drometra, Iridometra et Pentametrocrinus. L'espèce Comissia hartmeyeri A. H. Clark est considérée comme synonyme de C. ignota A. H. Clark, et Dichrometra afra A. H. Clark comme synonyme de D. flagellata (J. Müller). Quelques problèmes systématiques sont discutés. INTRODUCTION The echinoderm fauna of South Africa and some parts of the Indian Ocean have been well documented, but that of Madagascar and of the African coast north of Mozambique is less well known. The island of Madagascar (the Malagasy Republic) stretches from approximately 12° S to 26° S through tropical to warm-temperate waters. The echino- derms found along the Malagasy coast are for the most part distinctly different from that of southern Africa as delimited by the Tropic of Capricorn (23°3(V S) (see A.
    [Show full text]
  • First Record of the Irregular Sea Urchin Lovenia Cordiformis (Echinodermata: Spatangoida: Loveniidae) in Colombia C
    Muñoz and Londoño-Cruz Marine Biodiversity Records (2016) 9:67 DOI 10.1186/s41200-016-0022-9 RECORD Open Access First record of the irregular sea urchin Lovenia cordiformis (Echinodermata: Spatangoida: Loveniidae) in Colombia C. G. Muñoz1* and E. Londoño-Cruz1,2 Abstract Background: A first record of occurrence of the irregular sea urchin Lovenia cordiformis in the Colombian Pacific is herein reported. Results: We collected one specimen of Lovenia cordiformis at Gorgona Island (Colombia) in a shallow sandy bottom next to a coral reef. Basic morphological data and images of the collected specimen are presented. The specimen now lies at the Echinoderm Collection of the Marine Biology Section at Universidad del Valle (Cali, Colombia; Tag Code UNIVALLE: CRBMeq-UV: 2014–001). Conclusions: This report fills a gap in and completes the distribution of the species along the entire coast of the Panamic Province in the Tropical Eastern Pacific, updating the echinoderm richness for Colombia to 384 species. Keywords: Lovenia cordiformis, Loveniidae, Sea porcupine, Heart urchin, Gorgona Island Background continental shelf of the Pacific coast of Colombia, filling Heart shape-bodied sea urchins also known as sea por- in a gap of its coastal distribution in the Tropical Eastern cupines (family Loveniidae), are irregular echinoids char- Pacific (TEP). acterized by its secondary bilateral symmetry. Unlike most sea urchins, features of the Loveniidae provide dif- Materials and methods ferent anterior-posterior ends, with mouth and anus lo- One Lovenia cordiformis specimen was collected on cated ventrally and distally on an oval-shaped horizontal October 19, 2012 by snorkeling during low tide at ap- plane.
    [Show full text]
  • Research on Indian Echinoderms - a Review
    J. mar. biol Ass. India, 1983, 25 (1 & 2):91 -108 RESEARCH ON INDIAN ECHINODERMS - A REVIEW D. B. JAMES* Central Marine fisheries Research Institute, Cochin -682031 In the present paper research work so far done on Indian Echinoderms is reviewed. Various aspects such as history, taxonomy, anatomy, reproductive physiology, development and larval forms, ecology, animal associations, parasites, utility, distribution and zoogeography, toxicology and bibliography are reviewed in detail. Corrections to misidentifications in earlier papers have been made wherever possible and presented in the Appendix at the end of the paper. and help at every stage. He thanks Dr. INTRODUCTION P.S.B.R. James, Director, C.M.F.R. Institute for kindly suggesting to write this review and ECHINODERMS being common and conspicuous also for his kind interest and encouragement. organisms of the sea shore have attracted the He also thanks Miss A.M. Clark, British Museum attention of the naturalists since very early (Natural History), London for commenting times. Their btauty, more so their symmetry on the correct identity of some of the echino­ have attracted the attention of many a natura­ derms presented here. list. Although the first paper on Indian Echino- <jlerms was published as early as 1743 by Plan- HISTORY cus and Gaultire from Goa there was not much progress in the field except in the late nineteenth Most of the research work on Indian echino­ and early twentieth centuries when echinoderms derms relate only to taxonomy with little or no collected mostly by R.I.M.S. Investigator were information on the ecology and other aspects reported by several authors.
    [Show full text]
  • The Panamic Biota: Some Observations Prior to a Sea-Level Canal
    Bulletin of the Biological Society of Washington No. 2 THE PANAMIC BIOTA: SOME OBSERVATIONS PRIOR TO A SEA-LEVEL CANAL A Symposium Sponsored by The Biological Society of Washington The Conservation Foundation The National Museum of Natural History The Smithsonian Institution MEREDITH L. JONES, Editor September 28, 1972 CONTENTS Foreword The Editor - - - - - - - - - - Introduction Meredith L. Jones ____________ vi A Tribute to Waldo Lasalle Schmitt George A. Llano 1 Background for a New, Sea-Level, Panama Canal David Challinor - - - - - - - - - - - Observations on the Ecology of the Caribbean and Pacific Coasts of Panama - - - - Peter W. Glynn _ 13 Physical Characteristics of the Proposed Sea-Level Isthmian Canal John P. Sheffey - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 31 Exchange of Water through the Proposed Sea-Level Canal at Panama Donald R. F. Harleman - - - - - - - - - - - - - - - - - - - - - - - - - - - 41 Biological Results of the University of Miami Deep-Sea Expeditions. 93. Comments Concerning the University of Miami's Marine Biological Survey Related to the Panamanian Sea-Level Canal Gilbert L. Voss - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 49 Museums as Environmental Data Banks: Curatorial Problems Posed by an Extensive Biological Survey Richard S. Cowan - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 59 A Review of the Marine Plants of Panama Sylvia A. Earle - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 69 Ecology and Species Diversity of
    [Show full text]